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Abstract
Self-supervised contrastive learning has recently
been shown to be very effective in preventing deep
networks from overfitting noisy labels. Despite its
empirical success, the theoretical understanding
of the effect of contrastive learning on boosting
robustness is very limited. In this work, we rigor-
ously prove that learned the representation matrix
has certain desirable properties in terms its SVD
that benefit robustness against label noise. We
further show that the low-rank structure of the
Jacobian of deep networks pre-trained with con-
trastive learning allows them to achieve a superior
performance initially, when fine-tuned on noisy
labels. Finally, we demonstrate that the initial ro-
bustness provided by contrastive learning enables
robust training methods to achieve state-of-the-art
performance under extreme noise levels.

1. Introduction
Very recently, self-supervised contrastive learning has
shown a lot of promise in boosting robustness of deep
networks against noisy labels (Zheltonozhskii et al., 2022;
Hendrycks et al., 2019; Ghosh & Lan, 2021). Despite its
empirical success, the theoretical understanding of the ef-
fect of contrastive learning on improving robustness of deep
networks against noisy labels is very limited.

In this work, we theoretically characterize the beneficial
properties of representations obtained by contrastive learn-
ing for enhancing robustness against noisy labels. We prove
that contrastive learning produces a representation matrix
that has: (i) a prominent singular value corresponding to
each sub-class in the data, and significantly smaller remain-
ing singular values; and (ii) a large alignment between
the prominent singular vectors and the ground-truth labels.
Then we analyze the case where a linear model is trained
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on the obtained representations with labels that are either
perturbed with Gaussian noise, or flipped at random to other
classes. We show that noise has minimal effect on learning
the clean labels and the model can hardly memorize the
wrong labels.

We further show that deep networks pre-trained with con-
trastive learning can be fine-tuned on noisy labels to achieve
a superior performance initially, before overfitting the noise.
We attribute this to the initial low-rank structure of the Jaco-
bian with a few large singular values associated to its promi-
nent directions and insignificant singular values otherwise.

Finally, we conduct extensive experiments on noisy CIFAR-
10 and CIFAR-100 (Krizhevsky & Hinton, 2009) and the
mini Webvision datasets (Li et al., 2017) to demonstrate that
the initial robustness provided by contrastive learning can
be further leveraged by robust methods to achieve state-of-
the-art performance under extreme levels of noise.

2. Problem Formulation and Background
Suppose we have a dataset D = {(xxxi, yyyi)}ni=1, where
(xxxi, yyyi) denotes the i-th sample with input xxxi ∈ Rd and
its clean one-hot encoded label yyyi ∈ RK corresponding
to one of the K classes. For example, for a data point xxxi

from class j ∈ [K], we have yyyi = eeej where ej denotes
the vector with a 1 in the jth coordinate and 0’s elsewhere.
We further assume that there are K̄ ≥ K sub-classes in the
data. Sub-classes of a class share the same label, but are
distinguishable from each other. We assume that for every
data point xxxi, we only observe a noisy version of its label ŷyyi.
We denote by YYY , ŶYY ∈ Rn×K the matrices of all the one-hot
encoded clean and noisy labels of the training data points.

2.1. Self-supervised Contrastive Learning

Self-supervised contrastive learning learns representations
of different data points by maximizing agreement between
differently augmented views of the same example via a
contrastive loss in the latent space, as we discuss below.

Augmentation graph. The augmentations can be used
to construct the population augmentation graph (HaoChen
et al., 2021), whose vertices are all the augmented data in the
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population distribution, and two vertices are connected with
an edge if they are augmentations of the same natural exam-
ple. Hence, ground-truth classes naturally form connected
sub-graphs. Formally, let P be the distribution of all natural
data points (raw inputs without augmentation). For a natural
data point xxx∗ ∼ P , let A(·|xxx∗) be the distribution of xxx∗’s
augmentations. For instance, when xxx∗ represents an image,
A(.|xxx∗) can be the distribution of common augmentations
(Chen et al., 2020) including Gaussian blur, color distortion
and random cropping. Then, for an augmented data point
xxx, A(xxx|xxx∗) is the probability of generating xxx from xxx∗. The
edge weights wxixj

= Exxx∗∼P [A(xxxi|xxx∗)A(xxxj |xxx∗)] can be
interpreted as the marginal probability of generating xxxi and
xxxj from a random natural data point.

Contrastive loss. The embeddings produced by con-
trastive learning can be viewed as a low-rank approximation
of the normalized augmentation graph. Effectively, mini-
mizing a loss that performs spectral decomposition on the
population augmentation graph can be succinctly written
as a contrastive learning objective C(f) on neural network
representations (HaoChen et al., 2021):

C(f)=−2Exxx,xxx+ [f(xxx)⊤, f(xxx+)] + Exxx,xxx−[
(
(f(xxx)⊤, f(xxx−)

)2
],

(1)

where f(xxx) ∈ Rp is the neural network representation for an
input xxx, and xxx,xxx+ are drawn from the augmentations of the
same natural data point, and xxx,xxx− are two augmentations
generated independently either from the same data point or
two different data points. The above loss function is similar
to many standard contrastive loss functions (Oord et al.,
2018; Sohn, 2016; Wu et al., 2018), including SimCLR
(Chen et al., 2020) that we will use in our experiments. Min-
imizing this objective leads to representations with provable
accuracy guarantees under linear probe evaluation. We use
fmin to denote the minimizer, i.e., fmin = argminf C(f).

2.2. Training the Linear Head with Label Noise

After obtaining the representations of dimension p by min-
imizing the contrastive loss, a linear layer parameterized
by WWW ∈ Rp×K is trained on the representations. Given
a matrix FFF ∈ Rn×p where each row FFF i = fmin(xxxi)

⊤ is
the learned representation of a data point xxxi, we consider
the downstream task of training a linear model, parameter-
ized by WWW ∈ Rp×K , to minimize the MSE loss with l2
regularization with parameter β

min
WWW∈Rp×K

∥ŶYY −FFFWWW∥2F + β∥WWW∥. (2)

Let ŴWW
∗

denote the solution that has the following closed-
form expression

ŴWW
∗
= (FFF⊤FFF + βIII)−1FFF⊤ŶYY . (3)

While we use MSE in our analysis, we empirically show
that our results hold for other losses, such as cross-entropy.

3. Contrastive learning Boosts Robustness
3.1. Provable Robustness of the Linear Head

To theoretically understand the robustness provided by con-
trastive learning, we assume certain properties of the aug-
mentation graph and analyze the low-rank structure of the
the resulting representation matrix. In particular, we uti-
lize the following natural assumptions that formalize the
following two properties on the data augmentation: (1) the
augmented examples of one sub-class are similar to each
other; and (2) the augmented examples of one sub-class are
different from the augmented examples of other sub-classes.

Assumption 3.1 (Compact sub-class structure). For a
triple of augmented examples xxxj , xxxs and xxxt from the same
sub-class, the marginal probability ofxxxs,xxxj being generated
from a natural data point is close to that of xxxt, xxxj . Formally,
we have wxxxsxxxj/wxxxtxxxj ∈ [ 1

1+δ , 1 + δ], for small δ ∈ [0, 1).

Assumption 3.2 (Distinguishable sub-class structure).
For two pairs of augmentated examples (xxxi,xxxj) and (xxxs,xxxt)
where xxxi, xxxj are from different sub-classes and xxxs, xxxt are
from the same sub-class, the marginal probability of xxxi, xxxj

being generated from a natural data is much smaller than
that of xxxs, xxxt. Formally, we have wxxxixxxj

/wxxxsxxxt
≤ ξ, for

small ξ ∈ [0,1).

The above assumptions result in an augmentation graph
where augmented data points from different subclasses form
nearly disconnected subgraphs with similar edge weights. In
particular for ξ = 0, we get diconnected subgraph structure.

Desirable Properties of Contrastive Representations

The key to our analysis is that, based on compact and dis-
tinguishable sub-class structure assumptions 3.1, 3.2, con-
trastive learning produces a low-rank representation matrix
FFF that captures the sub-class structure. More formally, the
representation matrix has K̄ singular vectors that align well
with the ground-truth labels, and the corresponding K̄ sin-
gular values are significant larger than the other singular
values. The following theorem is a summary of Lemmas
A.2 A.3 B.2 B.3 and Corollary A.6 in the Appendix which
details the desirable properties of the representation matrix.

Theorem 3.3. Having K̄ compact and distinguishable sub-
classes in the data, the representation matrix FFF learned by
contrastive learning has K̄ prominent singular values of
magnitude O(1). At the same time, the sum of the remaining
singular values is significantly smaller, i.e., O(

√
δ + ξ).

Furthermore, the most prominent K̄ singular vectors and
the ground-truth labels has a O(1) alignment, measured by
the normalized projection of the clean labels YYY onto the
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Figure 1. Training accuracy w.r.t. ground-truth labels and test accuracy of a linear classifier trained on representations learned by
contrastive learning (SimCLR). Experiments are conducted on CIFAR-10 (C10) and CIFAR-100 (C100) under different noise levels.
Dashed lines show loss and accuracy on training set w.r.t. ground-truth labels and solid lines show test loss and accuracy.

span of the singular vectors.

Intuitively, the above three properties of the representation
matrix affect the downstream training in the following sense:
(1) the magnitude of largest singular values determines the
speed at which the model evolves as well as the extent to
which the model can fit the training data; (2) the alignment
between prominent singular vectors and clean labels indi-
cates whether the model evolves in the right direction; and
(3) the magnitude of smaller singular values dictates the
amount of overfitting. As a result, Theorem 3.3 implies
that the model trained on such representation learns mainly
the correct information from the training data, which we
formally show in Theorems 3.4 and 3.5.

Training performance w.r.t. Ground-truth Labels
Reflects Robustness

To simplify the theoretical analysis, instead of studying
the generalization performance (usually measured by the
expected loss over the data distribution), we will examine
the loss and accuracy on the training data w.r.t. ground-
truth labels. This strongly correlates with the test accuracy,
especially under large noise. We empirically confirm this
correlation in Figure 1, where the dashed lines show training
loss and training accuracy w.r.t. ground-truth labels, and
solid lines show test loss and test accuracy. We clearly see
the high correlation between training and performance, in
particular under significant levels of label noise.

Gaussian Label Noise

We first consider the case where label noise is generated
from a Gaussian distribution. Formally, ŶYY = YYY + ∆YYY ,
where YYY is the clean label matrix containing all the one-hot
encoded labels, and ∆YYY is the label noise matrix, where
each column drawn independently from N (0, σ2In/K).
We consider this setting first, as it provides the most conve-
nient way to analyze robustness. Here, our analysis mainly
aims at breaking down the effect of label perturbations on
training dynamics, in terms of bias and variance. This could

provide theoretical insights into the benefits of contrastive
learning for boosting robustness.

The following theorem bounds the expected error on
training data w.r.t. ground-truth labels, and shows how
contrastive learning exploits the augmented sub-class
structure to improve robustness.

Theorem 3.4. For a dataset of size n with K classes, K̄
balanced compact and distinguishable sub-classes (c.f. as-
sumptions 3.2, 3.1) and labels corrupted with Gaussian
noise N (0, σ2In/K), a linear model trained by minimizing
the objective in Eq. (2) with the representations obtained
by minimizing contrastive loss in Eq. (1) has the following
expected error on the training set w.r.t. the ground-truth
labels YYY :

E∆YYY
1

n
∥YYY −FFFŴWW

∗
∥2F (4)

≤ (
β

β + 1
)2 +O(δ + ξ)︸ ︷︷ ︸

bias2

+σ2 K̄

n
(

1

β + 1
)2 + σ2O(

√
δ + ξ

β
)︸ ︷︷ ︸

variance

.

We note that the above results can be easily extended to
imbalanced sub-class structure.

The proof can be found in the Appendix. The proof follows
the intuition discussed in Section 3.1 that the desirable prop-
erties of the learned representation benefit the downstream
training. In a nutshell, we derive the bound by writing the
error in terms of singular values and vectors of FFF and then
applying Theorem 3.3.

In Eq. (4), the error is decomposed into bias and variance.
The bias captures the mismatch between the average predic-
tion of the model and the ground-truth labels. It depends on
the magnitude of the prominent singular values as well as
the alignment of the corresponding singular vectors with the
ground-truth labels. Contrastive learning reduces the bias by
aligning the first K̄ singular vectors with ground-truth labels
(Theorem 3.3), thus producing a small second term in the
bias. The variance quantifies the sensitivity to label noise,
and is controlled by the magnitude of the non-prominent
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singular values, which is guaranteed to be small by Theorem
3.3. The regularization parameter β appears in both terms
and can be tuned as a trade-off between underfitting and
overfitting.

With small enough δ and ξ, one can select a small β to
not explicitly penalize the variance much. This results in
a small bias, and subsequently a small total error. For ex-
ample, when there exists a β such that

√
δ + ξ ≪ β ≪ 1,

the error ≈ σ2 K̄
n ( 1

β+1 )
2, which is the inevitable cost of

achieving a small bias, when the representation matrix FFF
has K̄ prominent singular values.

Random Label Flipping

Next, we study the case where the label noise ∆YYY =ŶYY −YYY
is generated by flipping a fraction of the clean labels at
random. Formally, for an example xxxi belongs to class j
with yyyi = eeej , if its label is flipped to class k, we have
∆yyyi = eeek − eeej . We introduce the following notations to
analyze the case of asymmetric label noise which mimics
the real-world noise, where wrong labels are generated in
a (sub)class-dependent way. Let mk̄ be the number of mis-
labeled examples in subclass k̄, mk̄,k be the number of
mislabeled examples in subclass k̄ that are labeled as class
k, and Zk be the set of sub-classes in class k. We define
ck|k̄ :=

mk̄,k

mk̄
for all k̄,k such that k̄ /∈ Zk, to be the fraction

of mislabeled examples in sub-class k̄ that are mislabeled
as k. We have that

∑
k: k̄ /∈Zk

ck|k̄ = 1, ∀k̄ ∈ [K̄]. When
ck|k̄ = 1

K−1 ∀k ∈ [K], k̄ ∈ [K̄], the noise is symmetric.

For simplicity we assume ξ = 0. The general case of
ξ ≥ 0 requires more involved analysis which we discuss
in the Appendix. The following theorem shows that for a
dataset with compact and distinguishable sub-class structure
the linear classifier trained on the representations obtained
by contrastive learning can recover the clean label for all
training data.

Theorem 3.5 (Asymmetric Noise). For a dataset with K
classes and K̄ compact and distinguishable sub-class struc-
ture (c.f. assumptions 3.2 3.1) with ξ = 0, let nmin, nmax

be the size of the smallest and largest sub-class, and α be
the fraction of mislabeled examples in the training set. Let
cmax := maxk∈[K],k̄∈[K̄] ck|k̄ ∈ [ 1

K−1 , 1] be the maximum
fraction of wrong labels in a subclass that are flipped to
another class. Then as long as

α <
1

1 + nmax

nmin
cmax

−O

(√
δ

β

)
, (5)

a linear model trained by minimizing the objective in Eq. (2)
with the representations obtained by minimizing contrastive
loss in Eq. (1) can predict the ground-truth labels for all

training examples, i.e.,

∀i, argmax
j∈[K]

(FFFŴWW )i,j=argj∈[K](YYY i,j = 1).

In other words contrastive learning can prevent the linear
model from memorizing any wrong label even under large
noise. Theorem 3.5 also shows that the model can tolerate
more noise when the sub-class structure is more compact,
i.e., δ is smaller, or the noise is more symmetric, or the
sub-classes are more balanced. The following corollary for
symmetric noise is simply obtained by setting cmax = 1

K−1
in Theorem 3.5.

Corollary 3.6 (Symmetric Noise). For symmetric noise,
under the same assumption as in Theorem 3.5, as long as

α <
K−1

K + nmax

nmin
− 1

−O

(√
δ

β

)
, (6)

a linear model trained by minimizing the objective in Eq. (2)
with the representations obtained by minimizing contrastive
loss in Eq. (1) can predict the ground-truth labels for all
training examples.

If we further let δ = 0 and nmax/nmin = 1, we get
(K − 1)/K noise tolerance. We note that this, however,
does not imply that a dataset with more classes necessarily
has a higher noise tolerance. In Appendix B.1, we show
that less distinguishable sub-class structure, i.e. ξ > 0,
introduces a O(K̄5/2ξ) perturbation to the singular values
and a O(K̄5/2ξ) rotation in the direction of singular vectors
of the representation matrix. Datasets with more classes
usually contains more sub-classes, which greatly reduces
the noise tolerance. This is also reflected by our empirical
results (Figure 1) where the performance of the linear model
is worse on CIFAR-100 compared to CIFAR-10 under the
same noise level.

3.2. Contrastive Learning Slows down Overfitting for
Fine-tuning

In the previous section, we showed that training a linear
model on representations learned by contrastive learning
is provably robust. Here, we study fine-tuning all layers
of the deep network. Interestingly, as is shown in Fig. 2c,
finetuning achieves a very high test accuracy under 80%
label noise in the early phase of training.

Recall that the theoretical guarantee for linear model (theo-
rems 3.4 and 3.5) is obtained by examining singular values
and singular vectors of FFF . Here, we use a similar idea to
understand benefits of contrastive learning on robustness
when all the layers are trained. Intuitively, during the early
stage of training, it is natural to assume that the gradient
does not considerably change, and therefore the model is



Investigating Why Contrastive Learning Benefits Robustness against Label Noise

0 100 200 300 400 500
Singular values

100

101

102

103

104

Co
un

ts

Pretrained
Randomly initialized

(a)

0 100 200 300 400 500
Singular values

0

2

4

6

In
ne

r p
ro

du
ct

 b
tw

 si
ng

ul
ar

ve
ct

or
 a

nd
 la

be
l

Pretrained
Randomly initialized

(b)

0 10 20 30 40 50
Epoch

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

Randomly intialized
Pretrained

(c)

0 10 20 30 40 50
Epoch

1.87

1.88

1.89

1.90

1.91

1.92

1.93

Lo
ss

 o
n 

M
isl

ab
el

ed
 E

xa
m

pl
es

(d)

Figure 2. Jacobian spectrum and dynamics of training a randomly initialized vs. fine-tuning a pre-trained ResNet32 on CIFAR-10 with
80% randomly flipped labels. (a) distribution of singular values of the initial Jacobian, (b) alignment of the clean labels with the initial
Jacobian, (c) test accuracy and (d) loss on mislabeled data points within the first 50 epochs. While pre-training does not improve the
alignment of the Jacobian with the labels, it significantly slows down overfitting at the beginning by shrinking the smaller singular values
of the Jacobian matrix.

nearly linear. In this case, the initial Jacobian matrix plays
the same role as the representation matrix, FFF , to the linear
model. This is supported by the recent studies suggesting
the following properties of training neural networks: the
early learning dynamics can by mimicked by training a lin-
ear model (Hu et al., 2020), SGD on neural networks learns
a linear model first (Kalimeris et al., 2019), and a network
that provides a better alignment between prominent direc-
tions of the Jacobian matrix and the label vector is more
likely to generalize well (Oymak et al., 2019).

We examine the SVD of the Jacobian of a ResNet pretrained
with contrastive learning and compare it to that of a
randomly initialized network. Fig. 2a, 2b present the
distribution of singular values and the alignment of singular
vectors with clean labels. The Jacobian is computed on
a random sample of 1000 data points from CIFAR10.
Interestingly, Fig. 2b shows that while pre-training does
not considerably improve (in Appendix C we show a slight
improvement) the alignment between singular vectors of
the Jacobian and the clean label vector, it greatly shrinks
the smaller singular values of the Jacobian, as is illustrated
by Fig. 2a. As a result, it takes substantially longer for the
pre-trained network to overfit the noisy labels. As Fig. 2d
shows, while a randomly initialized network experience
a sharp drop in loss of noisy labeled data points during
the first few epochs of training, it takes much longer for
a pre-trained network to overfit the noise. Details of the
experiment can be found in Appendix E.

3.3. Contrastive Learning Boosts Robust Methods

As discussed, pre-training the network with contrastive
learning effectively shrinks the smaller singular values of
the Jacobian and slows down overfitting the noisy labels.
The following experiments show that the initial level of ro-
bustness provided by contrastive learning can be leveraged
by existing robust training methods to achieve a superior
performance under extreme noise levels. In particular, we

consider three methods that prevent overfitting through reg-
ularization, namely, Mixup (Zhang et al., 2017) and ELR
(Liu et al., 2020), or identifying clean examples, namely,
CRUST (Mirzasoleiman et al., 2020).

For the datasets we use artificially corrupted versions of
CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009),
as well as a subset of the real-world dataset Webvision (Li
et al., 2017), which naturally contains noisy labels. Our
method was developed using PyTorch (Paszke et al., 2017).
We use 1 Nvidia A40 for all experiments. All baselines and
training setups are described in Appendix D.

Empirical results on artificially corrupted CIFAR We
first evaluate our method on CIFAR-10 and CIFAR-100
with the same testing protocol as (Xu et al., 2019; Liu et al.,
2020; Xia et al., 2019). We consider symmetric noise ratios
of 0.2, 0.5, 0.8, and an asymmetric noise ratio of 0.4. In
the experiments, we first pre-train ResNet-32 (He et al.,
2016) using SimCLR (Chen et al., 2020; SimCLR), then
add a linear layer on top of the learned encoder and train
the whole network. We also report the results when ELR,
Mixup, and Crust are applied

The results are shown in Table 1. We note that SimCLR
pretraining leads to an across the board improvement for
Crust, ELR, and Mixup. For lower noise ratios, the improve-
ment is marginal. However, for extreme noise ratios, the
improvement is more dramatic. In particular, pre-training
boosts the performance of Crust by up to 44.1%, ELR by up
to 8.2%, and Mixup by up to 34.1% under 80% noise. We
also note that under 80% noise, SimCLR pretraining alone
outperforms all methods without SimCLR pretraining on
CIFAR-10 and CIFAR-100.

Empirical Results on WebVision WebVision is a large
scale image dataset with noisy labels (Li et al., 2017). It
contains 2.4 million images crawled from Google Images
search and Flickr that share the same 1000 classes as the
ImageNet dataset.
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Table 1. Average test accuracy (3 runs) on CIFAR-10 and CIFAR-100. The best test accuracy is marked in bold. We note the higher
performance of methods that use SimCLR (CL) pretraining, especially under higher noise levels. In particular, under 80% noise, methods
see an average of 27.18%, and 15.58% increase in test accuracy for CIFAR-10 and CIFAR-100 respectively. Results marked with (∗) are
reproduced from publicly available code. E2E refers to end to end fine-tuning the pre-trained network.

Dataset CIFAR-10 CIFAR-100

Noise Type Sym Asym Sym Asym

Noise Ratio 20 50 80 40 20 50 80 40

F-correction 85.1± 0.4 76.0± 0.2 34.8± 4.5 83.6± 2.2 55.8± 0.5 43.3± 0.7 − 42.3± 0.7
Decoupling 86.7± 0.3 79.3± 0.6 36.9± 4.6 75.3± 0.8 57.6± 0.5 45.7± 0.4 − 43.1± 0.4
Co-teaching 89.1± 0.3 82.1± 0.6 16.2± 3.2 84.6± 2.8 64.0± 0.3 52.3± 0.4 − 47.7± 1.2
MentorNet 88.4± 0.5 77.1± 0.4 28.9± 2.3 77.3± 0.8 63.0± 0.4 46.4± 0.4 − 42.4± 0.5

D2L 86.1± 0.4 67.4± 3.6 10.0± 0.1 85.6± 1.2 12.5± 4.2 5.6± 5.4 − 14.1± 5.8
INCV 89.7± 0.2 84.8± 0.3 52.3± 3.5 86.0± 0.5 60.2± 0.2 53.1± 0.4 − 50.7± 0.2

T-Revision 79.3± 0.5 78.5± 0.6 36.2± 1.6 76.3± 0.8 52.4± 0.3 37.6± 0.3 − 32.3± 0.4
L DMI 84.3± 0.4 78.8± 0.5 20.9± 2.2 84.8± 0.7 56.8± 0.4 42.2± 0.5 − 39.5± 0.4
Crust∗ 85.3± 0.5 86.8± 0.3 33.8± 1.3 76.7± 3.4 62.9± 0.3 55.5± 1.1 18.5± 0.8 52.5± 0.4
Mixup 89.7± 0.7 84.5± 0.3 40.7± 1.1 86.3± 0.1 64.0± 0.4 53.4± 0.5 15.1± 0.1 54.4± 2.0
ELR∗ 90.6± 0.6 87.7± 1.0 69.5± 5.0 86.6± 2.9 63.6± 1.7 52.5± 4.2 23.4± 1.9 59.7± 0.1

CL+E2E∗ 88.8± 0.5 82.8± 0.2 72.0± 0.3 83.5± 0.5 63.5± 0.2 56.1± 0.3 36.7± 0.3 52.4± 0.2
CL+Crust∗ 86.5± 0.7 87.6± 0.3 77.9± 0.3 85.9± 0.4 63.0± 0.8 58.3± 0.1 34.8± 1.5 53.3± 0.7

CL+Mixup∗ 90.8± 0.2 84.6± 0.4 74.8± 0.3 87.5± 1.3 64.4± 0.4 55.5± 0.1 30.3± 0.4 55.5± 0.8
CL+ELR∗ 91.3± 0.0 89.1± 0.1 77.7± 0.2 89.7± 0.3 64.7± 0.2 55.6± 0.2 35.9± 0.3 63.6± 0.1

Table 2. Test accuracy on mini WebVision. The best test accuracy
is marked in bold. SimCLR (CL) pre-training leads to average
improvements of 4.11% and 3.20% for mini Webvision and Ima-
geNet respectively.

WebVision ImageNet
Method Top-1 Top-5 Top-1 Top-5

F-correction 61.12 82.68 57.36 82.36
Decoupling 62.54 84.74 58.26 82.26
Co-teaching 63.58 85.20 61.48 84.70
MentorNet 63.00 81.40 57.80 79.92

D2L 62.68 84.00 57.80 81.36
INCV 65.24 85.34 61.60 84.98
Crust 72.40 89.56 67.36 87.84

Mixup 71.38 87.36 68.34 88.44
ELR 76.26 91.26 68.71 87.84

CL + E2E 71.84 88.84 68.48 89.32
CL + Mixup 76.34 90.52 72.25 89.72
CL + ELR 79.52 93.80 71.20 90.80

The noise ratio in classes varies from 0.5% to 88%, and
the number of images per class varies from 300 to more
than 10,000 (Fig. 4 in (Li et al., 2017) shows the noise
distribution). We follow the setting in (Jiang et al., 2018)
and create a mini WebVision dataset that consists of the top
50 classes in the Google subset with 66,000 images. We
use both WebVision and ImageNet test sets for testing the
performance of the model. We train a InceptionResNet-
v2 (Szegedy et al., 2017).

Table 2 shows the Top-1 and Top-5 accuracy of different
methods evaluated on WebVision and ImageNet. We see
that for both ELR and Mixup, SimCLR pretraining leads
to average improvements of 4.11% and 3.20% for mini

Webvision and ImageNet respectively. Furthermore, we
note that SimCLR pretraining on its own outperforms every
method without SimCLR pretraining, except ELR and Crust.

4. Conclusion
We showed that representations learned by contrastive
learning provably boosts robustness against noisy labels.
In particular, contrastive learning provides a representation
matrix that has: (i) a significant gap between the prominent
singular values and the remaining ones; (ii) a large
alignment between the prominent singular vectors and
the clean labels. The above properties allow a linear
layer trained on the representations to effectively learn
the clean labels well while barely overfitting the noise.
Then we explained why fine-tuning all layers of a network
pre-trained with contrastive learning can also achieve a
good performance in the early phase. Crucially, contrastive
learning greatly reduces the magnitude of nonprominant
singular values of the initial Jacobian matrix, which slows
down the overfitting. Finally, we demonstrated that the
initial robustness provided by contrastive learning can boost
robust methods and achieve state-of-the-art performance
under extreme noise levels. Our results confirm benefits
of contrastive pretraining for robust machine learning.
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A. Analysis for Disconnected Subclasses
In this section we consider the case where ξ = 0 in assumption 3.2, which implies that the probability of two augmentation
data from different subclasses being generated from the same random natural datum is exactly zero. And in section B we
extend the results to any ξ ∈ [0, 1) via eigenvalue and eigenvector perturbation. We use ∥ · ∥1, ∥ · ∥2 and ∥∥F to denote the
1-norm, operator norm and Frobenius norm, respectively.

A.1. Spectral Decomposition of Augmentation Graph

An important technical idea we use to formalize the representations obtained by contrastive learning is augmentation graph
(HaoChen et al., 2021), which is an undirected graph with all augmentation data {xxx1,xxx2, . . . ,xxxn} as its vertices and wxxxixxxj as
the weight for edge (xxxi,xxxj). Let AAA denote the adjacency matrix of the augmentation graph, that is, each entry aij = wxxxixxxj .
And the normalized adjacency matrix AAA is defined as

AAA :=DDD−1/2AAADDD−1/2,

where DDD = diag(wxxx1
, wxxx2

, . . . , wxxxn
) with wxxxi

=
∑n

j=1 wxxxixxxj
. For simplicity we index the augmentation data in the

following way: the first n1 data are from subclass 1, the next n2 data are from subclass 2, . . . , the last nK̄ data are from
subclass K̄. Lemma A.1 states an important property of AAA.

Lemma A.1. Assumption 3.2 with ξ = 0 implies that AAA is a block diagonal matrix diag(AAA1,AAA2, . . . ,AAAK̄) where AAAk̄ ∈
Rnk̄×nk̄ . This combined with 3.1 gives us: for each block AAAk̄, the ratio between two entries in the same column is bounded
as follows

∀k̄ ∈ [K̄],max
j,s,t

āk̄,s,j
āk̄,t,j

≤ 1 + δ′,

where āk,i,j are the entries of AAAk̄ and δ′ = (1 + δ)3/2 − 1 = 3
2δ +O(δ2).

Let fmin = argminf C(f) and FFFmin = [fmin(xxx1) fmin(xxx2) . . . fmin(xxxn)]
⊤, according the theorem in (HaoChen et al.,

2021), FFFmin is also the minimizer of the following matrix factorization problem

min
FFF∈Rn×p

∥AAA−FFFFFF⊤∥2F , (7)

and therefore can be further decomposed as

FFFmin = FFF ∗ΣΣΣRRR, (8)

by Eckart–Young–Mirsky theorem (Eckart & Young, 1936), where FFF ∗ ∈ Rn×p = [vvv1, vvv2, . . . , vvvp] ∈ Rn×p, ΣΣΣ =
diag(

√
λ1,

√
λ2, . . . ,

√
λp), RRR ∈ Rp×p is some orthogonal matrix, λ1, λ2, . . . , λp are the p largest eigenvalues of AAA and

vvv1, vvv2, . . . , vvvp are the corresponding unit-norm eigenvectors. W.l.o.g., we assume λ1 ≥ λ2 ≥ · · · ≥ λp. Our following
proofs are based on this decomposition. To avoid cluttered notation we drop the subscript of FFFmin, i.e., we use FFF for the
learned representation.

A.2. Properties of Singular Values/Vectors of the Representation Matrix

From the above section we know that the singular values/vectors ofFFF are the first p eigenvalues/vectors of AAA. For each block
AAAk̄, let λk̄,1, λk̄,2, . . . , λk̄,nk̄

denote the eigenvalues (in descending order) and vvvk̄,1, vvvk̄,2, . . . , vvvk̄,nk̄
denote the corresponding

eigenvectors. The eigenvalues of AAA are the list of the eigenvalues of all blocks. The corresponding eigenvectors are the
block vectors (⃗01, 0⃗2, . . . , 0⃗k̄−1, vvvk̄,i, 0⃗k̄+1, . . . , 0⃗K̄) := v̇vvk̄,i with each 0⃗j being a zero vector of length nj . Since AAA is a
normalized adjacency matrix, each block AAAk̄ is also normalized. Then the largest eigenvalue for each block is exactly 1, i.e.,
λk̄,1 = 1. It immediately follow Lemma A.2.

Lemma A.2. The K̄ largest eigenvalues of AAA are all 1, i.e., λ1 = λ2 = · · · = λK̄ = 1.

As long as p ≥ K̄, all λk̄,1 and vvvk̄,1 appear in the decomposition ofFFF . Let pk̄ ≥ 1 be the number of eigenvalues/eigenvectors
of block AAAk̄ that also appear in the decomposition of FFF . The following Lemmas and Corollaries states other important
properties of eigenvalues/eigenvectors of AAA .
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Lemma A.3. By assumption 3.1, the 1-norm of vvvk̄,1 has the following lower bound.

∥vvvk̄,1∥21 ≥
n2
k̄

1 + (nk̄ − 1)(1 + δ′)2
= nk̄ − 2(nk̄ − 1)δ′ −O(δ′2).

Proof. Write vvvk̄,1 as [e1, e2, . . . , enk̄
]T . By Perron-Frobenius theorem, all the elements here are positive since AAAk̄ is a

positive matrix. Then the quotient of any two elements in vvvk̄,1 can be bounded in terms of the entries of AAAk̄ (Minc, 1970)
and therefore 1 + δ′ by lemma A.1:

max
i,j

ei
ej

≤ max
j,s,t

āk̄,s,j
āk̄,t,j

≤ 1 + δ′.

Let emin = mini ei, we have

1 = ∥vvvk̄,1∥22 =

nk̄∑
i=1

e2i ≤ e2min + (nk̄ − 1)(1 + δ′)2e2min,

and

∥vvvk̄,1∥21 = (

nk̄∑
i=1

ei)
2 ≥ n2

k̄e
2
min.

Combining the preceding two equations yields

∥vvvk̄,1∥21 ≥
n2
k̄

1 + (nk̄ − 1)(1 + δ′)2
.

Lemma A.4. The sum of squared eigenvalues of each block AAAk̄ can be bounded.

nk̄∑
i=1

λ2
k̄,i ≤

(1 + (nk̄ − 1)(1 + δ′)2)(1 + δ′)2

nk̄

.

Proof. First we have

nk̄∑
i=1

λ2
k̄,i = ∥AAAk̄∥2F =

nk̄∑
j=1

∥ccck̄,j∥22, (9)

where ccck̄,j = [āk̄,1,j , āk̄,2,j , . . . , āk̄,nk̄,j
]T denotes the j-th column in AAAk̄. Analogous to lemma A.3, here we can bound

∥ccck̄,j∥22 in terms of ∥ccck̄,j∥21 by lemma A.1

∥ccck̄,j∥22 ≤
(1 + (nk̄ − 1)(1 + δ′)2)∥ccck̄,j∥21

n2
k̄

. (10)

We also have

∥ccck̄,j∥21 ≤ max
j

∥ccck̄,j∥21 ≤ (1 + δ′)2 min
j

∥ccck̄,j∥21 ≤ (1 + δ′)2λ2
k̄,1 = (1 + δ′)2, (11)

where the second inequality holds because of assumption 3.1 and the third inequality holds because of Perron-Frobenius
theorem. Combining equations 9, 10 and 11 completes the proof.

Corollary A.5. The eigenvalues except the K̄ largest ones are each upper bounded by

λk̄,i ≤

√
(1 + (nk̄ − 1)(1 + δ′)2)(1 + δ′)2

nk̄

− 1 = O(
√
δ′), ∀i = 2, 3, . . . , nk̄, ∀k̄ ∈ [K̄].
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Proof. By Lemmas A.2 and A.4
nk̄∑
i=2

λ2
k̄,i =

nk̄∑
i=1

λ2
k̄,i − λ2

k̄,1

≤ (1 + (nk̄ − 1)(1 + δ′)2)(1 + δ′)2

nk̄

− 1

=4δ′ +O(δ′2). (12)

Then

λk̄,i ≤

√√√√ nk̄∑
i=2

λ2
k̄,i

≤

√
(1 + (nk̄ − 1)(1 + δ′)2)(1 + δ′)2

nk̄

− 1

Corollary A.6. For each block AAAk̄, the sum of the eigenvalues from the second to the pk̄-th is bounded by
pk̄∑
i=2

λk̄,i ≤ 2
√

(pk̄ − 1)
√
δ′ +O(δ′).

And the sum of eigenvalues of AAA from the K̄ + 1-th to the p-th is bounded by
p∑

i=K̄+1

λi ≤ 2
√

(p− K̄)K̄δ′ +O(δ′).

Proof. Applying Cauchy–Schwarz inequality to equation 12 yields the bound for
∑pk̄

i=2 λk̄,i. Summing both sides of
equation 12 over k̄ ∈ [K̄] and then applying Cauchy–Schwarz inequality give the bound for

∑p

i=K̄+1
λi.

A.3. Error under Gaussian Noise when ξ = 0

With the decomposition in Equation 8, the learned parameter of the linear model in Equation 3 can be rewritten as

ŴWW
∗
= RRR⊤diag(

√
λ1

λ1 + β
,

√
λ2

λ2 + β
, . . . ,

√
λp

λp + β
)FFF ∗⊤ŶYY .

The output on the training set FFFŴWW
∗

is

FFFŴWW
∗
=FFF ∗BBBFFF ∗⊤ŶYY ,

where BBB = diag(b1, b2, . . . , bp) with bi =
λi

λi+β . And the error on training set w.r.t. ground-truth labels can be therefore
written in terms of the eigenvalues and eigenvectors of AAA

E∆YYY
1

n
∥YYY −FFFŴWW

∗
∥2F =E∆YYY

[
1

n
∥YYY −FFF ∗BBBFFF ∗⊤(YYY +∆YYY )∥2F

]
=
1

n
∥YYY −FFF ∗BBBFFF ∗⊤YYY ∥2F + E∆YYY

[
∥FFF ∗BBBFFF ∗⊤∆YYY ∥2F

]
=
1

n
∥YYY ∥2F +

1

n

p∑
i=1

K∑
j=1

(b2i − 2bi)(vvv
⊤
i yyyj)

2 +
σ2

n

p∑
i=1

b2i

=1 +
1

n

p∑
i=1

K∑
j=1

(b2i − 2bi)(vvv
⊤
i yyyj)

2

︸ ︷︷ ︸
bias2

+
σ2

n

p∑
i=1

b2i︸ ︷︷ ︸
variance

, (13)
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where yyyj ∈ Rn is the j-th column of YYY .

We first calculate the bias2 term. We have b2i − 2bi ≤ 0 since bi ∈ (0, 1]. Then we drop items with i ≥ K̄ + 1 in the
summation and apply Lemma A.2 to get an upper bound

bias2 ≤1− 1

n

K̄∑
i=1

K∑
j=1

(2bi − b2i )(vvv
⊤
i yyyj)

2

=1− 1

n

(
2

1 + β
− (

1

1 + β
)2
) K̄∑

i=1

K∑
j=1

(vvv⊤i yyyj)
2

=1− 1

n

(
2

1 + β
− (

1

1 + β
)2
) K̄∑

k̄=1

K∑
j=1

(v̇vv⊤k̄,1yyyj)
2

By Perron-Frobenious theorem all elements in vvvk̄,1 are positive, thus the sum of elements of vvvk̄,1 can be written as ∥vvvk̄,1∥1.
With the observation that v̇vvTk̄,1yyyj = ∥vvvk̄,1∥1 when k̄ is a subclass within class j and otherwise v̇vvTk̄,1yyyj = 0, the above equation
can be rewritten as

bias2 ≤1− 1

n

(
2

1 + β
− (

1

1 + β
)2
) K̄∑

k̄=1

∥vvvk̄,1∥21. (14)

Then by Lemma A.3,

bias2 ≤1− 1

n

(
2

1 + β
− (

1

1 + β
)2
) K̄∑

k̄=1

(
nk̄ − 2(nk̄ − 1)δ′ −O(δ′2)

)
=(

β

1 + β
)2 + 2(1− K̄

n
)
(2β + 1)

(β + 1)2
δ′ +O(δ′2)

=(
β

1 + β
)2 + 3(1− K̄

n
)
(2β + 1)

(β + 1)2
δ +O(δ2) (15)

Now we bound the variance term. By Lemma A.2

variance =
σ2

n

p∑
i=1

b2i

=
σ2

n

K̄∑
i=1

b2i +
σ2

n

p∑
i=K̄+1

b2i

=σ2 K̄

n
(

1

β + 1
)2 +

σ2

n

p∑
i=K̄+1

(1− β

λi + β
)

=σ2 K̄

n
(

1

β + 1
)2 +

σ2

n
(p− K̄)− σ2

n

p∑
i=K̄+1

β

λi + β
. (16)

Apply Cauchy–Schwarz inequality and Corollary A.6 to bound the summation in the last term
p∑

i=K̄+1

β

λi + β
≥ β(p− K̄)2∑p

i=K̄+1
(λi + β)

≥ β(p− K̄)2

2
√

(pk̄ − 1)
√
δ′ +O(δ′) + (p− K̄)β

= p− K̄ +
2
√
p− K̄

β

√
K̄δ′ +O(δ′).
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Plugging the preceding into Equation 16 yields

variance ≤σ2 K̄

n
(

1

β + 1
)2 + σ2 2

√
K̄(p− K̄)

n

√
δ′

β
+O(δ′)

=σ2 K̄

n
(

1

β + 1
)2 + σ2

√
6K̄(p− K̄)

n

√
δ

β
+O(δ)

A.4. Accuracy under Label Flipping (Proof for Theorem 3.5)

We study the accuracy by looking at the entries of the output FFFŴWW
∗
.

FFFŴWW
∗
= FFF ∗BBBFFF ∗⊤(YYY +∆YYY )

=
[
FFF ∗BBBFFF ∗⊤(yyy1 +∆yyy1), FFF

∗BBBFFF ∗⊤(yyy2 +∆yyy2), . . . , FFF ∗BBBFFF ∗⊤(yyyK +∆yyyK)
]

=

[
p∑

i=1

bivvvivvv
⊤
i (yyy1 +∆yyy1),

p∑
i=1

bivvvivvv
⊤
i (yyy2 +∆yyy2), . . . ,

p∑
i=1

bivvvivvv
⊤
i (yyyK +∆yyyK)

]
:= [zzz1, zzz2, . . . , zzzK ]

For convenience we define the notations Ck and Sk̄ as the sets of indices of examples from class k and subclass k̄,
respectively

Ck :={i : xxxi belongs to class k}

Sk̄ :={i : xxxi belongs to subclass k̄} = {i :
k̄−1∑
j=1

nj < i ≤
k̄∑

j=1

nj}.

Let the notation µµµ(j) denote the j-th element of vector µµµ. Then zzz
(j)
k can be written as

∑p
i=1 bivvv

(j)
i vvv⊤i (yyyk +∆yyyk). Let k̄j

denote the subclass that xxxj belongs to, i.e., j ∈ Sk̄ and define emin,s := minj vvv
(s)

k̄j ,1
and emax,s := maxs vvv

(s)

k̄j ,1
. We have the

following two lemmas.

Lemma A.7. zzz
(j)
k can be bounded{

zzz
(j)
k ≥ 1

β+1emin,jv̇vv
(j)

k̄j ,1
nmin(1− α)−√

nmax
2
√
p−1
β

√
δ′ −O(δ′), j ∈ Ck

zzz
(j)
k ≤ 1

β+1emax,jv̇vv
(j)

k̄j ,1
nmaxαcmax +

√
nmaxcmax

2
√
p−1
β

√
δ′ +O(δ′), j /∈ Ck.

.

Proof. Let bk̄,i denote λk̄,i

β+λk̄,i
. Recalling that one property of the block vector v̇vvk̄,i is that v̇vv(j)

k̄,i
= 0 when j /∈ Sk̄, we have

zzz
(j)
k =

p∑
i=1

bivvv
(j)
i vvv⊤i (yyyk +∆yyyk)

=

K̄∑
k̄=1

pk̄∑
i=1

bk̄,iv̇vv
(j)

k̄,i
v̇vv⊤k̄,i(yyyk +∆yyyk)

=

pk̄j∑
i

bk̄j ,iv̇vv
(j)

k̄j ,i
v̇vv⊤k̄j ,i

(yyyk +∆yyyk)

=bk̄j ,1v̇vv
(j)

k̄j ,1
v̇vv⊤k̄j ,1

(yyyk +∆yyyk) +

pk̄j∑
i=2

bk̄j ,iv̇vv
(j)

k̄j ,i
v̇vv⊤k̄j ,i

(yyyk +∆yyyk)

=
1

β + 1
v̇vv
(j)

k̄j ,1
v̇vv⊤k̄j ,1

(yyyk +∆yyyk) +

pk̄j∑
i=2

bk̄j ,iv̇vv
(j)

k̄j ,i
v̇vv⊤k̄j ,i

(yyyk +∆yyyk) (17)
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For the nonzero elements in v̇vvk̄j ,1, if j ∈ Ck, there are at least nmin(1− α) elements being 1 at corresponding positions
in yyyk +∆yyyk; if j /∈ Ck, there are at most nmaxαcmax elements being 1 at corresponding positions in yyyk +∆yyyk.Then the
inner product in the first term in equation 17 can be bounded by

v̇vv⊤k̄j ,1
(yyyk +∆yyyk) =

nk̄j∑
s=1

v̇vv
(s)

k̄j ,1
(yyyk +∆yyyk)

(s)

{
≥ emin,jnmin(1− α), j ∈ Ck

≤ emax,jv̇vv
(j)

k̄j ,1
nmaxαcmax, j /∈ Ck

For the inner product in the second term in equation 17, if j ∈ Ck, then v̇vv⊤k̄j ,i
(yyyk + ∆yyyk) is the sum of at most nmax

elements in v̇vvk̄j ,i. Since ∥v̇vvk̄j ,i∥
2
2 = 1, the sum is bounded by [−√

nmax,
√
nmax]. Similarly we can get the bound

[−√
nmaxcmax,

√
nmaxcmax] for j /∈ Ck. We also know that |v̇vv(j)

k̄j ,i
| ≤ 1. Now it remains to bound

∑pk̄j

i=2 bk̄j ,i by applying
Cauchy–Schwarz inequality and Corollary A.6

pk̄j∑
i=2

bk̄j ,i =

pk̄j∑
i=2

λk̄,i

β + λk̄,i

=pk̄j
− 1−

pk̄j∑
i=2

β

β + λk̄,i

≤pk̄j
− 1−

β(pk̄j
− 1)2∑pk̄j

i=2(λk̄j ,i + β)

≤pk̄j
− 1−

β(pk̄j
− 1)2

2
√

(pk̄ − 1)
√
δ′ +O(δ′) + β(pk̄j

− 1)

≤2
√
p− 1

√
δ′

β
+O(δ′)

Lemma A.8. emin,j , emax,j and emax,j/emin,j can be bounded.

emin,j ≥

√
1

1 + (nmax − 1)(1 + δ′)2

emax,j ≤

√
1

1 + (nmin − 1)/(1 + δ′)2

emax,j

emin,j
≤ (1 + δ′)

√
(1 + (1 + δ′)2(nmax − 1))

nmax − 1 + (1 + δ′)2

Proof. The proof is analogous to that for lemma A.3.

Now we are ready to calculate the maximum noise level that allows correct prediction on all training examples, i.e.,
zzzjk:j∈Ck

> zzzjk′:j /∈Ck′
. Let the preceding hold, then by lemma A.7 we get

α <

1− 2
√
nmax(1+

√
cmax)

√
p−1

β
β+1 emin,jv̇vv

(j)

k̄j ,1
nmin

√
δ′

1 +
nmaxemax,j

nminemin,j
cmax

−O(δ′) (18)

Plugging lemma A.8 into equation 18 with some algebraic manipulation yields

α <
1

1 + nmax

nmin
cmax

−O

(√
δ′

β

)
=

1

1 + nmax

nmin
cmax

−O

(√
δ

β

)
. (19)
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B. Considering Off-Diagonal Entries in the Adjacency Matrix (Connected Subclasses)
For here on we assume nk̄ = n

K̄
,∀k̄ ∈ K̄ for simplicity, despite that our results can easily extend to unbalanced dataset.

Lemma B.1. Under assumption 3.2, the off-diagonal entries in A is no longer zero. Let ÃAA denote the new normalized
matrix, which also contains non-zero off-diagonal entries. With a bit abuse of notation, in the following we use AAA to denote
the matrix obtained by normalizing A with off-diagonal elements ignored. Then all the properties of eigenvectors and
eigenvalues of AAA stated before including those lemma A.1, A.3, A.4 still hold. And ÃAA can be written as a perturbation of AAA

ÃAA = AAA+EEE,

with ∥EEE∥F = O
(
K̄5/2ξ

)
.

Proof. Let ÅAA be a matrix in the same shape of AAA containing all elements of ÃAA in the diagonal blocks. Let HHH be a matrix that
collects the remaining off-diagonal elements. Therefore ÃAA = ÅAA+HHH , which can be rewritten as

ÃAA = AAA+ ÅAA−AAA+HHH. (20)

For all off-diagonal elements hi,j in HHH

hi,j ≤
K̄ξ

n
.

Since there are n2 −
∑K̄

k̄=1 n
2
k̄

entries outside of the diagonal blocks, the norm of HHH can be bounded by

∥HHH∥F ≤
√
1− 1

K̄
K̄ξ (21)

Each element in the diagonal blocks of AAA− ÅAA is non-negative. Also, supposing xxxi and xxxj are from subclass k̄, we have

(AAA− ÅAA)i,j =
wxxxixxxj√∑

s:xxxs∈Ck̄
wxxxixxxs

√∑
t:xxxt∈Ck̄

wxxxtxxxj

−
wxxxixxxj√∑n

s=1 wxxxixxxs

√∑n
t=1 wxxxtxxxj

≤ n(K̄ − 1)ξ
n

K̄(1+δ)
( n
K̄(1+δ)

+ n(K̄ − 1)ξ)

=O
(
K̄3(1 + δ)2ξ

n

)
,

by which the norm of AAA− ÅAA is bounded

∥AAA− ÅAA∥F = O
(
K̄5/2(1 + δ)2ξ

)
= O

(
K̄5/2ξ

)
. (22)

Combining equations 20, 21 and 22 completes the proof.

AAA has the following eigendecomposition

AAA =
[
VVV IVVV N

] [ΣΣΣI 0
0 ΣΣΣN

] [
VVV ⊤

I

VVV ⊤
N

]
,

where ΣΣΣI collects the K̄ largest eigenvalues λ1, . . . , λK̄ on the diagonal and ΣΣΣN collects the remaining λK̄+1, . . . , λn̄. VVV I

and VVV N collects the corresponding K̄ and n− K̄ eigenvectors, respectively. Let ÃAA has analogous decomposition

ÃAA =
[
ṼVV IṼVV N

] [Σ̃ΣΣI 0

0 Σ̃ΣΣN

][
ṼVV

⊤
I

ṼVV
⊤
N

]
,

with eigenvalues λ̃1, . . . , λ̃n and eigenvectors ṽvv1, . . . , ṽvvn. Eigenvalues of both matrices are indexed in descending order.
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B.1. Perturbation in Eigenvalues and Eigenvectors

The following two lemmas bound the changes in eigenvalues, eigenvectos and the alignment between labels and eigenvectors
caused by ξ.

Lemma B.2. We have the following bound for eigenvalues of ÃAA:{
1−O(K5/2ξ) ≤ λ̃i ≤ 1, i = 1, 2, . . . , K̄∑p

i=K̄+1
λi ≤ O(

√
δ + K̄5/2ξ)

Proof. From Lemma A.2 and Corollary A.6 we know that{
λi = 1, i = 1, 2, . . . , K̄,∑p

i=K̄+1
λi ≤ O(

√
δ).

(23)

By Weyl’s inequality on perturbation, we have

|λ̃i − λi| ≤ ∥EEE∥2.

The right-hand-side is ≤ ∥EEE∥F and therefore O(K̄5/2ξ) by lemma B.1. Combining the preceding with equation 23
completes the proof.

Lemma B.3. The norm of the projection of YYY onto the range of ṼVV I is bounded from below, i.e.,

∥ṼVV IṼVV
T

I YYY ∥2F ≥ ∥VVV IVVV
T
I YYY ∥2F −O(nK̄2ξ).

Proof. By Lemma A.2 and Corollary A.5 we have

λK̄ − λK̄+1 ≥ 1−O(
√
δ).

By Wedin’s Theorem (Wedin, 1972; Stewart, 1990), we have the following bound on the principle angle between the range
of ṼVV I and the range of VVV I as long as 1 ≥ O(

√
δ + K̄5/2ξ)

∥VVV IVVV
T
I (ṼVV IṼVV

T

I − I)∥F ≤ O
(

∥EEE∥F
λK̄ − λK̄+1

)
≤ O

(
O(K̄5/2ξ)

1−O(
√
δ)

)
= O(K̄5/2ξ).

Thus

∥ṼVV IṼVV
T

I YYY ∥2F =∥ṼVV IṼVV
T

I YYY − VVV IVVV
T
I YYY + VVV IVVV

T
I YYY ∥2F

≥∥VVV IVVV
T
I YYY ∥2F + 2⟨ṼVV IṼVV

T

I YYY − VVV IVVV
T
I YYY , VVV IVVV

T
I YYY ⟩F

≥∥VVV IVVV
T
I YYY ∥2F + 2Tr((ṼVV IṼVV

T

I − VVV IVVV
T
I )YYY YYY TVVV IVVV

T
I )

=∥VVV IVVV
T
I YYY ∥2F + 2Tr(VVV IVVV

T
I (ṼVV IṼVV

T

I − I)YYY YYY T )

=∥VVV IVVV
T
I YYY ∥2F + 2⟨VVV IVVV

T
I (ṼVV IṼVV

T

I − III), YYY YYY T ⟩F

≥∥VVV IVVV
T
I YYY ∥2F − 2∥VVV IVVV

T
I (ṼVV IṼVV

T

I − III)∥F ∥YYY YYY T ∥F

≥∥VVV IVVV
T
I YYY ∥2F −O(K̄5/2ξ)

n√
K

=∥VVV IVVV
T
I YYY ∥2F −O(nK̄2ξ).
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B.2. Error under Gaussian Noise (Proof for Theorem 3.4)

Considering ξ, rewrite bias2 as

bias2 =1 +
1

n

p∑
i=1

K∑
j=1

(̃b2i − 2b̃i)(ṽvvi
⊤
yyyj)

2

≤1− 1

n

K̄∑
i=1

K∑
j=1

(2b̃i − b̃2i )(ṽvvi
⊤
yyyj)

2

≤1− 1

n
(2b̃K̄ − b̃2K̄)

K̄∑
i=1

K∑
j=1

(ṽvvi
⊤
yyyj)

2

≤1− 1

n
(2b̃K̄ − b̃2K̄)∥ṼVV IṼVV

T

I YYY ∥2F , (24)

where b̃i =
λ̃i

λ̃i+β
. Also, Lemma A.3 gives us the lower bound for ∥VVV IVVV

T
I YYY ∥2F

∥VVV IVVV
T
I YYY ∥2F =

K̄∑
k̄

∥vvvk̄,1∥21

≥ n−O(δ). (25)

Combining lemma B.2, lemma B.3, equation 24 and equation 25 yields the bound for the bias

bias2 =(
β

1 + β
)2 +O(δ + ξ).

We bound the variance in the same manner as in Section A.3 by applying Cauchy–Schwarz inequality, Corollary A.6 and
Lemma B.2

variance =
σ2

n

p∑
i=1

b̃2i

=
σ2

n

K̄∑
i=1

b̃2i +
σ2

n

p∑
i=K̄+1

b̃2i

≤σ2 K̄

n
(

1

β + 1
)2 +

σ2

n

p∑
i=K̄+1

(1− β

λ̃i + β
)

=σ2 K̄

n
(

1

β + 1
)2 +

σ2

n
(p− K̄)− σ2

n

p∑
i=K̄+1

β

λ̃i + β

≤σ2 K̄

n
(

1

β + 1
)2 +

σ2

n
(p− K̄)− σ2

n

β(p− K̄)2∑p

i=K̄+1
(λ̃i + β)

≤σ2 K̄

n
(

1

β + 1
)2 + σ2O(

√
δ + ξ

β
).

C. Contrastive Learning Slightly Improves the Alignment Between Jacobian Matrix and
Ground-truth Labels

We compare the alignments between the clean label vector and the initial Jacobian matrix of (1) network pretrained using
SimCLR for 1000 epochs, (2) network pretrained using SimCLR for 100 epochs and (3) randomly initialized network.
yyy ∈ RnK is the vector obtained by flattening the label matrix YYY , i.e., concatenating the n rows of YYY . Let zzz(xxxi,WWW ) ∈ RRRK
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∥ΠI(yyy)∥F ∥ΠN (yyy)∥F ∥JJJJJJTyyy∥F /∥JJJJJJT ∥F
Pretrained for 1000 epochs 10.063 29.979 3.184
Pretrained for 100 epochs 10.036 29.988 3.175

Randomly initialized 10.014 29.995 3.055

Table 3. Alignment between the Jacobian matrix and the clean labels.

be the output of the network given example xxxi and parameters WWW ∈ Rd (we see the parameters of the network as a vector).
Then the Jacobian JJJ is defined as

JJJ(WWW ) =

[
∂zzz(xxx1,WWW )

WWW
. . .

∂zzz(xxxn,WWW )

WWW

]⊤
.

Note that ∂zzz(xxxi,WWW )
WWW ∈ Rd×K , therefore JJJ(WWW ) ∈ RnK×d. In table 3 ΠI(yyy) is the projection of yyy onto the span of the 10

singular vectors of JJJ(WWW 0) with larges singular values and ΠN (yyy) is the projection of yyy onto the span of the remaining
singular vectors. Interestingly, pretraining for more epochs leads to larger ΠI(yyy) and smaller ΠN (yyy) and therefore larger
∥JJJJJJTyyy∥F /∥JJJJJJT ∥F . How much this slight improvement in the alignment contributes to the robustness deserves further
investigation.

D. Baselines for Experiments in Section 3.3
We compare our results with many commonly used baselines for robust training against label noise: (1) F-correction (Patrini
et al., 2017) is a two step process, where a neural network is first trained on noisily-labelled data, then retrained using a
corrected loss function based on an estimation of the noise transition matrix. (2) Decoupling (Malach & Shalev-Shwartz,
2017) is a meta-algorithm that trains two networks concurrently, only training on examples where the two networks disagree.
(3) Co-teaching (Han et al., 2018) also trains two networks simultaneously. Each network selects subsets of clean data with
high probability for the other network to train on. (4) MentorNet (Jiang et al., 2018) uses two neural networks, a student and
a mentor. The mentor dynamically creates a curriculum based on the student, while the student trains on the curriculum
provided by the mentor. (5) D2L (Ma et al., 2018) learns the training data distribution, then dynamically adapts the loss
function based on the changes in dimensionality of subspaces during training. (6) INCV (Chen et al., 2019) identifies random
subsets of the training data with fewer noisy labels, then applies Co-teaching to iteratively train on subsets found with the
most clean labels. (7) T-Revision (Xia et al., 2019) learns the transition matrix efficiently using an algorithm that does not
rely on known points with clean labels. (8) L DMI (Xu et al., 2019) uses a novel information-theoretic loss function based
on determinant based mutual information. (9) ELR (Liu et al., 2020) uses semi-supervised learning techniques to regularize
based on the early-learning phase of training, to ensure the noisy labels are not overfit. (10) CRUST (Mirzasoleiman et al.,
2020) dynamically selects subsets of clean data points by clustering in the gradient space. (11) Mixup (Zhang et al., 2017)
smooths the decision boundary by adding linear interpolations of feature vectors and their labels to the dataset.

E. Training Only the Linear Layer v.s. Training All Layers
Figure 3 compares the performance of fine-tuning only the last linear layer (i.e., with the encoder frozen) and fine-tuning all
layers (i.e., with the encoder unfrozen). For both CIFAR-10 and CIFAR-100 we first pretrain Res-Net 32 using SimCLR for
1000 epochs using the Adam optimizer with a learning rate of 3× 10−4, a weight decay of 1× 10−6 and a batch size of
128. Then, for both frozen and unfrozen fine-tunings, we use the SGD optimizer with a learning rate of 5× 10−3, a weight
decay of 1× 10−3, a batch size of 64. Interestingly, in most cases training all layers achieves a higher test accuracy, which,
however, does not mean it is necessarily better under some other hyperparameter settings. Also, we note that training all
layers is more likely to overfit, especially under large noise level (column 3 in figure 3).
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Figure 3. Test accuracy of fine-tuning a pre-trained network with frozen encoder v.s. unfrozen encoder on CIFAR-10 (top) and CIFAR-100
(bottom) under 20%, 50%, 80% symmetric noise and 40% asymmetric noise (left to right).


