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Abstract

Recently, adversarial training has been incorpo-
rated in self-supervised contrastive pre-training to
augment label efficiency with exciting adversarial
robustness. However, the robustness came at a
cost of expensive adversarial training. In this pa-
per, we show a surprising fact that contrastive pre-
training has an interesting yet implicit connection
with robustness, and such natural robustness in
the pre-trained representation enables us to design
a powerful robust algorithm against adversarial
attacks, RUSH, that combines the standard con-
trastive pre-training and randomized smoothing.
It boosts both standard accuracy and robust accu-
racy, and significantly reduces training costs as
compared with adversarial training. We use exten-
sive empirical studies to show that the proposed
RUSH outperforms robust classifiers from adver-
sarial training, by a significant margin on com-
mon benchmarks (CIFAR-10, CIFAR-100, and
STL-10) under first-order attacks. In particular,
under ℓ∞-norm perturbations of size 8/255 PGD
attack on CIFAR-10, our model using ResNet-18
as backbone reached 77.8% robust accuracy and
87.9% standard accuracy. Our work has an im-
provement of over 15% in robust accuracy and
a slight improvement in standard accuracy, com-
pared to the state-of-the-arts. Full version is avail-
able.

1. Introduction
Adversarial attacks have imposed a significant challenge to
inference robustness of machine learning models. For exam-
ple, an image classifier that achieves high accuracy for nor-
mal testing data could be easily fooled by a perturbed image
from adversarial attacks, and the perturbed images usually
have very subtle differences from normal images (Goodfel-
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low et al., 2014; Akhtar & Mian, 2018). To tackle this chal-
lenge, many defense mechanisms are proposed to achieve
adversarial robustness (Kannan et al., 2018; Madry et al.,
2017; Salman et al., 2019; Jiang et al., 2020). The defense
algorithms can be categorized into empirical defense and
certified defense, where the latter provides provable robust
guarantees (i.e. there exist no adversarial samples given
bounded perturbation). One popular empirical defense is
adversarial training (AT), which augments training data with
adversarial examples. AT is usually achieved by alternative
min-max optimization (Goodfellow et al., 2014; Kurakin
et al., 2016). However, failed adversarial examples from
unstable attacks may break the defense, as a result of nu-
merical instability, randomness, and vanishing/exploding
gradients (Athalye et al., 2018).

On the other hand, certified defenses provide provable ro-
bustness that the predictions of classifier remain constant
within certain neighborhoods. One class of approaches
reach certified robustness through robust training, which
are guaranteed to detect all adversarial examples around
a data point in a norm-bounded range by constructing an
upper bound on the worst-case loss through convex relax-
ations (Raghunathan et al., 2018; Wong & Kolter, 2018).
Due to large computational costs, those methods are mostly
restricted to applications of small-scale data. Randomized
smoothing provides certified defenses for large datasets. It
smooths a classifier by applying the convolution between
Gaussian noise and the classifier, and is certifiably robust to
adversarial perturbations under the ℓ2 norm (Cohen et al.,
2019; Salman et al., 2019). Although certificated defense
can provide us theoretical guarantees against the adversarial
attack, compared with the empirical defense such as ad-
versarial training, the empirical performance of certificated
defense is usually worse than empirical defenses.

Introducing robustness in Self-Supervised Learning (SSL)
recently has attracted significant efforts from the commu-
nity (Hendrycks et al., 2019; Alayrac et al., 2019; Gowal
et al., 2020), as recent years witnessed its huge success in
many applications that dramatically improves generalization
performance by leveraging unlabeled data for downstream
tasks. A typical SSL treatment includes a self-supervised
contrastive pre-training stage, followed by a supervised fine-
tuning stage that tailors the pre-trained model to supervi-
sions (Jing & Tian, 2020; He et al., 2020; Chen et al., 2020a;
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Grill et al., 2020). Unfortunately, recent studies showed that
SSL does not spare from robustness issues (Hendrycks et al.,
2019; Alayrac et al., 2019; Gowal et al., 2020). Attempts of
integrating adversarial training in SSL have demonstrated
improving robustness by paying the price of expensive
computation costs that can be forbidden in many resource-
limited data mining applications (Chen et al., 2020b; Jiang
et al., 2020).

As such, in this paper, we ask the following intriguing and
important question: is adversarial training necessary to
achieve robustness in contrastive pre-training? By studying
the similarity between Lipschitz continuity and optimization
objective of contrastive learning (c.f. Section 4.1), we reveal
the natural robustness introduced by contrastive learning.
With such robustness, we propose an embarrassingly simple
framework to deliver powerful robustness by combining
contrastive learning and randomized smoothing. We demon-
strate that the model trained with the proposed approach,
which follows the SimCLR training procedures, shows sig-
nificant robustness to Projected Gradient Decent (PGD)
attack (Madry et al., 2017) and AutoAttack (AA) (Croce &
Hein, 2020) on CIFAR-10, CIFAR-100, and STL10, achiev-
ing state-of-art accuracy for clean data and perturbed data
(Krizhevsky et al., 2009; Coates et al., 2011).

Our contributions. Our paper has the following contribu-
tions. Firstly, we discuss the potential connection between
Lipschitz continuity and contrastive pre-training, which
leads to the discovery of hidden natural robustness induced
by contrastive learning. Secondly, our proposed approach,
which strategically combines the natural robustness with
randomized smoothing, has shown significant robustness
against first-order-based attacks with a very limited sacrifice
of the standard accuracy. Finally, we conducted extensive
empirical studies to evaluate the proposed algorithm, which
delivers comparable results against state-of-the-arts while
enjoys much smaller training costs.

2. Related Work
Adversarial Training. Existing literature studied the ad-
versarial robustness of neural networks (Moosavi-Dezfooli
et al., 2016; Papernot et al., 2016; Carlini & Wagner, 2017;
Xu et al., 2017). Adversarial training (AT) is one of the most
powerful methods against adversarial attacks (Madry et al.,
2017), which injects adversarial examples in the original
training set. AT is usually associated with huge compu-
tational overhead, leading to efforts on data-efficient and
computation-efficient variants to mitigate the cost of the
generating of adversarial examples (Shafahi et al., 2019;
Wong et al., 2020; Zhang et al., 2019b). However, these
approaches still demand considerable additional computa-
tional costs for constructing and augmenting adversarial
examples as compared to the standard training.

Adversarial Training in Self-supervised Learning. Re-
cently, adversarial examples were shown to improve the ro-
bustness of self-supervised learning (Hendrycks et al., 2019).
Continued efforts developed a variety of approaches to in-
troduce adversarial training in the context of self-supervised
learning (Alayrac et al., 2019; Chen et al., 2020b; Gowal
et al., 2020). A prominent example is SimCLR, a popular
and simple contrastive learning framework with exceptional
performance (Chen et al., 2020a). Injecting adversarial
samples to the pre-training stage of SimCLR is shown to
successfully induce model robustness (Jiang et al., 2020).
Alternatively, robustness can be achieved by a training pro-
cess that maximizes the similarity between a random aug-
mentation of a data sample and its instance-wise adversarial
perturbation (Kim et al., 2020). Most existing robust ap-
proaches in contrastive learning rely on adversarial training,
which is associated with significant computational overhead
and decreased standard accuracy, and often provides no
provable guarantees.

Certified Defenses. In contrast to empirical approaches
for robustness such as adversarial training, certified defense
guarantees provable robustness to a specific class of adver-
sarial perturbation (Katz et al., 2017; Tjeng et al., 2017;
Gehr et al., 2018; Mirman et al., 2018; Raghunathan et al.,
2018; Weng et al., 2018; Wong & Kolter, 2018). Many
existing approaches admit efficiency issues and are hard to
scale to large datasets (Salman et al., 2019; Cohen et al.,
2019). Randomized smoothing, a kind of certified defenses,
was developed following the idea of augmenting the dataset
by sampling some data points centered at the original data
examples in the input space to against adversarial pertur-
bation (Liu et al., 2018; Cao & Gong, 2017), but no guar-
antees have been proved in these works. Following works
largely expanded the generalization of randomized smooth-
ing and proved its probabilistic robustness guarantee against
ℓp-bounded adversaries (Cohen et al., 2019; Teng et al.,
2019; Zhang et al., 2019a; Levine & Feizi, 2020). A re-
cent work comprehensively studied the interaction between
two important factors of random smoothing: the choice
of smoothing distribution and the perturbation norm(Yang
et al., 2020). Combining adversarial training with random-
ized smoothing classifiers is recently shown to substantially
boost certified robustness (Salman et al., 2019), and it suf-
fers the aforementioned issues due to its usage of adversarial
training. Besides, the accuracy trade-off has also been ob-
served in randomized smoothing that adversarially trained
networks with higher robust accuracy tend to have lower
standard accuracy (Tsipras et al., 2018; Cohen et al., 2019).

3. Notations and Preliminaries
In this section, we introduce notations and revisit preliminar-
ies, including contrastive learning, randomized smoothing,
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and adversarially perturbed data. We use (xi,yi) to denote
one single labeled data point or an observation, and the
training set D = {xi,yi}ki=1.

Contrastive Learning is a technique that uses unlabeled
data to learn feature representations by constructing supervi-
sions of similarity/dissimilar pairs from data. SimCLR is a
widely-adopted contrastive learning framework (Chen et al.,
2020a) due to its high performance and simplicity. We will
use SimCLR as our backbone of contrastive learning for
discussion in this paper.

Formally, SimCLR has two stages: self-supervised pre-
training and supervised fine-tuning. During the pre-training
stage, it leverages a set of pre-defined data transformations
T , samples two transformations t1, t2 ∼ T , and uses them
to transform a given data point x into two views t1(x), t2(x).
It then uses a multi-view contrastive learning loss Lpre to
learn a feature extractor and projector gθp ◦ fθ, where the
model equipping with projector g(·), parameterized by θp,
on top of the feature extractor f(·), parameterized by θ.
The loss maximizes the cosine similarity of the projected
data representations of different views of the same image
and minimizes the cosine similarity of the projected data
representations generated by different images. In the fine-
tuning stage, it uses the labeled training data in D to learn
a classifier ϕ(·), parameterized by θc, with representations
from the feature extractor f(·). The objectives are given by:

PRE-TRAIN:
min
θ,θp

Et1,t2∼T ,x∈DLpre(gθp ◦ fθ([t1(x), t2(x)]));

FINE-TUNE:
min
θc

Ex,y∈DLCE(ϕθc ◦ fθ(x),y).

Randomized Smoothing aims to construct a smooth clas-
sifier G from a base classifier F : X ∈ Rd → Y ∈ R
that maps an instance space X to an output space Y . The
smoothed classifier G responds to a query x with the class
that the base classifier F is most likely to return when x is
perturbed by isotropic Gaussian noise (Cohen et al., 2019;
Salman et al., 2019):

G(x) = (F ∗ Nd(0, σ
2))(x) = E

δ∼Nd(0,σ2)
[F (x+ δ)],

(1)

where σ denotes noise level to trade-off between robustness
and accuracy.

There are several approaches to train a smoothed classi-
fier (Cohen et al., 2019; Salman et al., 2019; Lecuyer et al.,
2019). In this paper, we use the following representative
method, one-time-noise-based augmentation, to train our
classifier:

L(x,y) = −logF (x+ δ)y, (2)

where δ is sampled from smoothing distribution. The choice
of smoothing distribution including its noise scale is key to
empirical success of random smoothing (Yang et al., 2020).
We denote the randomized smoothing operator to data x as
Q : Rd → Rd:

Q(x) = x+ δ, (3)

where δ ∈ Rd ∼ Ωd is a vector sampled from a certain
smoothing distribution Ωd. Common choices of smoothing
distributions include uniform distribution δ ∼ Ud(−µ, µ)
and Gaussian distribution δ ∼ Nd(0, σ

2). A comprehen-
sive study of various smoothing distributions is provided in
(Yang et al., 2020).

During the inference, randomized smoothing uses Monte-
Carlo sampling to estimate the expectation in equation 1.
Similarly, we use a voting strategy, denoted by Vm(F (x)),
to estimate the expected prediction ŷ for an input x, from
outputs generated by m times randomly smoothed x:

ŷ = VOTING
i={1,...,m}

(F (Qi(x)) (4)

= VOTING
i={1,...,m}

(F (x+ δi)) ≡ Vm(F (x)), (5)

where m is a hyper-parameter. A relatively larger m will
give a more accurate estimation for the expectation. Besides
voting for prediction, one can also average the confidence
scores from the underlying classifier for each class (Kumar
et al., 2020).

Adversarially Perturbed Data is used to conduct adver-
sarial attacks and test model robustness (Goodfellow et al.,
2014). Given an observation (x,y) and a trained model G,
the goal is to find a point x̂ that has a small difference with
x and misleads G to an incorrect prediction:

x̂ = argmax||x′−x||p≤ϵ ℓCE(G(x′),y), (6)

where ϵ is the scale of ℓp-norm perturbation. Directly at-
tacking one data point (x,y) without augmented smoothing
operation is shown to have ill-behaved problem under ran-
domized smoothing modeling conditions due to the argmax
operator (Salman et al., 2019; Cohen et al., 2019). We use a
similar strategy to generate the adversarial samples against
smoothed classifier (Salman et al., 2019).

Specifically, let J(x′) = ℓCE(G(x′),y)) be the objective
function in equation 6, and G is the smoothed classifier, the
empirical gradient of finding x̂ is given by the formula based
on Monte Carlo approximations (Salman et al., 2019):

∇x′J(x′) ≈ ∇x′

(
−log

(
1

m

∑m

i=1
F (x′ + δi)y

))
,

(7)

where m is the same hyper-parameter denoting the number
of voting samples in equation 4 as well as the number of
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Algorithm 1 RUSH: robust contrastive learning via random-
ized smoothing

1: Require:
D,Dtest: training and test datasets
fθ, gθp , ϕθc : randomly initialized feature extractor,

projector, and linear classifier
Q: data smoothing operation
A+

m: adversarially perturbing operation
Vm: voting strategy of randomized smoothing
T : pre-defined data transformation

Training: pre-training→ fine-tuning
2: repeat
3: for (x,y) in D do
4: x1,x2 = t1(x), t2(x), where t1, t2 ∼ T
5: x2 = Q(x2)
6: (θ, θp) ← (θ, θp) − α∇θ,θpLpre(gθp ◦

fθ([x1,x2]))
7: end for
8: until pre-training stop
9: repeat

10: for (x,y) in D do
11: x = Q(x)
12: θc ← θc − β∇θcLCE(ϕθc ◦ fθ(x),y)[1]
13: end for
14: until fine-tuning stop

Inference: Given Input x
15: ŷ = Vm(ϕθc ◦ fθ(x))
16: return ŷ

Notes:
[1] The bias of the BatchNorm layers of fθ is not frozen
during fine-tuning, since batch normalization should be
based on specific feature distributions, especially in the
transfer learning setting.

samples of Monte Carlo approximations in equation 7. We
denote adversarial perturbation from equation 6 by employ-
ing Monte Carlo approximation, equation 7, asA+

m(x) = x̂.

Without ambiguity, our approach only uses adversarially
perturbed data A+

m(x) in the inference stage to evaluate
robust performance. In this study, PGD attack (Madry et al.,
2017) and its variants (Croce & Hein, 2020) are used to get
the practically perturbed data.

4. Robust Contrastive Learning via
Randomized Smoothing

In this section, we first discuss the foundation of RUSH,
an interesting yet implicit connection between contrastive
learning and robustness, which suggests the existence of the
natural robustness of contrastive learning under standard
training. Such natural robustness allows us to propose a sim-

ple, yet extremely efficient and effective robust contrastive
learning via randomized smoothing (RUSH). RUSH has a
two-staged training process: self-supervised pre-training
and supervised fine-tuning. During the pre-training stage,
it uses standard training of contrastive learning, with ba-
sic noise-based data augmentation. The following fine-
tuning stage and inference are empowered by the random-
ized smoothing paradigm, where we arm the linear classifier
with label information and robust feature representation to
defense adversarial attacks. The proposed RUSH algorithm
is illustrated in Algorithm 1.

4.1. Natural robustness in contrastive learning

We now illustrate a key property of contrastive learning,
i.e., the natural robustness, as a result of the implicit con-
nection between Lipschitz continuity and the objective of
contrastive learning. To see this, we will first elaborate how
robustness is related to Lipschitz continuous, and then show
why contrastive learning is impacting Lipschitz continuous.
In the following, let f be the feature encoder of a classifier
following contrastive learning framework which maps in-
puts X ∈ Rd to feature representation in Z ∈ Rp. Recall
that T denotes a set of pre-defined data transformations
in contrastive learning, dx and dz denote distance metrics
measuring x, z.

Lipschitz continuity and Robustness. According to defini-
tion, if f is Lipschitz continuous, then we have the follow-
ing:

dz(f(xi), f(xj)) ≤ K · dx(xi,xj), (8)

where K is referred to as a Lipschitz constant. Since the
definition holds for any xi, xj , we could let xj be the ad-
versarial sample of xi. Given an original sample xi, its
adversarial sample adv(xi) is designed to be as close to the
original as possible. Therefore, we can assume the distance
between the adversarial sample and the original sample is
bounded by c, and we thus have:

dz(f(xi), f(adv(xi))) ≤ Kc,

from which we see that if a learned function or model has
a small Lipschitz constant K, then the model is robust
against adversarial attacks since the change in output is
also bounded given small K.

Contrastive learning and Lipschitz continuity. Now re-
call the goal of contrastive learning, which encourages the
learned feature representation from f should be similar if
the input pair of images have similar content. As such, given
a data point x, contrastive learning in the pre-training stage
embeds the following optimization objective:

min
f

Ex1,x2∼Γdz(f(x1), f(x2)), (9)
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where Γ = {dx(x1,x2) ≤ c} is the set of arbitrary pairs
of two data points, as long as the distance between them
is smaller than c. To optimize the above objective, the key
question is how we get the samples from the set Γ. For
example, the contrastive learning backbone of this paper
(SimCLR) used a pair of transformations t1(x), t2(x) as the
samples from Γ, where t1, t2 ∼ T . Therefore, we have the
following objective:

min
f

Ex1∼t1(x),x2∼t2(x)dz(f(x1), f(x2)),∀t1, t2 ∼ T .

(10)

We would like to highlight that the dx should be treated as
the distance in semantic space for the above objective. This
is because although some common distance metrics for dx
such as ℓ2-distance cannot satisfy the distance constraint for
dx(t1(x), t2(x)) for certain transformations such as rota-
tion, there are many other valid metrics such as Wasserstein
distance that satisfy the constraint.

By minimizing the objective in equation 9, we require the
difference between representations to be small given similar
inputs, and therefore, it is not hard to see that we are heuris-
tically minimizing the Lipschitz constant K in equation 8.
As a result, by getting a small Lipschitz constant in con-
trastive learning, the learned model gains robustness against
adversarial attacks. And we call such robustness as natural
robustness since it does not require additional adversarial
training.

4.2. Combining Randomized Smoothing and
Contrastive Learning

The natural robustness in contrastive learning delivers ad-
versarial robustness for representation and yet we need to
ensure that final classifier based on the representation is also
robust. We propose integrating randomized smoothing to
achieve this goal in RUSH, taking advantage of its efficiency
and certified robustness. In this section, we elaborate on
how the combination is done in RUSH at the pre-training,
fine-tuning, and inference stages.

Pre-training. The first step is to integrate the data smooth-
ing operation in the pre-training stage. In this end, RUSH
uses the following objective function for pre-training:

minθ,θp Et1,t2∼T ,x∈D Lpre(gθp ◦ fθ([t1(x),Q(t2(x))]),
(11)

where Lpre is NT-Xent loss following the original definition
from (Chen et al., 2020a), andQ is our selected randomized
smoothing operation to the data as in equation 3, which can
be considered as entity-wise noising the input. We note
that different from the original SimCLR, there is no need
to apply Gaussian blur in T , since we already have our
data smoothing operation Q. More details can be found at
Appendix A.

Fine-tuning. Next, we embed data smoothing operation into
fine-tuning stage to extract the robust feature representations.
As such, RUSH used the following objective for the fine-
tuning stage:

minθc Ex,y∈D LCE(ϕθc ◦ fθ(Q(x)),y), (12)

where Q is the same data smoothing operation. Unless
otherwise specified, we use the same smoothing distribution
as the one used for pre-training, fine-tuning and inference.

Inference. Besides the treatments in training, RUSH uses ad-
versarial perturbation A+

m in equation 7 and voting strategy
Vm in equation 4, as illustrated in Algorithm 1.

We note that in typical randomized smoothing settings, the
value of m is set to a reasonable value (e.g., 32, 64, or 128)
and sometimes it varies across samples for the fixed certifi-
cated radius. From our empirical study, we find that RUSH
also delivers rather promising performance when m = 1.
Since m = 1 represents the situation of maximum compu-
tational efficiency of our approach. Under this inference
strategy, RUSH has no extra computational overhead as com-
pared to the vanilla SimCLR algorithm in both training and
inference stages. So, unless otherwise specified, there are
two test strategies in this study, I+F and IF , with different
hyper-parameter m. Specifically, IF denotes using m = 1
for A+

m and Vm. I+F denotes using m > 1 for A+
m and Vm,

e.g., m = 64.

5. Experiments
In this section, we demonstrate the effectiveness of our
proposed RUSH through performance comparison be-
tween RUSH and other key related approaches including
cross-datasets and cross-tasks robustness against PGD at-
tacks (Madry et al., 2017) and AA attacks (Croce & Hein,
2020);

5.1. Setup

The RUSH algorithm can be applied to a variety of ma-
chine learning and data mining problems with general
structured data. As many competing approaches used im-
age datasets for evaluation, we will follow this evaluation
scheme. Specifically, we conduct experiments on three
image benchmark datasets, CIFAR-10, CIFAR-100, and
STL10, with two robustness evaluation metrics, standard
accuracy over original images without perturbations and
robust accuracy over adversarially perturbed images via
first-order methods including PGD attack and AA attack.

We use ResNet-18 for the encoder architecture of fθ, a two-
layer MLP projection head gθp to project the representation,
and one linear layer for linear classifier ϕθc . For image
transformation T , we use random resized crop, random hor-
izontal flip, and color distortions. Detailed implementations
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are provided in Appendix A. Unless otherwise specified,
we use uniform distribution δ ∼ U32×32(−0.3, 0.3) as our
default smoothing distribution. See Appendix B for details
of training setting.

Inference Setting. Standard accuracy and robust accuracy
are evaluated with clean data and perturbed data respectively
under two inference strategies described in Section 4.2. Un-
less otherwise specified, we use m = 64 for the inference
strategy I+F , i.e., 64 number of sampling for both adversarial
perturbation A+

m and voting strategy Vm. IF is always with
m = 1.

Without ambiguity, inference strategy I+F and IF with ad-
versarial perturbation A+

m are designed for smoothed clas-
sifiers with stronger attack strength to our model (Salman
et al., 2019). During the inference of our approach, the at-
tacks to our model including PGD attack and AA attack are
re-implemented with noise-based augmentation according
to equation 7 (Kim, 2020). See Appendix C.

5.2. Performance

Overall cross-datasets and cross-tasks performance. Ta-
ble 1 summarizes the performance of our approach under
inference strategy I+F and IF and key competing baselines
over CIFAR-10, CIFAR100, CIFAR-10⇀STL-10, and STL-
10 unlabeled⇀STL-10, where ⇀ denotes transfer learning
setting, e.g., CIFAR-10⇀STL-10 means the model is pre-
trained on the training set of CIFAR-10, fine-tuned on the
training set of STL-10, and tested on the test set of STL-10.

We see that the proposed RUSH outperforms all competing
baselines w.r.t. both standard accuracy and robust accu-
racy under network architecture ResNet-18 in all settings.
Compared with state-of-the-arts using network architecture
WideResNet-70-16, RUSH still outperforms them with a sig-
nificant margin on robust accuracy. The method SmoothAdv
Training uses smoothed classifier to defend first-order-based
attacks (Salman et al., 2019), which uses a similar intuition
as ours. However, RUSH outperforms it with less complex-
ity of network architecture and regardless of adversarial
examples.

6. Conclusions
In this paper, we designed a robust contrastive learning
algorithm RUSH by exploring the natural robustness in con-
trastive learning. We showed that RUSH maintains a high
standard accuracy and substantially improves robust accu-
racy. Extensive empirical studies showed that RUSH out-
performs all existing ℓ∞-robust methods by a significant
margin on common image benchmarks including CIFAR-10,
CIFAR-100, and STL-10.

Table 1. Performance comparison over baselines, in terms of
standard accuracy, robust accuracy under ℓ∞=8/255 PGD and
ℓ∞=8/255 AA attacks with ResNet-18 on CIFAR-10, CIFAR-100,
CIFAR-10⇀STL-10, and STL-10 ⇀STL-10. The top perfor-
mance is highlighted in bold.

Methods Acc.(%)

Standard PGD AA

CIFAR-10

RUSHI+
F (ours) 87.9 77.8 79.5

RUSHIF (ours) 86.4 73.7 74.7
RoCL (Kim et al., 2020) 83.7 40.2 -
Free-m (Shafahi et al., 2019) 85.9 46.8 -
AdvCL (Fan et al., 2021) 83.6 52.7 49.7
SmoothAdv (Salman et al., 2019)4 86.2 68.2 -
ACL (Jiang et al., 2020)1 82.5 52.8 49.3
Data AUG (Rebuffi et al., 2021)1 83.5 59.9 57.0
Data AUG (Rebuffi et al., 2021)2 92.2 - 66.5

CIFAR-100

RUSHI+
F (ours) 57.1 46.6 -

RUSHIF (ours) 55.3 42.5 40.2
AdvCL (Fan et al., 2021) 56.7 28.7 24.7
Data AUG (Rebuffi et al., 2021)1 56.9 32.0 28.5
Data AUG (Rebuffi et al., 2021)2 63.5 - 34.6

CIFAR-10⇀STL-10

RUSHI+
F (ours) 73.7 53.3 55.9

RUSHIF (ours) 72.0 49.4 53.4
BYORL (Gowal et al., 2020) - 24.1 -
AdvCL (Fan et al., 2021) 63.5 37.7 34.7

STL-10
3
⇀STL-10

RUSHI+
F (ours) 76.7 64.6 67.0

RUSHIF (ours) 75.1 61.5 60.2
1 using the provided pre-trained ResNet18 model and testing on our
pipeline.
2 latest state-of-the-art according to (Croce et al., 2020) (Link:
https://robustbench.github.io/index.html),
which applied network architecture WideResNet-70-16. The
standard accuracy marked as 2 will not be ranked considering fair
comparisons.
3 STL-10 denotes the independent set of unlabeled examples in
STL-10.
4 under ℓ∞=2/255 PGD attack with ResNet-110.
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A. Details of Image Transformation
We provide the full code in the supplementary materials for reproducing the results. Here we elaborate the details of image
transformations used in the paper, a key part of our implementation. We utilize random resized crop, random horizontal flip,
and random color distortion as the default image transformation. Different from the original data augmentation of SimCLR,
we do not apply random Gaussian blur, as discussed in Section 4.2.

The operation constructing a pair of transformed images are detailed as below. We note that:

• T (x) is T simCLR(img, flag RdSm = False)

• Q(T (x)) is T simCLR(img, flag RdSm = True)

import t o r c h v i s i o n
T simCLR = TransformsSimCLR ( n o i s e t y p e = ” un i fo rm ” )
i m g T p a i r = t o r c h . s t a c k ( [ T simCLR ( img , f lag RdSm = F a l s e ) , T simCLR ( img , f lag RdSm = True ) ] )

def g e t c o l o r d i s t o r t i o n ( s = 0 . 5 ) :
c o l o r j i t t e r = t o r c h v i s i o n . t r a n s f o r m s . C o l o r J i t t e r ( 0 . 8 * s , 0 . 8 * s , 0 . 8 * s , 0 . 2 * s )
r n d c o l o r j i t t e r = t o r c h v i s i o n . t r a n s f o r m s . RandomApply ( [ c o l o r j i t t e r ] , p = 0 . 8 )
r n d g r a y = t o r c h v i s i o n . t r a n s f o r m s . RandomGrayscale ( p = 0 . 2 )
c o l o r d i s t o r t = t o r c h v i s i o n . t r a n s f o r m s . Compose ( [ r n d c o l o r j i t t e r , r n d g r a y ] )
re turn c o l o r d i s t o r t

c l a s s TransformsSimCLR :
def i n i t ( s e l f , n o i s e t y p e , n o i s e s d , s i z e ) :

s e l f . t r a i n t r a n s f o r m = t o r c h v i s i o n . t r a n s f o r m s . Compose ( [
t o r c h v i s i o n . t r a n s f o r m s . ToPILImage ( ) ,
t o r c h v i s i o n . t r a n s f o r m s . RandomResizedCrop ( s i z e ) ,
t o r c h v i s i o n . t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( p = 0 . 5 ) ,
g e t c o l o r d i s t o r t i o n ( s = 0 . 5 ) ,
t o r c h v i s i o n . t r a n s f o r m s . ToTensor ( ) ] )

s e l f . t r a i n t r a n s f o r m r a n d m i z e d s m o o t h i n g = t o r c h v i s i o n . t r a n s f o r m s . Compose ( [
t o r c h v i s i o n . t r a n s f o r m s . ToPILImage ( ) ,
t o r c h v i s i o n . t r a n s f o r m s . RandomResizedCrop ( s i z e ) ,
t o r c h v i s i o n . t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( p = 0 . 5 ) ,
g e t c o l o r d i s t o r t i o n ( s = 0 . 5 ) ,
t o r c h v i s i o n . t r a n s f o r m s . ToTensor ( ) ,
P e r t u r b I n R a n d m i z e d S m o o t h i n g ( n o i s e t y p e , n o i s e s d ) ,
] )

def c a l l ( s e l f , x , f lag RdSm in simCLR = F a l s e ) :
i f not f lag RdSm in simCLR :

re turn s e l f . t r a i n t r a n s f o r m ( x )
e l s e :

re turn s e l f . t r a i n t r a n s f o r m r a n d m i z e d s m o o t h i n g ( x )

c l a s s P e r t u r b I n R a n d m i z e d S m o o t h i n g ( ) :
def i n i t ( s e l f , n o i s e t y p e , n o i s e s d = 0 . 5 ) :

s e l f . n o i s e t y p e = n o i s e t y p e
s e l f . n o i s e s d = n o i s e s d

def c a l l ( s e l f , img ) :
i f s e l f . n o i s e t y p e == ” g u a s s i a n ” :

img = t o r c h . r a n d n l i k e ( img )* s e l f . n o i s e s d + img
e l i f s e l f . n o i s e t y p e == ” un i fo rm ” :

img = ( t o r c h . r a n d l i k e ( img ) − 0 . 5 ) * 2 * s e l f . n o i s e s d + img
re turn img
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B. Training Setting
Recall that the proposed RUSH has a two-stage training process. (i) In the pre-training stage, model gθp ◦ fθ is trained
with a SGD optimizer with batch size=512, initial learning rate=0.5, momentum=0.9, and weight decay=0.0001 for 1000
epochs. We use cosine learning rate decay during training with minimum learning rate = 0.001. The temperature parameter
in contrastive loss Lpre is set to 0.5. (ii) In the fine-tuning stage, model ϕθc ◦ fθ is trained with the frozen feature extractor
fθ. We note that as we believe batch normalization should be based on specific feature distributions, so the bias of the
BatchNorm layers of fθ is not frozen during fine-tuning. We use a SGD optimizer with batch size=512, initial learning
rate=0.1, momentum=0.9, and weight decay=0.0002 to train the network for 25 epochs. We use cosine learning rate decay
during training with minimum learning rate = 0.001.

C. Adversarial Perturbation under Randomized Smoothing and Inference

Figure 1. Adversarial perturbation under randomized smoothing
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