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Abstract
The sample complexity of Adversarial training
is known to be significantly higher than standard
ERM based training. Although complex augmen-
tation techniques have led to large gains in stan-
dard training, they have not been successful with
Adversarial Training. In this work we propose
Diverse Augmentation based Joint Adversarial
Training (DAJAT), that uses a combination of
simple and complex augmentations with separate
batch normalization layers to handle the conflict-
ing goals of enhancing the diversity of the training
dataset and being close to the test distribution. We
further introduce a Jensen-Shannon divergence
loss to encourage the joint learning of the diverse
augmentations, thereby allowing simple augmen-
tations to guide the learning of complex ones.
Lastly, to improve the computational efficiency
of the proposed method, we propose and utilize
a two-step defense, Ascending Constraint Adver-
sarial Training (ACAT) that uses an increasing
epsilon schedule and weight-space smoothing to
prevent gradient masking. The proposed method
achieves better performance compared to exist-
ing methods on the RobustBench Leaderboard
for CIFAR-10 and CIFAR-100 on ResNet-18 and
WideResNet-34-10 architectures.

1. Introduction
Deep Neural Network based classifiers are vulnerable to
crafted imperceptible perturbations known as Adversarial
Attacks (Szegedy et al., 2013) that can flip the predictions of
the model to unrelated classes leading to disastrous implica-
tions. Adversarial Training (Goodfellow et al., 2015; Madry
et al., 2018; Zhang et al., 2019) has been the most success-
ful defense strategy, where a model is explicitly trained
to be robust in the presence of such attacks. While early
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defenses focused on designing suitable loss functions for
training, subsequent works (Pang et al., 2021; Rice et al.,
2020) showed that with careful hyperparameter tuning, even
the two most popular methods PGD-AT (Madry et al., 2018)
and TRADES (Zhang et al., 2019) yield comparable perfor-
mance, highlighting the saturation in performance with re-
spect to changes in the training loss. Schmidt et al. (Schmidt
et al., 2018) observed that adversarial training has a large
sample complexity and further gains require the use of ad-
ditional training data. Subsequent works (Carmon et al.,
2019; Gowal et al., 2021) indeed used additional data whose
distribution is close to that of the original dataset, in order
to obtain performance gains. This large data requirement,
which is impractical to assume, has led to an exploration
towards augmentations based on Generative Adversarial
Networks (Goodfellow et al., 2014) and Diffusion based
models (Ho et al., 2020; Gowal et al., 2021). However, the
use of such generative models incurs an additional training
cost, and suffers from limited diversity in low-data regimes,
and in datasets with high resolution images.

While standard Empirical Risk Minimization (ERM) based
training also benefits from the use of additional data, the
most practical augmentation method has been the use ran-
dom transformations such as Crop, Rotation, Color Jit-
ter, and contrast, sharpness and brightness adjustments
(Krizhevsky et al., 2012; Cubuk et al., 2018; 2020). Some
of these augmentations change the images significantly in
input space while belonging to the same class as the origi-
nal image. However, prior works (Rice et al., 2020; Gowal
et al., 2020; Stutz et al., 2021) have surprisingly found that
augmentations which cause large changes in the input distri-
bution do not help adversarial training significantly. Thus,
the commonly used augmentations in adversarial training
are the simple transformations, zero padding followed by
random crop, and horizontal flip (Rice et al., 2020; Pang
et al., 2021; Gowal et al., 2020).

In this work, we show that it is indeed possible to uti-
lize complex augmentations effectively in Adversarial
training as well, by jointly training on simple and com-
plex data augmentations using separate batch-normalization
layers for each kind of augmentation. While complex aug-
mentations increase the data diversity resulting in better
generalization, simple augmentations ensure that the model
specializes on the training data distribution as well. We



Efficient and Effective Augmentation Strategy for Adversarial Training

further minimize the Jenson-Shannon divergence between
the softmax outputs of the augmented images to enable
the simple augmentations to guide the learning of complex
ones. In order to improve the computational efficiency of
the proposed method, we use two attack steps (instead of
10) during training. We further show that by progressively
increasing the magnitude of perturbations and performing
smoothing in weight space, it is indeed possible to improve
the stability of training. Our contributions are listed below:

• We propose Diverse Augmentation based Joint Adver-
sarial Training (DAJAT) to utilize data augmentations
effectively in Adversarial training. The proposed ap-
proach can be integrated with many augmentations and
adversarial training methods to improve performance.

• We propose and integrate DAJAT with an efficient 2-
step defense, Ascending Constraint Adversarial Train-
ing (ACAT) that uses linearly increasing ε schedule,
cosine learning rate and weight-space smoothing to
prevent gradient masking and improve convergence.

• We obtain improved robustness and large gains in stan-
dard accuracy on multiple datasets (CIFAR-10, CIFAR-
100, ImageNette) and models (RN-18, WRN-34-10).

• We obtain remarkable gains in a low data scenario
where data augmentations are most effective. On
CIFAR-100, we outperform all existing methods on
the RobustBench leaderboard (Croce et al., 2021), in-
cluding the ones that utilize additional training data.

2. Diverse Augmentation based Joint
Adversarial Training (DAJAT)

The use of augmentations in training can be viewed as a
problem of domain generalization, where performance on
the source distribution or augmented dataset is crucial to-
wards improving the performance on the target distribution
or test set. Since adversarial training is inherently challeng-
ing, for limited model capacity it is difficult to obtain good
performance on the training data that is transformed using
complex augmentations. Moreover, the large distribution
shift between augmented data and test data, specifically with
respect to low-level statistics, results in poor generalization
of robust accuracy to the test set.

To mitigate these challenges, we propose the combined use
of simple and complex augmentations during training so
that the model can benefit from the diversity introduced
by complex augmentations, while also specializing on the
original data distribution that is similar to the simple aug-
mentations. We propose to use separate batch normalization
layers for simple and complex augmentations, so as to offset
the shift in distribution between the two kinds of augmenta-
tions. Motivated by AugMix (Hendrycks* et al., 2020), we
additionally minimize the Jenson-Shannon (JS) divergence

between the softmax outputs of different augmentations, so
as to allow the simple augmentations to guide the learn-
ing of complex ones. We present the training loss of the
proposed Diverse Augmentation based Joint Adversarial
Training (DAJAT) below:

LTR = LCE(fθ(x), y)+β max
x̃∈Aε(x)

KL(fθ(x)||fθ(x̃)) (1)

θ̃ = argmax
θ̂∈M(θ)

1

N

N∑
i=1

LTR(θ̂, xi,base, yi) (2)

LDAJAT =
1

T + 1
· 1

N

N∑
i=1

{
LTR(θ̃, xi,base, yi)+

T∑
t=1

LTR(θ̃, xi,auto(t), yi)
}
+

1

N

N∑
i=1

JSD(fθ̃(xi,base)

, fθ̃(xi,auto(1)), . . . , fθ̃(xi,auto(T)) (3)

Adversarial attacks are generated individually for each aug-
mentation by maximizing the respective KL divergence term
of the TRADES loss shown in Eq.1. To improve training
efficiency, we compute x̃ using two attack steps with a
step-size of ε. We use a combination of a linearly increas-
ing schedule of ε, cosine learning rate schedule and model
weight-averaging (Izmailov et al., 2018) to improve the sta-
bility and performance of adversarial training (Details in
Sec.3). The DAJAT loss (Eq.3) is a combination of the
TRADES 2-step loss on each of the augmentations xbase

and xauto(t), along with an adversarial weight perturbation
step on the loss corresponding to the base augmentations
alone to reduce computational cost. For every batch nor-
malization layer, two sets of running statistics and affine
parameters are maintained and used for simple and complex
augmentations respectively (Ref: Algorithm-2).

The role of the base augmentations is primarily to learn
the batch normalization layers that would be used during
inference time, and also to provide better supervision for the
training of complex augmentations using the JS divergence
term. The role of the complex augmentations is to enhance
the diversity of the training dataset. Therefore we use a
single base augmentation and multiple instances of a spe-
cific complex augmentation strategy such as AutoAugment
(Cubuk et al., 2018). The gains in performance saturate with
the addition of more complex augmentations, and therefore
the use of a single base augmentation and two instances of
a specific complex augmentation strategy achieves the best
performance-accuracy trade-off. We note from Table-1 that
in this setting, the computational complexity of the proposed
method is on par with the TRADES-AWP (Wu et al., 2020)
defense which is the current state-of-the-art approach.

Split Batch Normalization Layers for Different Augmen-
tations: The proposed defense DAJAT uses separate batch
normalization layers for simple and complex augmentations
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Table 1. Performance of the proposed defenses ACAT and DAJAT when compared to state-of-the-art defenses on CIFAR-10, CIFAR-100
and IN-10 datasets. Robust evaluations are done against AutoAttack (AA) (Croce & Hein, 2020).

CIFAR-10, ResNet-18 CIFAR-10, WRN-34-10 CIFAR-100, ResNet-18 CIFAR-100, WRN-34-10 IN-10, ResNet-18
Training algorithm Steps Clean Acc Robust Acc Time/epoch (sec) Clean Acc Robust Acc Clean Acc Robust Acc Clean Acc Robust Acc Clean Acc Robust Acc

ACAT, Ours (Base, 2step) 2 82.41 49.80 95 86.71 55.36 62.05 26.10 65.75 30.23 82.34 56.96
TRADES-AWP 10 80.47 49.87 228 85.19 55.69 58.81 25.30 62.41 29.54 82.73 57.40
TRADES-AWP-WA 10 80.41 49.67 228 85.10 55.87 59.88 25.52 62.73 29.59 82.03 56.89
TRADES-AWP-WA (200 epochs) 10 81.99 51.45 228 85.36 56.17 59.11 25.97 60.30 28.68 83.41 57.91
DAJAT, Ours (Base, AA) 2 + 2 85.60 51.06 160 87.87 56.68 65.75 27.21 67.82 31.26 85.27 61.19
DAJAT, Ours (Base, 2*AA) 2 + 4 85.99 51.48 219 88.90 56.96 66.84 27.32 68.74 31.30 86.01 62.31
DAJAT, Ours (Base, 3*AA) 2 + 6 86.67 51.56 280 88.64 57.05 66.96 27.62 70.35 30.89 86.92 61.89
DAJAT, Ours (Base, 2*AA ) (200 epochs) 2-5 + 4-10 85.59 52.50 293 88.71 57.81 65.45 27.69 68.75 31.85 86.26 63.21
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Figure 1. Cosine Similarity of the two sets of Batch Normal-
ization (BN) layer statistics for a WRN-34-10 model trained on
CIFAR-10 using DAJAT (Base, 2*AA). BN layers corresponding
to Base augmentations (Pad+Crop,H-Flip) are compared with those
of AutoAugment. Parameters of initial layer (Layer-3) channels
are diverse, while those of deeper layers (Layer-25) are similar.

as discussed above. A Batch Normalization (BN) layer is
implemented as follows on a given feature map g(xi) of the
input image xi: ĝ(xi) =

g(xi)−µ
σ · γ + β

In the proposed approach we maintain two sets of batch
normalization statistics (µ and σ), and two sets of affine
parameters (β and γ) for every batch normalization layer.
We plot the cosine similarity between the batch normaliza-
tion vectors corresponding to the base augmentations and
autoaugment of every layer in Fig.1. While the mean and
variance of the batch normalization have a high similarity
across all layers, we note significant differences in the γ
and β values, specifically in the initial layers. This shows
that the difference in low-level statistics between the two
distributions of images are being offset effectively by incor-
porating separate batch normalization layers. The network
learns more similar parameters in deeper layers since the
feature representations of different types of augmentations
are expected to be more aligned in these layers.

3. Ascending Constraint Adversarial Training
In this section, we discuss the methods incorporated to im-
prove the training efficiency of DAJAT in greater detail. We
apply these methods to the TRADES-AWP defense to inde-
pendently analyse their impact, and term the proposed de-
fense as Ascending Constraint Adversarial Training (ACAT).
We aim to improve the training efficiency by reducing the
number of attack steps of the base defense from 10 to 2. We
use two attack steps for training since it is more stable when
compared to single-step adversarial training, while still be-
ing computationally efficient (Sriramanan et al., 2021).
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Figure 2. Comparison of the proposed 2-step defense ACAT
against TRADES-AWP (Wu et al., 2020) 2-step baseline on
the CIFAR-10 with ResNet-18 architecture. ACAT has better
performance and stability, especially at large training ε values.
Robust Accuracy is reported against GAMA attack (Sriramanan
et al., 2020) with ε = 8/255

As shown in Fig.2, naively reducing the number of attack
steps to 2 in TRADES-AWP AT (Fixed constraint AT)
causes a drop in clean and robust accuracy. While the drop
is larger at higher training ε, a drop in clean accuracy is
seen at ε = 8/255 as well. Further, the large robustness
gap between last and best epochs indicates that the training
stability deteriorates towards the end of training.

Prior works (Shaeiri et al., 2020) have shown that training
convergence at large ℓ∞ norm bounds can be improved by
linearly increasing the perturbation radius ε as training pro-
gresses. Inspired by this, we propose Ascending Constraint
Adversarial Training (ACAT) that utilizes an increasing ε
schedule alongside a cosine learning rate schedule with
TRADES-AWP (Wu et al., 2020) loss formulation for im-
proving the stability and convergence of two-step adversarial
training. We use a cosine learning rate schedule that decays
monotonically over the training epochs, since at large train-
ing ε, lower learning rate could further stabilize training.
As shown in Fig.2, the performance and stability of the pro-
posed 2-step defense ACAT are better when compared to the
TRADES-AWP 2-step baseline, at the same computational
cost, specifically at larger perturbations bounds of 12/255
and 16/255. The proposed defense maintains a good clean
accuracy at all the training ε values considered, and has
almost 0 difference between best and last epochs.

4. Experiments and Results
We compare the proposed approach against several state-
of-the-art defenses in Table-1 on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) and ImageNette (Howard & Gug-
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ger, 2020). We integrate model weight averaging with the
TRADES-AWP baseline as well (TRADES-AWP-WA).

Firstly, we compare the proposed 2-step defense ACAT with
the existing state-of-the-art 2-step defense NuAT-WA (Sri-
ramanan et al., 2021) and GAT (Sriramanan et al., 2020)
in Table-2. We obtain a marginal boost in both clean and
robust accuracy on WideResNet-34-10. Moreover, ACAT
can be integrated with the Nuclear Norm training objective
as well to obtain improved results. The performance of
the proposed ACAT defense is superior when compared to
the multi-step training method PGD-AT (Rice et al., 2020)
as well. When compared to the TRADES-AWP 10-step
defense (Wu et al., 2020; Zhang et al., 2019), we obtain
improved clean accuracy with a slight drop in robust ac-
curacy at half the computational cost. On the CIFAR-100
dataset, we obtain substantial gains in both clean and robust
accuracy when compared to the 10-step baselines.

We present three variants of the proposed defense DAJAT,
by using one, two and three AutoAugment based augmen-
tations for every image. We denote them as DAJAT(Base,
AA), DAJAT(Base, 2*AA) and DAJAT(Base, 3*AA) respec-
tively. Using a single AutoAugment based augmentaion
(Base, AA), we obtain improved clean and robust accu-
racy when compared to most of the baselines considered
across all datasets and models. By increasing the number
of AutoAugment based transformations to 2, we observe
consistent gains in robust and clean accuracy in all cases. In
this setting, the computational complexity of the proposed
approach matches with that of TRADES-AWP (Wu et al.,
2020) as shown in Table-1. With the setting (Base, 3*AA),
we obtain marginal improvements in performance.

Overall, using the (Base, 2*AA) approach, which has com-
parable time complexity as the TRADES-AWP 10-step de-
fense, we obtain large gains ranging from 3.8% to 7% on
clean accuracy and around 1.8% higher robust accuracy
against AutoAttack (Croce & Hein, 2020) across most set-
tings. On the Imagenette dataset (Howard & Gugger, 2020)
we obtain 4.2% higher clean accuracy and 4.49% higher
robust accuracy, showing that augmentation strategies work
best when the amount of training data is less when compared
to the complexity of the task. While the use of 2 attack steps
helps in improving the training efficiency of DAJAT, we
show that by using more attack steps and longer training
epochs, we can indeed obtain further gains in performance.
The varying ε schedule in DAJAT allows the use of an in-
creasing schedule in the number of steps as well, thereby
limiting the overall cost associated with higher attack steps.
We present results by increasing the number of attack steps
from 2 to 5 uniformly every 50 epochs in last row of Table-1.

4.1. Combining DAJAT with other augmentations
We explore combining the proposed defense DAJAT with
other augmentations in Table-5. We do not use the JS di-

vergence term for Cutmix and Mixup since they involve
changes in the label space. We note that without using any
augmentation in the training dataset, we obtain poor clean
and robust accuracy, highlighting the importance of using
Pad and Crop followed by horizontal flip. The proposed
approach is able to obtain good performance gains using
AutoAugment (Cubuk et al., 2018), Color Jitter and CutOut
(DeVries & Taylor, 2017) augmentations, highlighting that
it can work well with pixel-level and spatial augmentations.

The use of Cutmix and Mixup in adversarial training are
challenging since they involve changes in label space. Al-
though the base accuracy using these augmentations is poor,
using DAJAT we obtain considerable gains, highlighting
that it enables the use of a variety of augmentations without
the need for careful selection. We note that Rebuffi et al.
(Rebuffi et al., 2021) obtain considerable gains using Cut-
mix along with many other improvements. By incorporating
some of the tricks reproduced by Rade et al. (Rade, 2021)
we obtain improvements in the CutMix baseline and further
gains in the proposed method. For a similar computational
budget, we compare with Rebuffi et al. (Rebuffi et al., 2021)
in Table-6, where we obtain gains of 1.7% clean and 3.3%
robust accuracy (Details in Sec.C.3). We present ablation
results for the proposed approach in Table-4.

5. Conclusions
Contrary to prior knowledge, we show that it is indeed possi-
ble to use common augmentation strategies that modify the
low-level statistics of images to improve the performance
of adversarial training. We propose a novel defense Diverse
Augmentation based Joint Adversarial Training (DAJAT)
that uses a combination of simple and complex augmenta-
tions with separate batch normalization layers to allow the
network training to benefit from the diverse training data
distribution obtained using complex augmentations, while
also being trained on a distribution that is close to the test
set. The use of JS divergence term between network predic-
tions of different augmentations enables the joint learning
across various augmentations. We improve the efficiency of
DAJAT by utilizing the proposed two-step defense strategy
Ascending Constraint Adversarial Training (ACAT) that im-
proves the stability and performance of TRADES 2-step
adversarial training significantly by using a linearly increas-
ing ε schedule along with a cosine learning rate schedule
and weight-space smoothing.
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A. Details on Ascending Constraint Adversarial Training (ACAT)
In this section, we present details on the proposed 2-step efficient defense strategy, Ascending Constraint Adversarial
Training (ACAT).

A.1. ACAT training algorithm

The algorithm for the proposed ACAT defense is presented in Algorithm-1. We consider an ℓ∞ threat model of perturbation
radius ε. The perturbation bound for attack generation εasc is linearly increased from 0 to ε during training (L3). The
learning rate follows a cosine schedule across the training epochs as shown in L4. The attack generation (L7-L12) is done
for 2 iterations and follows the TRADES (Zhang et al., 2019) settings. Initially, Gaussian noise of magnitude 0.001 is added
to every pixel (L8). The KL divergence loss between the clean and perturbed images is maximized using the perturbation
step size εasc (L9). Further, the perturbation is clipped to remain within the threat model in every iteration (L10-L11).

As shown in L14, the TRADES-AWP (Wu et al., 2020) loss is used for adversarial training. The loss LAWP(θ) is maximized
with respect to θ to find the perturbed model weights θ̃ within the constraint set M(θ) (L15). Further, the model training is
done at θ̃, after which the adversarial weight pertubation δAWP is subtracted to offset the perturbation in weights (L17). The
defense ACAT does not use any additional training hyperparameters when compared to the TRADES-AWP defense. We
vary the hyperparameter β to obtain optimal results.

Algorithm 1 Ascending Constraint Adversarial Training (ACAT)
1: Input: Network fθ, Training Dataset D = {(xi, yi)}, Adversarial Threat model: ℓ∞ bound of radius ε, number

of epochs E, Maximum Learning Rate LRmax, M training mini-batches of size n, Cross-entropy loss ℓCE , Weight
perturbation constraint M(θ), coefficient of KL divergence term β

2: for epoch = 1 to E do
3: εasc = epoch · ε/E
4: LR = 0.5 · LRmax · (1 + cosine((epoch− 1)/E · π))
5: for iter = 1 to M do
6: for i = 1 to n (in parallel) do
7: for steps = 1 to 2 do
8: δ = 0.001 · N (0, 1)
9: δ = δ + εasc · sign (∇δKL(fθ(xi)||fθ(xi + δ)))

10: δ = Clamp (δ,−εasc, εasc)
11: x̃i = Clamp (xi + δ, 0, 1)
12: end for
13: end for
14: LAWP(θ) =

1
n

n∑
i=1

LCE(fθ(xi), yi) + β ·KL(fθ(xi)||fθ(x̃i))

15: θ̃ = argmax
θ∈M(θ)

LAWP(θ)

16: δAWP = θ̃ − θ
17: θ = θ̃ − LR · ∇θ̃(LAWP(θ̃))− δAWP

18: end for
19: end for

A.2. Integrating ACAT with other efficient training methods

The proposed ACAT defense uses the KL divergence loss between clean and adversarial images, similar to the TRADES
adversarial training algorithm (Zhang et al., 2019). We present results by integrating the proposed ACAT defense with losses
from existing efficient adversarial training algorithms (Sriramanan et al., 2020; 2021) in Table-2. We obtain a significant
boost in performance over the respective baselines, when we use ACAT with GAT (Sriramanan et al., 2020) and TRADES
(Zhang et al., 2019) losses, and a marginal boost when integrated with the NuAT defense (Sriramanan et al., 2021). The
adversarial weight perturbation step in the proposed defense results in an increase in computational time when compared to
the respective baselines. We choose the KL divergence based loss for both proposed defenses ACAT and DAJAT since it
results in an optimal trade-off between performance and training time.
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Table 2. Integrating ACAT with different loss formulations on the CIFAR-10 dataset with WideResNet-34-10 architecture. Robust
accuracy is reported against the GAMA attack (Sriramanan et al., 2020).

# Attack Steps Clean Acc Robust Acc Time per epoch (seconds)

TRADES-AWP 2 85.49 41.62 412
ACAT (with TRADES loss) 2 86.71 55.58 412

NuAT2-WA 2 86.32 55.08 334
ACAT (with NuAT loss) 2 86.19 55.91 530

GAT2-WA 2 87.36 50.24 267
ACAT (with GAT loss) 2 87.79 54.70 396

Table 3. Performance (%) of DAJAT when combined with other Adversarial training methods, OAAT (Addepalli et al., 2021) and
HAT (Rade & Moosavi-Dezfooli, 2022) on CIFAR-10 and CIFAR-100 with 110 epochs of training. Robust evaluations are performed
on Auto-Attack(AA) (Croce & Hein, 2020) at ε = 8/255 and 16/255.

CIFAR-10, ResNet-18 CIFAR-10, WRN-34-10 CIFAR-100, ResNet-18 CIFAR-100, WRN-34-10

Method Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255 Clean AA, 8/255 AA, 16/255

AWP (Zhang et al., 2019; Wu et al., 2020) 80.47 49.87 19.23 85.10 55.87 23.27 59.88 25.81 8.28 62.73 29.59 11.04
AWP+DAJAT 85.99 51.48 16.33 88.90 56.96 19.73 66.84 27.32 8.97 68.74 31.30 9.91

OAAT (Addepalli et al., 2021) 80.24 50.88 22.05 85.67 55.93 24.05 61.70 26.77 9.91 65.73 30.35 12.01
OAAT+DAJAT 82.05 52.21 22.78 86.22 57.64 24.56 62.50 28.47 10.67 66.03 31.15 12.67

HAT (Rade & Moosavi-Dezfooli, 2022) 85.63 49.54 14.96 86.21 51.46 16.76 59.19 23.26 6.96 59.95 24.55 7.13
HAT+DAJAT 86.68 51.47 16.38 86.71 53.85 16.50 62.78 26.49 8.72 64.88 27.37 8.71

B. Diverse Augmentation based Joint Adversarial Training (DAJAT)
B.1. Details on the proposed defense DAJAT
The algorithm of the proposed approach is presented in Algorithm-2. In every training iteration, multiple augmentations
are considered for every image xi (L7). We consider one base augmentation and T complex augmentations. The base
augmentation consists of Pad and Crop followed by Horizontal Flip, while the complex augmentations are a combination of
AutoAugment (Cubuk et al., 2018) and the base augmentations. The attack generation for each augmentation (L8-L13) is
similar to the ACAT algorithm discussed in Section-A.1. The DAJAT loss (L16) is a combination of the TRADES loss
(Zhang et al., 2019) (L17) on each augmentation, and a Jensen-Shannon (JS) divergence term between all augmentations.
The JS divergence is a combination of KL divergence terms with respect to the average probability vector as shown below.

JSD(fθ(xi,base), fθ(xi,auto(1)), . . . , fθ(xi,auto(T)) =
1

T + 1

{
KL(fθ(xi,base,M)+

KL(fθ(xi,auto(1),M) + · · ·+KL(fθ(xi,auto(T),M)
}

(4)

where M is defined as below,
M =

1

T + 1

{
fθ(xi,base) + fθ(xi,auto(1)) + · · ·+ fθ(xi,auto(T))

}
(5)

The JS-divergence term improves accuracy on clean samples and training convergence by enabling the joint learning of
representations across different augmentations. The model weights are perturbed to θ̃ by maximizing the TRADES loss on
the base augmentations alone within the constraint set M(θ) (L18). This constraint set is chosen such that ||θ̃l|| ≤ γ · ||θl||
for any layer l. The network θ̃ is updated using an SGD step to minimize the overall loss LDAJAT(θ̃) (L20). The model
weights are further offset by δAWP which is the adversarial weight perturbation at θ.

C. Details on Experiments and Results
C.1. Combining the proposed approach with different adversarial training methods

We explore combining the proposed defense DAJAT with some existing methods in Table-3. We observe that combining
DAJAT with all three existing works (Wu et al., 2020; Addepalli et al., 2021; Rade & Moosavi-Dezfooli, 2022) leads to
significant gains both in clean as well as adversarial accuracies (AA, 8/255), especially on CIFAR-100 where the number
of images per class is low. Although OAAT (Addepalli et al., 2021) shows improved results over AWP (Wu et al., 2020),
combining DAJAT with OAAT leads to further gains of ∼ 1.5% in both clean and adversarial accuracy on CIFAR10 and
1− 1.5% gains in both clean and adversarial accuracy on CIFAR100. Further, since OAAT (Addepalli et al., 2021) claims
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Algorithm 2 Diverse Augmentation based Joint Adversarial Training (DAJAT)
1: Input: Network fθ, Training Dataset D = {(xi, yi)}, Adversarial Threat model: ℓ∞ bound of radius ε, number of

epochs E, Maximum Learning Rate LRmax, M training mini-batches of size n, number of attack steps S, Cross-entropy
loss ℓCE , Weight perturbation constraint M(θ), Number of augmented images using autoaugment T , coefficient of KL
divergence term β

2: for epoch = 1 to E do
3: εasc = epoch · ε/E
4: LR = 0.5 · LRmax · (1 + cosine((epoch− 1)/E · π))
5: for iter = 1 to M do
6: for i = 1 to n (in parallel) do
7: for a ∈ {base, auto(1), . . . , auto(T)} do
8: for steps = 1 to S do
9: δ = 0.001 · N (0, 1)

10: δ = δ + εasc · sign (∇δKL(fθ(xi,a)||fθ(xi,a + δ)))
11: δ = Clamp (δ,−εasc, εasc)
12: x̃i,a = Clamp (xi,a + δ, 0, 1)
13: end for
14: end for
15: end for

16:

LDAJAT(θ) =
1

T + 1
· 1
n

n∑
i=1

{
LTR(θ, (xi, x̃i)base, yi) +

T∑
t=1

LTR(θ, (xi, x̃i)auto, yi)
}

+
1

n

n∑
i=1

{
JSD(fθ(xi,base), fθ(xi,auto(1)), . . . , fθ(xi,auto(T))

}
17: where, LTR(θ, (x, x̃), y) = LCE(fθ(x), y) + β ·KL(fθ(x)||fθ(x̃))
18: θ̃ = argmax

θ∈M(θ)

1
n

n∑
i=1

{
LTR(θ, (xi, x̃i)base, yi)

}
19: δAWP = θ̃ − θ

20: θ = θ̃ − LR · ∇θ̃(LDAJAT(θ̃))− δAWP

21: end for
22: end for

to achieve robustness at larger epsilon bounds, we evaluate using Auto-Attack at ε = 16/255. Using OAAT+DAJAT we
observe gains over OAAT on AutoAttack with ε = 16/255 as well, which further confirms the effectiveness of DAJAT.
Finally we combine DAJAT with HAT (Rade & Moosavi-Dezfooli, 2022) and we observe consistent gains over HAT (Rade
& Moosavi-Dezfooli, 2022) on all models and datasets. While HAT proposes to improve the robustness-accuracy trade-off,
combining DAJAT with HAT further improves this trade-off and shows gains of ∼ 1% on clean accuracy and ∼ 2% on
robust accuracy for CIFAR-10, and 3− 5% on clean accuracy and ∼ 3% on robust accuracy for CIFAR-100 dataset.

C.2. Ablation experiments
We present ablation experiments to highlight the significance of different components of the proposed approach in Table-4
on the CIFAR-10 dataset using ResNet-18 architecture. All experiments are run for 110 training epochs, except A7 which
is run for 220 epochs. We show the importance of the JS divergence term in the proposed loss in the ablations A1-A6 of
Table-4. Using the JS divergence term we obtain ∼ 1% higher clean accuracy across (Base, AA), (Base, 2*AA) and (Base,
3*AA) settings of the proposed defense. For (Base, 2*AA) and (Base, 3*AA) we obtain marginal improvements in robust
accuracy as well. From A7, A9 and A10, we find that the proposed JS divergence term helps even in the case where both
augmentations of an image are generated using the same pipeline. Using two AutoAugment based transformations, we
obtain 1.6% higher clean accuracy when compared to the 220 epoch 2-step defense at a comparable computational cost.
Comparing A9, A10 and A11, we note that the use of simple and complex augmentations indeed shows improvements over
the case of using 2 complex or simple augmentations alone. The importance of split-batch norm in the proposed approach
can be evidently seen by comparing A12 and A14. By using single batch norm (A12), robust accuracy drops by 8.24%.
Further, in this case if the JS term is also dropped, the robustness of the network is almost completely lost. This shows that
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Table 4. Ablation experiments performed on the CIFAR-10 dataset using ResNet-18 architecture. Robust Accuracy is reported against
GAMA attack (Sriramanan et al., 2020).

# Steps Clean Acc Robust Acc # Steps Clean Acc Robust Acc

[A1] Ours (Base, AA ) without JS 2 + 2 84.55 51.45 [A8] Ours (Base, 2step) 110 epochs 2 82.41 50.00
[A2] Ours (Base, AA ) 2 + 2 85.60 51.27 [A9] Ours (AA, AA ) 2 + 2 84.68 49.71
[A3] Ours (Base, 2*AA ) without JS 2 + 4 85.07 51.53 [A10] Ours (Base, Base ) 2 + 2 83.93 49.88
[A4] Ours (Base, 2*AA ) 2 + 4 85.99 51.71 [A11] Ours (Base, AA ) 2 + 2 85.60 51.27
[A5] Ours (Base, 3*AA ) without JS 2 + 6 85.31 51.67 [A12] Ours (Base, 3*AA ) Single Batch Norm 2 + 6 86.68 43.57
[A6] Ours (Base, 3*AA ) 2 + 6 86.67 51.81 [A13] Ours (Base, 3*AA ) Single Batch Norm without JS 2 + 6 75.64 4.20
[A7] Ours (Base, 2step) 220 epochs 2 83.05 50.31 [A14] Ours (Base, 3*AA ) 2 + 6 86.67 51.81

Table 5. Impact of using other augmentations in DAJAT. Performance on CIFAR-10 dataset with ResNet-18 architecture is reported.
Robust evaluations are done against GAMA attack (Sriramanan et al., 2020). †PreAct-ResNet18 with Swish activation is used (Rebuffi
et al., 2021; Rade, 2021).

Augmentation Base + Aug Base + 2 * (Aug) Augmentation Base + Aug Base + 2 * (Aug)

Augmentation Clean Robust Clean Robust Clean Robust Augmentation Clean Robust Clean Robust Clean Robust

No Augmentation 76.32 43.20 78.08 41.71 77.42 41.07 Cutout (DeVries & Taylor, 2017) 82.38 50.14 84.91 51.40 85.11 51.60
Pad+Crop+H-Flip 82.41 50.00 83.69 51.30 83.62 51.09 Colour Jitter 82.98 48.82 84.50 51.19 84.85 51.62
AutoAugment (Cubuk et al., 2018) 82.54 48.11 84.94 51.23 85.99 51.71 Mixup (Zhang et al., 2017) 79.08 45.07 85.18 50.18 84.24 50.01
Cutmix (Yun et al., 2019) 79.03 41.57 82.33 50.90 81.64 49.50 RandAugment (Cubuk et al., 2020) 82.48 44.66 84.61 51.01 85.47 51.33
Cutmix† (Rebuffi et al., 2021; Rade, 2021) 82.01 47.65 84.58 50.97 85.49 51.58 Augmix (Hendrycks* et al., 2020) 82.38 48.84 84.96 50.4 85.18 50.51

using a single batch norm layer for diverse augmentations makes it harder for the network to converge. We also note that the
JS divergence term indeed helps in improving the convergence of training in addition to improving performance.

C.3. Comparison against CutMix based augmentation

While we compare the performance of the proposed approach against various base adversarial training algorithms (Wu et al.,
2020; Madry et al., 2018; Pang et al., 2021; Sriramanan et al., 2021) in the main paper, we additionally compare with a
recent augmentation scheme that uses CutMix augmentations (Rebuffi et al., 2021) to improve performance in this section.
The authors (Rebuffi et al., 2021) show a significant boost in performance using 400 epochs of training and large model
architectures. However, to ensure a fair comparison, we report the result of 110 epochs of training on WideResNet-34-10
architecture and CIFAR-10 dataset that has been shared by the authors with us upon request. We report the PGD 40-step
accuracy as shared by the authors. As shown in Table-6, we obtain a significant boost in performance over the CutMix based
augmentation as well as the TRADES-AWP (Wu et al., 2020) baseline using the proposed defense DAJAT.

Additionally, contrary to the claims by Rebuffi et al. (Rebuffi et al., 2021), we show that it is indeed possible to effectively
use augmentations that modify the low-level statistics of images for obtaining improved performance in Adversarial Training
by using the proposed defense DAJAT.

As noted in the github repository 1 by Rebuffi et al. (2021), we find that naively using cutmix does not give good results
as shown in Table-5. Therefore, as referenced by the authors, we use the repository by Rade (2021) as the base code
and incorporate cutmix into it. We present the results for 200 epochs training with learning rate drop of 0.1 at 100 and
150 epochs, using the PreActResNet-18 model with Swish Activation and batch size of 128 in Table-7(C1). We observe
significantly improved results as compared to Table-5 on using the repository by Rade (2021) as the base code. We observe
that the key differences in the repository by Rade (2021) as compared to the TRADES repository (Zhang et al., 2019) are:

• Use of swish activation function in the PreActResNet18 model

• Weight decay not used for batch normalization layers

To study the impact of these changes, we investigate the use ReLU instead of Swish activation (Table-7(C5)) and the use of
weight decay for all the parameters of the model including the batch normalization layers (Table-7(C6)). In both cases, we
observe a significant drop with respect to C1. Thus based on this ablation, the use of swish activation, and avoiding weight
decay for batch normalization layers seems to be important to obtain performance gains using Cutmix.

By using linearly increasing varying epsilon schedule along with cosine learning rate, we obtain further improvements in

1https://github.com/deepmind/deepmind-research/tree/master/adversarial robustness/pytorch
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Table 6. Comparison of the proposed augmentation scheme with CutMix based augmentations (Rebuffi et al., 2021): Performance
(%) of the proposed defense DAJAT (Base, 2*AA) when compared to the use of CutMix based augmentation proposed by Rebuffi et al.
(Rebuffi et al., 2021) against PGD 40-step attack (Madry et al., 2018).

Method Clean Acc Robust Accuracy (PGD-40)

TRADES (Zhang et al., 2019) 84.72 56.92
Rebuffi et al. (Rebuffi et al., 2021) 87.24 57.60
TRADES-AWP (Wu et al., 2020) 85.35 59.13
Ours-DAJAT (Base, 2*AA) 88.90 60.97

Table 7. Performance (%) by using cutmix augmentations in the repository by Rade (2021) on CIFAR-10 dataset with Preact-ResNet18
model and Swish Activation. The models are trained using varying epsilon schedule and cosine learning rate unless specified otherwise.
Robust Accuracy is reported against GAMA attack (Sriramanan et al., 2020).

Method Clean Accuracy Robust Accuracy

[C1]: TRADES + Cutmix (step LR schedule + fixed ε) 81.67 49.18
[C2]: TRADES + Cutmix (cosine LR schedule + varying ε) 83.34 49.24
[C3]: Ours (Base, Cutmix) 82.67 51.99
[C4]: Ours (Base, 2*Cutmix) 83.05 52.22
[C5]: C1 + ReLU activation 81.03 46.60
[C6]: C1 + Weight decay for BN 70.66 36.36

performance as shown in C2. Next we incorporate the proposed method DAJAT and present the results in Table-7(C3,C4),
where we obtain significant gains in performance over C1, thus showing the effectiveness of DAJAT.

C.4. Sanity checks to verify the absence of gradient masking

We perform several sanity checks as recommended by Athalye et al. (2018) to ensure the absence of gradient masking in the
proposed defenses ACAT and DAJAT.

• From Table-8 we note that Black-Box attacks are weaker than White-Box attacks, indicating that the gradients from the
model are reliable.

• We further note from Table-8 that attacks with higher number of steps are stronger than those with lower steps. Further,
PGD multi-step attacks are stronger than FGSM white-box attacks.

• From Table-9 we note that robust accuracy against targeted and untargeted attacks saturates as the number of attack
steps increase from 500 to 1000, indicating that the evaluation is robust.
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Figure 3. Robust Accuracy and Loss against variation in perturbation size: (a,c) Robust accuracy (%) of the proposed defenses ACAT
and DAJAT against PGD 7-step attacks across variation in attack perturbation bound. Attacks within larger perturbation bounds are able
to bring down the robust accuracy of the model to 0, indicating the absence of gradient masking. (b,d) Cross-entropy loss on FGSM
adversarial samples across variation in attack perturbation bound. The linearly increasing trend of loss indicates the absence of gradient
masking. The models are trained on CIFAR-10 dataset using ResNet-18 architecture.
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Table 8. Evaluation against Black-Box (BB) and White-Box (WB) FGSM (Goodfellow et al., 2015) attacks and multi-step PGD
attacks (Madry et al., 2018). Performance (%) of the proposed defense DAJAT (Base + 2*AA) is compared against baselines on
CIFAR-10 dataset with ResNet-18 architecture.

Clean Acc BB FGSM WB FGSM PGD-20 PGD-100 PGD-500

NuAT2-WA 86.32 84.71 63.48 58.09 57.74 57.74
ACAT 86.71 85.29 64.08 58.76 58.64 58.53
TRADES-AWP 85.36 83.93 63.49 59.22 59.11 59.08
DAJAT(Base, 3*AA ) 88.64 87.19 66.99 61.09 60.80 60.74

Table 9. Evaluation against multi-step Targeted and Untargeted PGD attacks (Madry et al., 2018) with single and multiple random
restarts. Performance (%) of the proposed defense DAJAT (Base, 2*AA) across different datasets with ResNet-18 architecture.

CIFAR-10 CIFAR-100 IN-10
Attack 500-step 1000-step 500-step 1000-step 500-step 1000-step

PGD-Targeted (Least Likely Class) 85.01 85.01 66.02 65.98 85.06 85.01
PGD-Targeted (Random Class) 80.56 80.55 63.96 63.96 80.13 80.13
PGD-Untargeted 55.21 55.20 32.89 32.89 65.07 65.07

1-RR 1000-RR 1-RR 1000-RR 1-RR 1000-RR

PGD 50-step, r-RR 55.30 54.55 32.98 32.09 65.20 65.02

• We also note from Table-9 that the drop in accuracy with 1000 random restarts is marginal.

• We note from Fig.3 that an increase in perturbation bound increases the effectiveness of PGD 7-step attacks, and is
able to bring down the accuracy of the model to 0 at large bounds. Further, the loss on FGSM samples monotonically
increases in the vicinity of the data samples. These trends indicate the absence of gradient masking.

• We present results against AutoAttack (Croce & Hein, 2020) in Table-1 of the main paper. AutoAttack is an ensemble
of several gradient-based attacks and a gradient-free attack Square (Andriushchenko et al., 2020). The robust accuracy
against AutoAttack is similar to the accuracy against gradient-based attack GAMA (Sriramanan et al., 2020) indicating
that gradient-free attacks are not significantly stronger than gradient based attacks.

• We show the loss surface plots of the proposed defenses ACAT and DAJAT in the vicinity of data samples in Fig.4. We
note that the loss surface of the proposed defenses is smooth similar to the TRADES-AWP defense, indicating the
absence of gradient masking.

We finally compare the robust accuracy against various attacks in Tables-8 and 9 with the robust accuracy against GAMA
attack (Sriramanan et al., 2020) and AutoAttack (Croce & Hein, 2020) in Table-1 of the main paper. The latter evaluations
are significantly stronger, indicating that the evaluation presented in the main paper is robust.

(a) Normal Training (b) TRADES-AWP (c) ACAT (Ours) (d) DAJAT (Ours)

Figure 4. Loss Surface Plots: Plot of cross-entropy loss in the local neighborhood of images along the gradient direction (δ1) and a
random direction perpendicular to the gradient (δ2). The loss surface of the proposed defenses ACAT and DAJAT are smooth similar to
the TRADES-AWP defense, indicating the absence of gradient masking.


