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Abstract
We propose a neuro-inspired approach for en-
gineering robustness into deep neural networks
(DNNs), in which end-to-end cost functions are
supplemented with layer-wise costs promoting
Hebbian (“fire together,” “wire together”) updates
for highly active neurons, and anti-Hebbian up-
dates for the remaining neurons. Unlike standard
end-to-end training, which does not directly exert
control over the features extracted at intermedi-
ate layers, Hebbian/anti-Hebbian (HaH) learning
is aimed at producing sparse, strong activations
which are more difficult to corrupt. We further
encourage sparsity by introducing competition
between neurons via divisive normalization and
thresholding, together with implicit ℓ2 normaliza-
tion of neuronal weights, instead of batch norm.
Preliminary CIFAR-10 experiments demonstrate
that our neuro-inspired model, trained without
augmentation by noise or adversarial perturba-
tions, is substantially more robust to a range of
corruptions than a baseline end-to-end trained
model. This opens up exciting research frontiers
for training robust DNNs, with layer-wise costs
providing a strategy complementary to that of
data-augmented end-to-end training.

1. Introduction
Since their original breakthrough in image classification
performance, DNNs trained with backpropagation have at-
tained outstanding performance in a wide variety of fields
(Brown et al., 2020; Silver et al., 2018; Akkaya et al., 2019;
Senior et al., 2020). Arguably, a key contributor to this
explosive growth is the evolution of a powerful yet generic
computational infrastructure for training DNNs with a very
large number of parameters with variants of stochastic gradi-
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ent descent on an end-to-end cost function. Yet there remain
fundamental concerns regarding the lack of robustness in
DNNs (e.g, to noise, distribution shifts, and adversarial
perturbations). Within the existing training paradigm, the
main recourses are modification of the end-to-end cost func-
tion and/or augmentation of the input data. For example,
the state of the art defense against adversarial attacks is
adversarial training (see (Madry et al., 2018) and variants
thereof), which augments the input data with adversarial per-
turbations during training, while the cost function in (Zhang
et al., 2019) seeks to trade off clean accuracy and attacked
accuracy.

In this paper, we explore a complementary approach to ro-
bustness based on supplementing the end-to-end cost func-
tion with layer-wise costs aimed at shaping the features
extracted by intermediate layers of the DNN. Specifically,
while standard DNNs produce a large fraction of small acti-
vations at each layer, we seek architectures which produce
a small fraction of strong activations, while continuing to
utilize existing network architectures for feedforward in-
ference and existing software infrastructure for stochastic
gradient training. To this end, we introduce neuro-inspired
mechanisms creating competition between neurons during
both training and inference.

1.1. Approach and Contributions
In order to attain sparse, strong activations at each layer, we
employ the following neuro-inspired strategy for modifying
standard DNN training and architecture:
Hebbian/anti-Hebbian (HaH) Training: We supplement a
standard end-to-end discriminative cost function with layer-
wise costs at each layer which promote neurons producing
large activations and demote neurons producing smaller
activations. The goal is to develop a neuronal basis that
produces a distributed sparse code, without requiring a re-
construction cost as in standard sparse coding (Olshausen &
Field, 1997).
Neuronal Competition via Normalization: We further in-
crease sparsity by introducing Divisive Normalization (DN),
which enables larger activations to suppress smaller acti-
vations. In order to maintain a fair competition among
neurons, we introduce Implicit ℓ2 Normalization of the neu-
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Figure 1: Our model consists of two different types of blocks: first 6 blocks are Hebbian-anti-Hebbian (HaH) while the rest
are regular VGG blocks. HaH blocks use a weight normalized convolutional layer, followed by ReLU, divisive normalization
and thresholding. Regular VGG blocks use a weight normalized convolutional layer followed by ReLU and batch norm.

ronal weights, so that each activation may be viewed as a
geometric projection of the layer input onto the “direction”
of the neuron. (Using implicit rather than explicit weight
normalization in our inference architecture simplifies train-
ing.)

We report on experiments with CIFAR-10 image classifica-
tion, comparing a baseline VGG-16 network trained end-to-
end against the same architecture with HaH training and DN.
Both architectures employ implicit weight normalization,
which we have verified does not adversely impact accuracy.
We demonstrate that the activations in our proposed archi-
tecture are indeed more sparse than for the baseline network.
In order to isolate the impact of our training approach and
inference architecture, we do not employ noise augmenta-
tion or adversarial training in these initial experiments. For
CIFAR10 classification, we show that our model is signifi-
cantly more robust than a baseline model against both noise
and adversarial perturbations. Against the broader set of cor-
ruptions in the CIFAR10-C dataset (Common corruptions
dataset), our model is generally more resilient than both the
baseline model and an adversarially trained model.

1.2. Related Work
Hebbian learning has a rich history in artificial neural net-
works, dating back to the neocognitron (Fukushima et al.,
1983), and including recent attempts at introducing it into
deep architectures (Amato et al., 2019). However, to the
best of our knowledge, ours is the first paper to clearly
demonstrate gains in robustness from its incorporation in
DNNs. Divisive normalization is a widely accepted concept
in neuroscience (Carandini & Heeger, 2012; Burg et al.,
2021), and versions of it have been shown to be competitive
with other normalization techniques in deep networks (Ren
et al., 2016). Our novel contribution is in showing that di-
visive normalization can be engineered to enhance sparsity
and robustness. Finally, sparse coding with a reconstruction
objective was shown to lead to neuro-plausible outcomes in
a groundbreaking paper decades ago (Olshausen & Field,
1997). In contrast to the iterative sparse coding and dictio-
nary learning in such an approach, our HaH-based training

targets strong sparse activations in a manner amenable to
standard stochastic gradient training.

Recent work showing potential robustness gains by directly
including known aspects of mammalian vision in DNNs
includes (Dapello et al., 2020), which employs Gabor fil-
ter blocks and stochasticity, and (Li et al., 2019), which
employs neural activity measurements from mice for reg-
ularization in DNNs. Rather than incorporating specific
features from biological vision, we use neuro-inspiration to
extract broad principles that can be folded into data-driven
learning and inference in DNNs.

2. Model
We now describe how we incorporate HaH training and di-
visive normalization into a standard CNN for image classifi-
cation. We consider a “classical” CNN for our experiments–
VGG-16 (Simonyan & Zisserman, 2014) applied to CIFAR-
10, rather than variants of ResNet (He et al., 2015), because
residual connections complicate our interpretation of build-
ing models from the bottom-up using HaH learning. Since
we wish to build robustness from the bottom up, we mod-
ify the first few convolutional blocks to incorporate neuro-
inspired principles. We term these modified blocks “HaH
blocks.”

Each HaH block employs convolution with implicit weight
normalization, followed by ReLU, then divisive normaliza-
tion, and then thresholding. Implicit weight normalization
enables us to interpret the convolution outputs for each fil-
ter as projections, and we have verified that employing it
in all blocks of a baseline VGG-16 architecture does not
adversely impact accuracy (indeed, it slightly improves it).
Each standard (non-HaH) block in our architecture therefore
also employs convolution with implicit weight normaliza-
tion, followed by ReLU, but uses batch norm rather than
divisive normalization. Each HaH block contributes a HaH
cost for training, so that the overall cost function used for
training is the standard discriminative cost and the sum of
the HaH costs from the HaH blocks.

We now describe the key components of our architecture,
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shown in Figure 1.

2.1. Inference in a HaH block

Implicit weight normalization: Representing the convolu-
tion output at a given spatial location from a given filter as a
tensor inner product ⟨·, ·⟩ between the filter weights w and
the input x, the output of the ReLU unit following the filter
is given by

y = ReLU
( ⟨w,x⟩
||w||2

)
(1)

This effectively normalizes the weight tensor of each filter
to unit ℓ2 norm, without actually having to enforce an ℓ2
norm constraint in the cost.

Divisive normalization: If we have N filters in a given
HaH block, let y1(loc), ..., yN (loc) denote the correspond-
ing activations computed as in (Equation 1) for a given
spatial location loc. Let M(loc) = 1

N

∑N
k=1 yk(loc) de-

note the mean of the activations at a given location, and let
Mmax = maxlocM(loc) denote the maximum of this mean
over all locations. We normalize each activation using these
terms as follows:

zk(loc) =
yk(loc)

σMmax + (1− σ)M(loc)
, k = 1, ..., N (2)

where 0 ≤ σ ≤ 1 is a hyperparameter which can be sep-
arately tuned for each HaH block. Thus, in addition to
creating competition among neurons at a given location
by dividing by M(loc), we also include Mmax in the de-
nominator in order to suppress contributions at locations
for which the input is “noise” rather than a strong enough
“signal” well-aligned with one or more of the filters. This
particular implementation of divisive normalization ensures
that the output of a HaH-block is scale-invariant (i.e., we
get the same output if we scale the input to the block by any
positive scalar).

Adaptive Thresholding: Finally, we ensure that each neu-
ron is producing significant outputs by neuron-specific
thresholding after divisive normalization. The output of
the kth neuron at location loc is given by

ok(loc) =

{
zk(loc) if zk(loc) ≥ τk
0, otherwise (3)

where the threshold τk is neuron and image specific. For
example, we may set τk to the 90th percentile of the statistics
of zk(loc) in order to get an activation rate of 10% for each
neuron for every image. Another simple choice that works
well, but gives higher activation rates, is to set τk to the
mean of zk(loc) for each image.

2.2. HaH Training

For an N -neuron HaH block with activations yk(loc), k =
1, ..., N at location loc, the Hebbian/anti-Hebbian cost seeks

to maximize the average of the top K activations, and to
minimize the average of the remaining N −K activations,
where K is a hyperparameter. Thus, sorting the activations
{yk(loc)} so that y(1)(loc) ≥ y(2)(loc) ≥ ... ≥ y(N)(loc),
the contribution to the HaH cost (to be maximized) is given
by

Lblock(loc) =
1

K

K∑
k=1

y(k)(loc)−λ
1

N −K

N∑
k=K+1

y(k)(loc)

(4)
where λ ≥ 0 is a hyperparameter determining how much to
emphasize the anti-Hebbian component of the adaptation.
The overall HaH cost for the block, Lblock, which we wish to
maximize, is simply the mean over all locations and images.

The overall loss function to be minimized is now given by

L = Ldisc −
∑

HaH blocks

αblockLblock (5)

where Ldisc is the standard discriminative loss, and
{αblock ≥ 0} are hyper-parameters determining the rela-
tive weight of the HaH costs across blocks.

3. Experiments
We consider VGG-16 with the first 6 blocks (each block
includes conv, ReLU, batch norm) replaced by HaH blocks
(each block includes conv, ReLU, divisive norm, threshold-
ing). In our training, we use Adam optimizer (Kingma &
Ba, 2014) with an initial learning rate of 10−3, multiplied by
0.1 at epoch 60 and again at epoch 80. We train all models
for 100 epochs on CIFAR-10. We choose τk in Equation 3
to keep 20% of activations. We use [4.5 × 10−3, 2.5 ×
10−3, 1.3× 10−3, 1× 10−3, 8× 10−4, 5× 10−4] for α in
Equation 5. We use 0.1 for λ and set K to 10% of number
of filters in each layer in Equation 4 and set σ = 0.1 in
Equation 2. Details about other hyper-parameters can be
found in our code in supplementary materials.

Sparser activations: To ensure that HaH blocks are op-
erating as intended and achieving the sparse and strong
activations we test the sparsity levels of intermediate repre-
sentations and plot them in Figure 2. Sparsity is computed
by the ratio of ℓ1 norm to ℓ2 norm (also known as Hoyer
term (Hoyer, 2004)) of each spatial location’s representation
across the channel dimension. We then linearly normalize
the values to lie in [0,1]. Lower values represent sparser
representations. The activations in these first 6 blocks are
indeed more sparse for our architecture than for baseline
VGG.

Enhanced robustness to noise: We borrow the concept of
signal-to-noise-ratio (SNR) from wireless communication
to obtain a block-wise measure of robustness. Let fn(x)
denote the input tensor at block n in response to clean im-
age x, and fn(x + w) the input tensor when the image is
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Figure 2: HaH blocks yield sparser activations than baseline.
The measure of sparsity is the Hoyer ratio (Hoyer, 2004) of
ℓ1 norm to ℓ2 norm of activations across channels, averaged
across spatial locations, and then normalized to lie in [0,1]
(lower values correspond to more sparsity).

corrupted by noise w. As illustrated in Figure 3a, we define
SNR as

SNRn = 10 log10

(
Ex∼Dtest

[
||fn(x)||22

||fn(x+w)−fn(x)||22

])
dB (6)

converting to logarithmic decibel (dB) scale as is common
practice. Figure 3b shows that the SNR for our model
comfortably exceeds that of the standard model, especially
in the first 6 HaH blocks.

These higher SNR values also translate to gains in accuracy
with noisy images: Figure 4 compares the accuracy of our
model and the base model for different levels of Gaussian
noise. There are substantial accuracy gains at high noise
levels: 64% vs. 26% at a noise standard deviation of 0.1,
for example.

Enhanced robustness to adversarial attacks: While we
have not trained with adversarial examples, we find that, as
expected, the noise rejection capabilities of the HaH blocks
also translates into gains in adversarial robustness relative
to the baseline VGG model. This holds for state-of-the-
art gradient-based attacks (Madry et al., 2018; Pintor et al.,
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Figure 4: Comparison of classification accuracies as a func-
tion of noise σ. To provide a concrete sense of the impact
of noise, noisy images at increasing values of σ are shown
below the graph.

2021), as well as AutoAttack, an ensemble of parameter-free
attacks suggested by RobustBench (Croce et al., 2020). We
observe no additional benefit of using gradient-free attacks,
and conclude that the robustness provided by our scheme
is not because of gradient-masking. Because of space con-
straints, we only report on results from minimum-norm
adversarial attacks and AutoAttack.

Figure 5 shows that the minimum distortion needed to flip
the prediction of our model (computed using the recently
proposed fast minimum norm computation method (Pintor
et al., 2021)) is higher for our model for all the ℓp attacks
considered.

We have also obtained substantial gains in adversarial accu-
racy against all four ℓp norm attacks (p = 0, 1, 2,∞) used
as benchmarks in adversarial machine learning. Table 1
displays a subset of results demonstrating accuracy gains
against noise and adversarial perturbations, at the expense
of a slight decrease in clean accuracy.
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Figure 3: a: To compute the SNR at the nth block inputs, we divide the ℓ2 norm of the block input corresponding to clean
image by the ℓ2 norm of the difference of block corresponding to clean and noisy images. b: Comparison of SNR values of
the block inputs for the standard base model (gray) and ours (red).
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Table 1: Enhanced accuracy against noise and adversarial
attacks.

Clean
Noisy

(σ = 0.1)
Adv (ℓ∞)

(ϵ = 2/255)
Adv (ℓ2)

(ϵ = 0.25)

Standard 92.5% 26.6% 10.4% 13.9%
Ours 87.3% 64.0% 21.5% 27.6%

Enhanced robustness to common corruptions: Finally,
we evaluate our neuro-inspired framework for common
corruptions suggested by (Hendrycks & Dietterich, 2018).
These corruptions include noise injection, weather condi-
tion, common blur, and digital corruptions. Table 2 com-
pares the accuracies obtained by our model with those for
a standard model and an adversarially trained model. We
see that our neuro-inspired design is effective in increas-
ing robustness against these common corruptions. It is
worth noting that, while adversarially trained models per-
form well against noise type corruptions, they perform dras-
tically worse against more complex corruptions like fog and
contrast (Machiraju et al., 2022; Kireev et al., 2021). In con-
trast, our HaH framework not only performs relatively well
(performing substantially better than the standard model)
for noise corruptions but also performs significantly better
on more complex corruptions such as fog and contrast. Fur-
thermore, the HaH-VGG16 outperforms both the standard
model and adversarially trained model in terms of mean cor-
ruption accuracy. Given that such corruptions barely affect
human vision, these results indicate that neuro-inspiration
provides a valuable path towards general-purpose robust-
ness against noise, adversarial perturbations, and common
corruptions.

Ablation: Since we have different components in our HaH
blocks, we explore the effectiveness of each component by
doing an ablation study. Table 3 summarizes the contribu-
tion from each of the components. We see that all of the
components (HaH training, divisive normalization, adap-
tive thresholding) play an important role in obtaining the
reported gains in robustness to noise and adversarial attacks.
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Figure 5: The average norm of minimum-norm adversarial
attacks is higher for our model for all ℓp norms considered.

Furthermore, the number of HaH blocks plays a crucial
role in obtaining robustness. Figure 6 shows the trade-
off between clean accuracy and robust accuracy when the
number of HaH blocks changes. Note that we successfully
trained a model at most with 6 HaH blocks. Like earlier
bio-inspired defenses, robustness through the HaH blocks
also comes with a slight compromise on clean accuracy.
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Figure 6: Ablation study for number of HaH blocks. Every
additional HaH block contributes to the robustness of the
model with a slight compromise on clean accuracy.

Corruptions → Clean Noise Weather Blur Digital Mean

Models ↓ Gauss. Shot Speckle Impulse Snow Fog Frost Bright. Defocus Gauss. Motion Zoom Contrast Elastic Pixelate Spatter of all

Standard 92.5 32.4 40.0 45.5 27.5 72.9 64.5 61.6 87.4 45.5 34.8 59.7 58.9 23.0 74.8 51.0 68.6 53.0

Adv(8/255) 78.7 74.2 74.4 73.4 62.9 62.3 29.7 59.0 60.4 69.8 67.5 67.2 72.0 18.0 72.5 75.4 71.5 63.1

HaH (Ours) 87.3 64.7 63.9 61.2 50.2 74.4 63.3 73.3 83.3 65.9 59.9 65.8 69.5 76.3 73.8 62.1 76.3 67.7

Table 2: Common corruption accuracies across different models. While standard and adversarially trained models are
VGG16, HaH (ours) uses the aforementioned modified version of VGG16. Adversarially trained models perform poorly
on fog and contrast corruptions while excelling on high-frequency corruptions like noise. On the other hand, the HaH
framework consistently improves the robustness against all sorts of corruptions. Bright. stands for brightness, Gauss. stands
for Gaussian, Elastic stands for elastic transformation
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Table 3: Accuracies for ablation study.

Clean
Noisy

(σ = 0.1)
Adv (ℓ∞)

(ϵ = 2/255)
Adv (ℓ2)

(ϵ = 0.25)

All included 87.3% 64.0% 21.5% 27.6%

No HaH loss 89.7% 50.4% 8.8% 11.7%

Batch norm
instead of

divisive norm
90.4% 46.7% 12.3% 17.4%

No
thresholding 89.9% 37.5% 3.7% 2.5%

4. Conclusion
Our preliminary results demonstrate the promise of enhanc-
ing the end-to-end training paradigm in DNNs with layer-
wise costs in order to the features extracted by intermediate
layers. In particular, our neuro-inspired approach to neu-
ronal competition during training and inference demonstra-
bly results in sparser, stronger activations and robustness
against noise, common corruptions and adversarial perturba-
tions than baseline models. Indeed, based our experiments
with the CIFAR10-C (common corruptions) dataset, the
robustness provided by our approach, trained in these pre-
liminary results without any augmentation, appears to be
more general-purpose than that obtained by adversarial train-
ing. We note that recent work on bio-inspired adversarial
defenses appears to yield similar observations (Machiraju
et al., 2022).

We hope that these results motivate a systematic inquiry into
enhancing end-to-end training with layer-wise cost func-
tions for a variety of architectures, training techniques (in-
cluding unsupervised and semi-supervised learning, and
data augmentation) and applications. In particular, for ro-
bust machine learning, a natural next step is to explore
combination of data augmentation strategies (including ad-
versarial training) with HaH architectures.

Acknowledgment
This work was supported in part by the Army Research
Office under grant W911NF-19-1-0053, and by the National
Science Foundation under grants CIF-1909320 and CIF-
2224263.



Layerwise Hebbian/anti-Hebbian (HaH) Learning In Deep Networks: A Neuro-inspired Approach To Robustness

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Amato, G., Carrara, F., Falchi, F., Gennaro, C., and Lagani,
G. Hebbian learning meets deep convolutional neural
networks. In Ricci, E., Rota Bulò, S., Snoek, C., Lanz,
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