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Abstract
In recent years novel architecture components for
image classification have been developed, starting
with attention and patches used in transformers.
While prior works have analyzed the influence
of some aspects of architecture components on
the robustness to adversarial attacks, in particu-
lar for vision transformers, the understanding of
the main factors is still limited. We compare sev-
eral (non)-robust classifiers with different archi-
tectures and study their properties, including the
effect of adversarial training on the interpretabil-
ity of the learnt features and robustness to unseen
threat models. An ablation from ResNet to Con-
vNeXt reveals key architectural changes leading
to almost 10% higher ℓ∞-robustness.

1. Introduction
The introduction of vision transformers (ViTs) (Dosovit-
skiy et al., 2021) showed that different architectures can
perform on par or even better than convolutional networks
(CNNs) in various computer vision tasks. This led to ac-
tive research on optimizing the network design for better
performance e.g. classification accuracy on the ImageNet
dataset (Deng et al., 2009), which in turn resulted in several
new architectures (Touvron et al., 2021a; Liu et al., 2021;
Trockman & Kolter, 2022; Liu et al., 2022). It is however
still partially unexplained which are the key components
which make an architecture effective in a specific task (Park
& Kim, 2022). It has been noticed that some architectures
might natively perform better than others in side tasks, e.g.
Fort et al. (2021) argue that ViTs have significantly better
out-of-distribution detection ability. Moreover, recent works
(Bhojanapalli et al., 2021; Paul & Chen, 2022) suggest that
ViTs are more robust to common corruptions in ImageNet-C
(Hendrycks & Dietterich, 2019). About robustness to ad-
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versarial attacks, Shao et al. (2021) suggest that naturally
trained ViTs are more robust to ℓ∞-bounded perturbations
than ResNets. Conversely, ViTs appear more vulnerable
to patch attacks (Gu et al., 2021), while the comparison is
mixed on ℓ0-attacks (Fu et al., 2022). However, Bai et al.
(2021) reports that such differences might disappear with
either adversarial training (Madry et al., 2018) for ℓ∞ or
using similar training protocols for the two architectures.
Finally, Debenedetti (2022) has recently achieved SOTA
results for the ℓ∞-threat model on ImageNet using XCiT
(El-Nouby et al., 2021), a transformer-like network which
reintroduces convolutions as part of its architecture.

In this work, we first extend the analysis of the robustness
of different normally trained architectures to adversarial
patches: unlike previous attacks, we show that on networks
which divided the input image in disjoint tokens e.g. ViTs
it is preferable to position the adversarial patch to cover
multiple tokens instead of a single one, although this might
yield lower loss values in the case of traditional vision trans-
formers. However, this phenomenon is largely mitigated
when considering robust models. Then, we explore how
the features learnt by classifiers when using adversarial
training wrt ℓ∞ differ from those of plain models, showing
e.g. how the attention maps of ViTs gain in interpretability.
Moreover, we study how robustness wrt ℓ∞, generalizes to
unseen attacks, both ℓp-bounded and not. While ResNets
generally attains worse generalization, we show in an exten-
sive ablation study regarding the transition from a ResNet
to the ConvNeXt (Liu et al., 2022) architecture that small
modifications in the architecture are sufficient to, at least
partially, close the gap to ViTs. robust ConvNeXt which
achieves 46.2% robust accuracy against l∞-perturbations of
ϵ = 4/255 outperforming the recent 41.7% for the XCiT
architecture Debenedetti (2022) and also being about 10%
higher than a ResNet-50 architecture. However, even more
interesting is that a relatively small change of the traditional
ResNet-50 architecture achieves 44.0% robust accuracy.

2. Background and related works
In this section we provide the necessary background on the
architectures we consider and adversarial robustness.
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2.1. Architectures

ResNets: ResNet (He et al., 2016) and WideResNet
(Zagoruyko & Komodakis, 2016) rely on convolutions and
on the usage of residual connections, with non-linearity
provided by activation functions as ReLU and GELU
(Hendrycks & Gimpel, 2016). Such models held for long
time SOTA results on vision tasks, and are still dominant
when considering adversarial robustness (Croce et al., 2021)
for CIFAR-10 and ImageNet. ResNets do not divide the
input image in disjoint patches.

Vision transformers: Dosovitskiy et al. (2021) introduced
a convolution-free architecture for vision applications in-
spired by the transformer models used in natural language
processing. ViTs split the input image in disjoint patches,
in analogy of the language tokens, add a class token (CLS)
used for classification, then process them with blocks in-
cluding multi-head self-attention (Vaswani et al., 2017) and
MLPs. Later, Touvron et al. (2021a) showed how it is pos-
sible to train ViTs efficiently: we use their models named
DeiT with 16× 16 patches.

Cross-covariance vision transformers: El-Nouby et al.
(2021) replaced in the ViT design the traditional (local)
self-attention with the so-called cross-covariance version of
it (XCA). Moreover, each block contains two depth-wise
convolutional layers to allow better communication among
patches. The resulting XCiT compares favorably to DeiT
with respect to performance in classification and segmenta-
tion tasks and memory usage.

ConvNeXt: To close the gap between CNNs and ViTs on
ImageNet, Liu et al. (2022) modify the ResNet backbone
to make it more similar to the SOTA Swin transformer (Liu
et al., 2021), until they outperform it. ConvNeXt adopts
patchified stem, i.e. non overlapping convolutions in the
first layer, and depth-wise convolutions.

For our analysis, we use ResNet-50, WideResNet-50-2,
DeiT-S XCiT-S, ConvNeXt-T, which have, except for the
WideResNet, comparable size in terms of number of pa-
rameters. All are trained on the ImageNet-1k dataset and
use image resolution 224 × 224 pixels. For naturally
trained classifiers we use the checkpoints provided by either
torchvisionmodel zoo or the timm library (Wightman,
2019), while the robust ones are made available by prior
works (ResNet-50 and DeiT-S are from Bai et al. (2021),
WideResNet-50-2 from Salman et al. (2020), XCiT-S from
Debenedetti (2022)).

2.2. Adversarial robustness

The output of a neural network can be easily modified by
small perturbations of an input which do not change its
semantic content (Biggio et al., 2013; Szegedy et al., 2014).
Many works have focused on developing methods to find

such adversarial perturbations whose size is constrained by
a certain metric, e.g. an ℓp-norm (Carlini & Wagner, 2017),
or which are limited to have a specific shape like square
patches (Karmon et al., 2018) or frames (Zajac et al., 2019).
At the same time, the most successful method to obtain
adversarially robust models is adversarial training (Madry
et al., 2018), and its recent advances (Zhang et al., 2019;
Carmon et al., 2019; Gowal et al., 2020; Rebuffi et al., 2021).
Gu et al. (2021); Fu et al. (2022); Lovisotto et al. (2022)
have suggested that ViTs, are more vulnerable to adversarial
patches than ResNets. Similarly Shao et al. (2021) argued
that ViTs are more robust than other architectures in the ℓ∞-
threat model, However, Bai et al. (2021) report that, when
trained with similar augmentations, DeiTs and ResNets have
similar robustness to adversarial patches, and using GELU
in the ResNet backbone suffices to obtain with adversarial
training classifiers as robust as DeiTs with respect to ℓ∞-
perturbations with size ϵ = 4/255 on ImageNet.

3. Robustness of natural and robust models to
adversarial patches

In this section we analyze the interaction between patch
attacks and the token grid used by DeiT and XCiT, Then, by
developing a simple greedy attack, we show that both ViTs
and ResNet are less robust to adversarial patches than what
has been reported by previous works.

3.1. Effect of grid aligned and non-grid aligned patches
on adversarial loss

Both Fu et al. (2022); Gu et al. (2021) evaluate the robust-
ness of vision transformers using mostly patches which are
aligned with the grid of the input tokens, so that one ad-
versarial patch exactly covers one cell of the tokens grid.
However, adversarial attacks might benefit from modifying
multiple tokens by a smaller fraction: we consider patches
which are centered at the intersection point of the tokens
grid (each patch covers 1/4 of 4 contiguous tokens). For
transformers with 16× 16 tokens (and using patches of the
same size) this yields 14 × 14 = 196 possible positions
of aligned patches and 13 × 13 = 169 non aligned ones.
For each one we maximize the margin loss (Carlini & Wag-
ner, 2017) for 100 iterations with APGD (Croce & Hein,
2020). In Fig. 1 we show the results for models trained
either naturally (left) or with adversarial training wrt ℓ∞
(right). Among the naturally trained models, for DeiT-S the
grid-aligned patches attain much higher loss values than the
non aligned ones, while both yielding 0% robust accuracy
(see below). Conversely, there is no particular difference
when using ResNet-50 or XCiT-S, which also use convo-
lutional layers. The adversarially trained DeiT-S does not
show the same behavior of the plain one. Moreover, for
all adversarially trained architectures, the attacks achieve
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higher loss at patch locations in correspondence of class-
specific features in the image, creating a sort of saliency
map, in strong contrast to non robust classifiers. This is in
line with the observation that robust models have gradients
significantly aligned with human perception (Tsipras et al.,
2019; Santurkar et al., 2019).

3.2. Robustness of plain and robust classifiers to
adversarial patches

A simple patch attack: several prior works (Brown et al.,
2017; Yang et al., 2020; Croce et al., 2022) have introduced
patch attacks. Here we adopt a more greedy strategy which
allows us to compare the effectiveness of patches aligned or
not with the token grid. For both aligned patches and not
aligned one, we optimize the margin loss for 20 iterations
with APGD (ℓ∞-version, with initial step size 0.5) for all
possible patches then we select the 20% of patches of each
type with highest loss and optimize their content for 480
iterations (the location of the patches remains unchanged).

Robustness to aligned and non aligned patches: Ta-
ble 1 shows the robust accuracy to aligned and not aligned
patches, together with the worst-case over them. First we
analyze the plain models: for ResNet-50 the aligned and
non-aligned perform similarly as expected since there is no
tokenization. On DeiT-S both perform equally well, despite
the aligned patches achieving significantly higher loss val-
ues on average. Finally, for XCiT-S, the non aligned patches
achieve higher success rate than the aligned ones. Overall,
XCiT-S appears more robust than both DeiT-S and ResNet-
50, implying that transformer-based architectures are not
necessarily more vulnerable to adversarial patches. More-
over, our greedy attack yields much lower robust accuracy
for both DeiT-S and ResNet-50 compared to what has been
reported by Fu et al. (2022), that is 6.25% and 24.00% re-
spectively (although different subsets of test points are used).
For adversarially trained classifiers wrt the ℓ∞-threat model,
the robust accuracy for all architectures against patch attacks
improves, with DeiT-S being the most robust one, and there
is no clear trend regarding the comparison of aligned and
non-aligned patches.

Table 1. Robust accuracy (%) of different ImageNet models (com-
puted for 1000 images) to patch perturbations which are either
aligned or non-aligned with the tokens grid (for ResNet-50 the
grid of the transformers is used). Worst-case is over both patches.

patch type plain training adversarial training
DeiT-S XCiT-S RN-50 DeiT-S XCiT-S RN-50

aligned 0.0 6.7 1.7 24.7 20.4 15.3
not align. 0.0 4.9 1.8 22.5 20.1 17.4

worst-case 0.0 4.1 1.2 21.4 18.7 14.5

Robust to patches at a fixed-position: Lovisotto et al.

(2022) have recently reported that DeiT-B, the larger version
of DeiT-S, has a non trivial robustness of 13.1% when using
a 16× 16 patch at a fixed position, i.e. in the top left corner.
However, we managed, by using our attack which optimizes
the margin loss with APGD, to reduce it to 0%.

4. Effect of adversarial training on ViTs
features

We now study how the interpretability of the representa-
tions learnt by vision transformers is affected by adversarial
training, with ℓ∞-threat model with radius ϵ = 4/255.

4.1. Interpretability of attention maps

In Fig. 2 we show for the DeiT-S classifiers the attention
maps of the CLS token for each head in the last block:
in each row, the first 6 maps are produced with the plain
model, while the remaining 6 are from the robust one, all
corresponding to the original image shown on the far left.
The analogous maps for XCiT are in Fig. 5 in appendix. In
both cases, the maps of the robust models are significantly
more interpretable than those of the plain ones: the various
heads are triggered by different parts (and objects) of the im-
age, unlike those from the plain classifier which are mostly
sparse and similar to each other. Interestingly, this is similar
to what happens to the attention maps of models trained by
self-supervision with DINO (Caron et al., 2021).

4.2. Inner representations of XCiT

El-Nouby et al. (2021) noticed that the norm across the
features dimension of queries and keys of each token may
indicate the salient regions in the image (higher values cor-
respond to more salient areas). We show this for the plain
model in the top part of Fig. 3 for the keys of the last XCA
block (each column corresponds to a head), using images
of resolution 384× 384. While these identify meaningful
features, they also show highly activated patches at random
positions. This effect is instead absent for the robust model
(bottom part of Fig. 3), whose images appear “denoised”,
with different heads focusing on complementary details of
the image. We plot the maps of the robust model for three
images containing dogs in Fig. 4: the heads focus on similar
features across images (see also the appendix).

5. Generalization of robustness to unseen
threat models

It is known that robustness in a specific threat model does
not necessarily generalizes to other ones, e.g. across ℓp-
norms (Tramèr & Boneh, 2019; Kang et al., 2019). We study
here to which extent this varies across architectures, and test
how the classifiers with adversarial training wrt ℓ∞ behave
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image
plain training adversarial training

DeiT-S XCiT-S ResNet-50 DeiT-S XCiT-S ResNet-50
A NA A NA A NA A NA A NA A NA

Figure 1. For each image and model we show the map of the values obtained maximizing the margin loss within disjoint patches of size
16× 16 pixels which are either aligned (A) with the grid of the tokens of ViTs or not (NA) i.e. centered on the intersection the grid (that
is having a 4 × 4 overlap with the four adjacent patches). Each pair (aligned and not) of plots is normalized independently. Brighter
colors indicate higher values of the loss.

original plain training adversarial training

Figure 2. Attention maps of the CLS token for each head of the last layer of a DeiT-S model The attention of the robust DeiT-S is
concentrated on the object, where each head pays attention to different parts.

in other, unseen, threat models. This might hint to which
architectural components are relevant for designing more
robust models. In fact, the results reported in Sec. 3 already
suggest that not all network trained to be robust wrt ℓ∞ are
equally vulnerable to adversarial patches. Moreover, this
allows to check whether some architectures are preferable
wrt the robustness in the threat model used for training i.e.
ℓ∞.

Experimental setup: We report all statistics on 1000 points.
For the ℓ∞, ℓ2 and ℓ1 threat models we use bounds 4/255,
0.5 and 75 respectively, and APGD for cross-entropy and
DLR-loss from AutoAttack (Croce & Hein, 2020) as attacks.
We test robustness wrt ℓ0 in pixel space (that is all color
channels of a selected pixels are perturbed) for bound ϵ0 =
100 using Sparse-RS (Croce et al., 2022) with 50,000
queries, after running the white-box but less effective PGD0
(Croce & Hein, 2019) to quickly reduce the points to test.

For adversarial patches we keep the same setup as used in
Sec. 3, i.e. 16 × 16 perturbations, with our greedy attack.
Finally, we use adversarial frames of width 2 pixels: in this
case we run 100 iterations and 5 restarts of APGD on the
margin loss. In addition to the models introduced in Sec. 2.1,
we train, with 100 epochs of adversarial training wrt ℓ∞
and ϵ = 4/255 (details in the appendix), a ConvNeXt-T
and a modification of ResNet-50 which includes patchified
stem and depth-wise convolutions (see Sec. 6 for details).
Further, we retrain a ResNet-50 with GELU, as in Bai et al.
(2021), in the same setup as the ConvNeXt-T for further
comparison.

Results: Table 2 shows that our trained ConvNeXt has 4.5%
higher robust accuracy in ℓ∞ than the XCiT-S (for which
significant optimization of hyperparameters has been per-
formed in Debenedetti (2022)) and 9.7% more robust than
the ResNet-50. Remarkably, “ResNet-50 modified”, where
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standardly trained XCiT-S

adversarially trained XCiT-S

Figure 3. Visualization of the norm across the features dimension of the keys of the last XCA block, with each column representing a
head, for a normally trained model (top) and an adversarially trained model (bottom). Images are with resolution 384× 384.

Figure 4. Comparison of the visualization of norm across the features dimension of the keys of the last XCA block of the robust XCiT-S
for different images of resolution 1024× 1024 of similar classes: similar features of the dog are highlighted across images.

patchified stem and depth-wise convolutions have been in-
troduced, performs almost as good as the ConvNeXt in ℓ∞.
When looking at the generalization to unseen threat models,
DeiT-S and XCiT-S attain the best results, especially wrt
ℓp-norms. Moreover, “ResNet-50 modified” improves most
of the time the performance over ResNets and ConvNeXt,
but is worse than the transformer-based models. It is an
interesting open question if one can combine the advantages
of transformers and improved ResNet-architecture further to
define an even better architecture for adversarial robustness.

6. From ResNet to ConvNeXt for robustness
Following the observations of Sec. 5 we explore which com-
ponents of the transformers-based architectures might lead
i) to better robustness into the threat model used for training
(ℓ∞) and ii) better generalization of robustness to unseen

threat model, which is relatively weak for ResNets. We
follow the steps of Liu et al. (2022) and start from the basic
version of ResNet-50 (as implemented in torchvision)
and progressively update it. For each resulting architecture
we train a plain model and use it as initialization for single
step adversarial training with ϵ = 4/255 in the ℓ∞-threat
model (this improves the clean accuracy of robust mod-
els with the short training). Given the high computational
cost, we use the FFCV library (Leclerc et al., 2022) for pre-
processing the dataset, train for 16 epochs with batch size
of 2048 (reduced only when necessary to fit a model into
GPU memory), cyclic schedule for the learning rate with
maximum value of 0.004, AdamW (Loshchilov & Hutter,
2019) as optimizer, weight decay of 0.05 (more details in
appendix). Table 3 tracks the clean accuracy and robust ac-
curacy wrt ℓ∞ and ℓ2 (as a proxy for generalization to other
threat models), with bounds of 4/255 and 0.5 respectively,
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Table 2. Robust accuracy on 1000 points of ℓ∞-robust models to ℓp-bounded and sparse attacks.

model reference seen unseen
clean ℓ∞ ℓ2 ℓ1 ℓ0 patches frames

ResNet-50 Bai et al. (2021) 68.2 36.7 15.6 3.1 5.7 14.5 19.7
WideResNet-50-2 Salman et al. (2020) 69.2 38.2 20.2 4.1 5.1 16.4 19.7

DeiT-S Bai et al. (2021) 66.4 35.6 40.1 21.7 24.5 21.4 25.8
XCiT-S Debenedetti (2022) 72.8 41.7 45.3 22.2 20.8 18.7 21.6

ResNet-50 retrained 68.9 36.7 19.2 3.9 6.6 16.3 24.3
ResNet-50 modified retrained 69.9 44.0 34.3 11.2 14.5 17.1 20.8

ConvNeXt-T retrained 70.7 46.2 30.6 9.2 16.4 21.9 18.7

Table 3. Robust accuracy on 1000 points to ℓp-bounded perturbations of models with different architectures adversarially trained wrt ℓ∞.
model clean ℓ∞ ℓ2

ResNet-50 60.7 28.1 16.7
3:3:9:3 stage ratio 62.0 27.5 18.5

ReLU → GELU 61.8 29.6 13.6
depth-wise conv. with increased width 63.0 28.5 19.6

patchify stem 61.4 27.4 35.4
patchify stem + depth-wise conv. with increased width 63.4 29.1 36.9

patchify stem + GELU 64.4 33.4 37.6
patchify stem + GELU + depth-wise conv. with increased width 64.6 35.0 38.2

ResNet-50 + patchify stem + GELU + depth-wise conv. with increased width 64.6 35.0 38.2
+ 3:3:9:3 stage ratio 66.3 35.5 39.3

+ inverted bottleneck 66.0 33.3 28.9
+ fewer activations and normalizations 64.6 31.5 37.0

+ BatchNorm → LayerNorm 62.6 34.0 39.2
+ move downsampling to a separate layer 64.1 34.4 37.7

ConvNeXt-T without Layer Scale 65.2 36.5 36.7
ConvNeXt-T 65.2 37.9 29.5

of each model, evaluated with APGD for cross-entropy and
DLR loss from AutoAttack.

Effect of main architecture components: We start with
testing individually the effect of the main modifications
brought by Liu et al. (2022): 1) changing the number of
residual blocks in each stage, 2) using GELU as activation
function instead of ReLU, 3) using depth-wise convolutions
together with increasing of 1.5× the width to roughly pre-
serve the number of parameters, 4) patchified stem. Note
that Liu et al. (2022) modify the activation function only
later on in their road towards ConvNeXt, and it has a lim-
ited influence on the clean accuracy. However, Xie et al.
(2020); Bai et al. (2021) have shown that a smooth activa-
tion function might have a significant impact on robustness,
therefore we include it among the initial main components.
Table 3 confirms that using GELU improves ℓ∞-robustness,
although it decreases it for ℓ2. Conversely, the patchified
stem notably improves the robustness wrt ℓ2 compared to
the baseline without modifying that for ℓ∞. Combining
the patchified stem and GELU leads to improvements in
all statistics, with +5% of robust accuracy wrt ℓ∞ and al-
most +20% in that wrt ℓ2. This shows that two simple
modifications of the architecture can largely influence the
effectiveness of adversarial training. A small improvement

in all metrics is achieved further adding the depth-wise
convolutions: this yield the “ResNet-50 modified” used in
Sec. 5. We conjecture that the patchified stem improves
robustness wrt ℓ2 because it implicitly performs a sort of
dimensionality reduction operating on disjoint subsets of
input dimensions. Then optimizing wrt adversarial ℓ∞-
perturbations should lead effectively to parameters which
work well wrt ℓ2 too, since due to the dimensionality re-
duction the threat models become more comparable (note
that it holds ∥x∥∞ ≤ ∥x∥2 ≤

√
d ∥x∥∞ where d is the

dimension).

From improved ResNet to ConvNeXt: Starting from this
modified version of ResNet-50, we progressively take sev-
eral further steps to reach the ConvNeXt definition. In the
second part of Table 3 one observes that the remaining
modifications have smaller effect on all statistics, although
cumulatively bring additional improvements especially for
ℓ∞-robustness. Moreover, we notice that Layer Scale (Tou-
vron et al., 2021b) has a significant effect on the ConvNeXt,
improving ℓ∞-robustness at cost of lower robust accuracy
wrt ℓ2. Overall, this process shows that ConvNeXt is a bet-
ter suited architecture for adversarial robustness than the
original ResNet for ℓ∞-robustness, but might be improved
for generalization to unseen threat models.
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Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. In ECML/PKKD,
2013.
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A. Inner representations of adversarially trained ViTs

orig. plain training adversarial training

Figure 5. Attention maps of the CLS token for each head of the last layer of a XCiT-S model: in the first column we show the original
image, then the 8 maps for the normally trained model, finally the same for the adversarially trained one. Similar to the DeiT-S in Figure
2, the attention maps of the robust XCiT-S model are concentrated on the object and highlight different parts of the object.

As shown in Sec. 4.2, it is possible to visualize salient regions of an image with the keys matrices of the XCA blocks of the
XCiT models, with adversarially trained models yielding more interpretable maps. We provide further examples of this in
Fig. 6 with images in resolution 1024× 1024 with similar contents. Moreover, we generate similar maps using the queries
matrices (instead of keys): Fig. 7 shows that even in this case for each head only salient regions are triggered.

B. Experimental details
In the following we provide additional details about the setup of the various experiments and further results.

B.1. Generalization of robustness to unseen threat models

Experimental setup: For the additional classifiers we perform adversarial training wrt ℓ∞ at ϵ = 4/255 adapting the
pipeline of https://github.com/facebookresearch/deit. We train for 100 epochs with batch size of 1024,
AdamW optimizer, cosine learning rate with maximum value of 0.001 after 10 epochs of warm-up (during which the learning
rate is lineraly increased) and 5 of cool-down, weight decay of 0.05. As noted by Debenedetti (2022), for adversarial
training it is not necessary to use heavy augmentation techniques. Since both the “ResNet-50 modified” and ConvNeXt-T
suffer from catastrophic overfitting (Wong et al., 2020) when using FGSM without random initialization, we prevent it by
increasing the number of steps for the inner maximization in adversarial training (up to 3 for former, up to 2 for the latter).
Therefore we retrain the standard ResNet-50 with GELU, as in Bai et al. (2021), with 2 steps to match the budget given
to ConvNeXt-T. We note that its results are consistent with the ResNet-50 from Bai et al. (2021) trained with single step
adversarial training (see Table 2). For all architectures we use a plain model, trained for the ablation study of ResNet-50 (see
Sec. 6), as initialization. We select the model among the checkpoints at different epochs as the most robust one to FGSM
attack on 5000 images.

Additional results: We additionally test the robustness of the various models reported in Table 2 in the ℓp-threat models
with the full version of AutoAttack (Croce & Hein, 2020) and report the results in Table 4, where one can see that the robust
accuracy decreases at most by 0.3% by using the missing attacks in AutoAttack, this is FAB- and Square-Attack.

Table 4. Robust accuracy on 1000 points of ℓ∞-robust models to ℓp-bounded with AutoAttack.

model reference seen unseen
clean ℓ∞ ℓ2 ℓ1

ResNet-50 Bai et al. (2021) 68.2 36.7 15.4 3.1
WideResNet-50-2 Salman et al. (2020) 69.2 38.2 19.9 4.1

DeiT-S Bai et al. (2021) 66.4 35.6 40.1 21.5
XCiT-S Debenedetti (2022) 72.8 41.7 45.0 22.0

ResNet-50 retrained 68.9 36.7 18.9 3.9
ResNet-50 modified retrained 69.9 44.0 34.2 11.2

ConvNeXt-T retrained 70.7 46.2 30.6 9.2

https://github.com/facebookresearch/deit
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Figure 6. Visualization of norm across the features dimension of the keys of the last XCA block of the robust XCiT-S for different images
of resolution 1024× 1024 of similar classes.
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Figure 7. Visualization of norm across the features dimension of the queries of the last XCA block of the robust XCiT-S for different
images of resolution 1024× 1024 of similar classes.
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B.2. From ResNet to ConvNeXt for robustness

Experimental setup: For the models reported in Sec. 6 we rely on the FFCV library (Leclerc et al., 2022) since it provides
a significant speed-up of training. In particular, we follow the training script, adapted to the adversarial training setup,
available at https://github.com/libffcv/ffcv-imagenet. In particular, we use the standard pre-processing
with the exception of the maximum size of the images which we set to 400 pixels instead of 500 (for the short training with
only 16 epochs this does not appear to degrade performance). Moreover, we disable BlurPool and test-time augmentation.
For the inner maximization process in adversarial training we use FGSM without random initialization.

Additional results: We report in Table 5 the clean accuracy (on the 1000 points used for the evaluation of robustness)
of the classifiers naturally trained with the various architectures and used as initialization for the robust models shown in
Table 3. We observe that all models have clean accuracy above 70% and in the same range. Note the short training scheme
we employ here is very different from the setup of Liu et al. (2022) where ConvNeXt significantly outperforms ResNet.

Table 5. We report the clean accuracy (on 1000 points) of the models with different architectures obtained with plain training.
model clean

ResNet-50 70.9
3:3:9:3 stage ratio 71.1

ReLU → GELU 72.6
depth-wise conv. with increased width 73.2

patchify stem 72.0
patchify stem + depth-wise conv. with increased width 73.9

patchify stem + GELU 72.7

ResNet-50 + patchify stem + GELU + depth-wise conv. with increased width 72.5
+ 3:3:9:3 stage ratio 73.9

+ inverted bottleneck 71.0
+ fewer activations and normalizations 71.2

+ BatchNorm → LayerNorm 71.8
+ move downsampling to separate layer 72.5

ConvNeXt-T without Layer Scale 72.0
ConvNeXt-T 71.8

C. Visualization of adversarial perturbations
Bhojanapalli et al. (2021) noticed that adversarial perturbations generated for ViTs show a grid structure which resembles
that of the tokens. We show in Fig. 8 the adversarial perturbations (summed over color channels) generated for the ℓ2-threat
model (ϵ = 2 is used) for each naturally trained classifier. The grid structure appears for the models using input tokenization.
However, among those, the effect looks stronger for DeiT, which does not use any convolutional component, and milder for
XCiT, which relies on both convolutional layers and cross-covariance self-attention.

original

DeiT-S

XCiT-S

ResNet-50

Figure 8. We plot the adversarial perturbations wrt ℓ2 of different natural models: the perturbations are summed over color channels and
rescaled so that white areas correspond to zero entries, blue negative, red positive (with intensity indicating their magnitude).

https://github.com/libffcv/ffcv-imagenet

