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Abstract
Adversarial training and its variants have come to
be the prevailing methods to achieve adversarially
robust classification using neural networks. How-
ever, its increased computational cost together
with the significant gap between standard and
robust performance hinder progress and beg the
question of whether we can do better. In this work,
we take a step back and ask: Can models achieve
robustness via standard training on a suitably
optimized set? To this end, we devise a meta-
learning method for robust classification, that op-
timizes the dataset prior to its deployment in a
principled way, and aims to effectively remove
the non-robust parts of the data. We cast our opti-
mization method as a multi-step PGD procedure
on kernel regression, with a class of kernels that
describe infinitely wide neural nets (Neural Tan-
gent Kernels - NTKs). Experiments on MNIST
and CIFAR-10 demonstrate that the datasets we
produce enjoy very high robustness against PGD
attacks, when deployed in both kernel regression
classifiers and neural networks. However, this
robustness is somewhat fallacious, as alternative
attacks manage to fool the models, which we find
to be the case for previous similar works in the
literature as well. We discuss potential reasons
for this and outline further avenues of research.

1. Introduction
The discovery of the adversarial vulnerability of neural nets
(Szegedy et al., 2014; Goodfellow et al., 2015; Papernot
et al., 2017; Carlini & Wagner, 2017) - their brittleness
when exposed to imperceptible perturbations in the data -
has shifted the focus of the machine learning community
from standard gradient techniques to more complex train-
ing algorithms that are rooted in robust optimization. In
principle, if P denotes a data distribution and ∆ is a set of

1Center for Data Science, New York University. Correspon-
dence to: Nikolaos Tsilivis <nt2231@nyu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

allowed perturbations of the input space, we would like to
solve the following problem (Madry et al., 2018)

inf
θ
E(x,y)∼P sup

δ∈∆
L(f(x+ δ; θ,Dtrain), y), (1)

where f is a model parameterized by θ (e.g. a neural net-
work), Dtrain denotes a finite dataset used for training, and
L is a loss function used for classification.

Since solving this problem is generally intractable, it is com-
mon to employ an iterative algorithm that interchangeably
performs steps of gradient ascent/descent, a procedure called
adversarial training (Goodfellow et al., 2015; Madry et al.,
2018; Zhang et al., 2019). Here, training data is augmented
on the fly through perturbations coming from the very model
it is training. While adversarial training in its many vari-
ants has been successful and constitutes state-of-the-art, it
is often expensive and not easily analysable.

However, once we focus on non-parametric models f (such
as kernel ridge regression), we can pose a more “direct”
problem

inf
Dtrain

E(x,y)∼P sup
δ∈∆
L(f(x+ δ;Dtrain), y), (2)

where instead of optimizing the model parameters, we op-
timize the training data. The above formulation has the
benefit of directly optimizing the quantity of interest, that is
the robust loss at the end of “training”/deployment. Addi-
tionally, since the outcome of this optimization is a dataset,
it can be deployed with any other model, and, given favor-
able transfer properties, might yield good performance even
outside the scope it was optimized for, without the need for
costly adversarial training on the new model. This latter
hope is not unfounded, since adversarial examples them-
selves have been shown to be rather universal and transfer-
able across models (Papernot et al., 2017; Moosavi-Dezfooli
et al., 2017).

We propose a gradient-based approach for solving the opti-
mization in Eq. (2), focusing on kernel regression; specif-
ically with a particular class of kernel functions, Neural
Tangent Kernels (NTKs). Kernel regression with NTKs is
known to describe the training process of infinitely wide,
suitably initialized networks (Jacot et al., 2018; Lee et al.,
2019; Arora et al., 2019b), yet in some cases has shown
considerable transfer properties to commonly used neural
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nets. The analytical tools afforded by the rich theory of
kernels have resulted in progress in understanding the opti-
mization landscape and generalization capabilities of neural
networks (Du et al., 2019; Arora et al., 2019a), together
with the discovery of interesting deep learning phenom-
ena (Fort et al., 2020; Ortiz-Jiménez et al., 2021), while
also inspiring practical advances in diverse areas of appli-
cations such as the design of better classifiers (Shankar
et al., 2020), efficient neural architecture search (Chen et al.,
2021), low-dimensional tasks in graphics (Tancik et al.,
2020) and dataset distillation (Nguyen et al., 2021a;b).

Dataset Distillation. The inspiration for this work comes
from a number of recent works on Dataset Distillation
(Wang et al., 2018): the procedure of distilling knowledge
from a large dataset to a smaller one. Following (Nguyen
et al., 2021a;b), our method works with kernel machines,
and especially with NTKs. However, the goal here is slightly
different; instead of deriving a dataset of reduced size, we
aim to create one that has better robustness properties.

Distributionally Robust Optimization and Adversarial
Augmentation. Related to our paper are also works on
distributionally robust optimization (Sinha et al., 2018) and
adversarial data augmentation for out-of-distribution gen-
eralization (Volpi et al., 2018). The latter proposes an al-
gorithm that augments the training dataset on-the-fly (i.e.
during training of a neural net) with worst-case samples
from a target distribution. In contrast, our method optimizes
the original dataset against worst-case samples/adversarial
examples from the original distribution, which correspond
to a final predictor (kernel machine).

Our work shares similarities with all the above areas, but
has distinct differences: the goal of our method is to obtain
robust classifiers, as in adversarial training, but it does not
alter the training algorithm; it generates worst-case samples,
but instead of adding them to the training dataset (as ad-
versarial data augmentation techniques do), it uses them to
optimize the dataset itself, similar to a dataset distillation
procedure but tailored to adversarially robust classification.

To the best of our knowledge, the idea of trying to obtain ro-
bust classifiers through data or representation optimization
is rather unexplored. (Garg et al., 2018) design a spec-
tral method to extract robust embeddings from a dataset.
(Awasthi et al., 2021) formulate an adversarially robust for-
mulation of PCA, to extract provably robust representations.
(Ilyas et al., 2019) constructs a robust dataset by traversing
the representation layer of a previously trained robust clas-
sifier and serves as an inspiration for this work. Yet, all of
these methods achieve substantially lower robust accuracy
compared to adversarial training.

In summary, our contributions are as follows:

1. We propose adv-KIP, an algorithm of training-data op-

timization to achieve robustness via standard training,
using NTKs. We point to the underlying framework
that can be adapted to a range of two-loop (min-max)
opimization tasks.

2. We show experimentally on MNIST and CIFAR-10
that our algorithm produces robust classifiers with
(NTK) kernel regression. We further demonstrate that
the extracted data set transfers well to finite width wide
neural nets of similar architecture, leading to even bet-
ter robustness than for the underlying kernels.

3. We then show that our kernel-generated datasets give
rather surprising robustness against PGD attacks on
a set of commonly used neural nets (a simple 3-layer
CONV-net, AlexNet and VGG) for CIFAR-10, even
though they are optimized via a simple fully-connected
kernel.

4. Lastly, we discuss current shortcomings of our method.
In particular, while our current algorithm, which opti-
mizes against PGD attacks, achieves PGD-robustness,
it remains susceptible to other attacks (e.g. (Carlini &
Wagner, 2017)) and in particular does not stand the test
of the current best-practice AutoAttack suite (Croce &
Hein, 2020; 2021). We show that the same, inciden-
tally, to even stronger extent, holds for the data set of
(Ilyas et al., 2019). We discuss possible reasons and
outline avenues to modify our algorithm with the goal
of achieving true robustness.

2. Preliminaries
Adversarial Training. Eq. (1) establishes the min-max
underpinning for the construction of adversarially robust
classifiers (Madry et al., 2018). The most common way to
approximate the solution of this optimization problem for a
neural network f on a data point (x, y) is to first generate
adversarial examples by running multiple steps of projected
gradient descent (PGD) (Kurakin et al., 2017; Madry et al.,
2018). When the set of allowed perturbations ∆ is Bϵx -
the ℓ∞ ball of radius ϵ and center x - the iterative N -step
approximation is given by

xk+1 = ΠBϵ
x0

(
xk + α · sign(∇xkL(f(xk), y)

)
, (3)

where x0 = x is the original example, α is a learning step,
x̃ = xN is the final adversarial example, and Π is the pro-
jection on the valid constraint set of the data. During adver-
sarial training we alternate steps of generating adversarial
examples (using f from the current network) and training
on this data instead of the original one. Several variations
of this approach have been proposed in the literature (e.g.
(Zhang et al., 2019; Shafahi et al., 2019; Wong et al., 2020)),
modifying either the attack used for data generation (inner
loop in Eq. (1)) or the loss in the outer loop.
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Kernel Regression and NTK. Kernel regression is a fun-
damental non-linear regression method. Given a dataset
(X ,Y) , where X ∈ Rn×d and Y ∈ Rn×k (e.g., a set of
one-hot vectors), kernel regression computes an estimate

f̂(x) = K(x,X )⊤K(X ,X )−1Y, (4)

where K(x,X ) = [k(x,x1), . . . , k(x,xn)]
⊤ ∈ Rn,

K(X ,X )ij = k(xi,xj) and k is a kernel function that
measures similarity between points in Rd.

Recent work in deep learning theory has established a pro-
found connection between kernel regression and the infinite
width, low learning rate limit of deep neural networks (Jacot
et al., 2018; Lee et al., 2019; Arora et al., 2019b). In par-
ticular, it can be shown that the evolution of such suitably
initialized infinitely wide neural networks admits a closed
form solution as in Eq. (4), with a network-dependent ker-
nel function k. Focusing on a scalar neural net for ease of
notation, it is given by:

k(xi,xj) = ∇θf(xi; θ)
⊤∇θf(xj ; θ), (5)

where θ are the parameters of the network. This expression
becomes constant (in time) in the infinite width limit.

As outlined in the introduction there are many fruitful ap-
plications of the NTK framework, some of which have
benefited from transfer properties to common neural nets.
Our work builds on a recent SOTA data distillation algo-
rithm called Kernel Inducing Points (KIP) (Nguyen et al.,
2021a;b). These works introduce a meta-learning algorithm
for data distillation from an original training set D, to an
optimized source set (XS ,YS) of reduced size but similar
output on a test set. The closed form of Eq. (4) allows to
express this objective via a loss function on a target data set
(XT ,YT ) as:

LKIP(XS ,YS) = (6)

∥YT −K(XT ,XS)
⊤K(XS ,XS)

−1YS∥2.

The error of Eq. (6) can be minimized via gradient descent
on XS (and optionally YS). Starting with a smaller subset of
D, sampling a target dataset from D to simulate test points,
and backpropagating the gradients of the error with respect
to the data allows to progressively find better and better
synthetic data. Importantly, leveraging the NTK kernel
functions for kernel regression renders the datasets suitable
for deployment on actual neural nets as well.

3. Our Adv-KIP Algorithm
We depart from the KIP setting to introduce our frame-
work for dataset optimization for robust classification. Our
method is a natural extension of the KIP algorithm outlined
in the previous section, but suitably adjusted for adversari-
ally robust classification.

In particular, instead of optimizing the data (XS ,YS) with
respect to the “clean” loss of Eq. (6), we minimize

LadvKIP(XS ,YS) = (7)

∥YT −K(X̃T ,XS)
⊤K(XS ,XS)

−1YS∥2,

where, in a slight abuse of notation, X̃T = XT + δ̃, and

δ̃ = argmax
δ∈∆
L(K(X̃T ,XS)

⊤K(XS ,XS)
−1YS ,YT ).

(8)
In what follows we will take the loss L in Eq. (8) to be the
cross-entropy loss Lce as is very common in adversarial
training, but note that we have the freedom to chose any loss
function, for instance losses that balance clean and robust
accuracy (see e.g. (Zhang et al., 2019)).

We observe that this approach follows what we advertised in
Eq. (2). It adds an inner maximization to the KIP framework.
Solving this optimization now requires an inner loop that
tackles the maximization in Eq. (8). Here, we chose to
apply a similar iterative procedure as in the PGD approach of
Eq. (3). For the remainder of the paper, we restrict ourselves
to the case of an ℓ∞ adversary. However, note that our
method is easily extendable to any constraint set ∆.

Algorithm 1: Adversarial KIP
Input: A training dataset Dtrain = {X ,Y}.
Output: A new dataset Drob.

1 Sample data S = {XS ,YS} from Dtrain;
2 for i← 1 to epochs do
3 Sample data T = {XT ,YT } from Dtrain;
4 for j← 1 to pgd steps do
5 XT ← XT + α ·

sign(∇XT
Lce(KXTXS

K−1
XSXS

YS ,YT ));
6 XT ← ΠBϵ

(XT );

7 XS ← XS − λ∇XS
L(KXTXS

K−1
XSXS

YS ,YT );
8 YS ← YS − λ∇YS

L(KXTXS
K−1

XSXS
YS ,YT );

9 Drob ← (XS ,YS)

Algorithm choices: Algorithm 1 describes our generic ro-
bust training data set distillation framework. There are
several options to specialize:

Outer loss function (lines 7 and 8): We have considered
both Mean Squares Error (mse) (as in Eq. (7)) and Cross
Entropy loss (ce). Experiments on MNIST suggest ce as the
marginally better choice.

Optimization of labels: We have considered Algorithm 1
both as is (learned labels) and without line 8 (fixed labels).
We find little difference and opted to include label learning.

|XS | and |XT |: We observe in all our experiments that the
larger the source (training) data set XS , the better perfor-
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mance, though larger sets incur higher computational cost.
Sensitivity to test set size |XT | is much less pronounced.

Number of PGD-steps: We have run the algorithm with
either 1,6 or 10 PGD-steps. 1 PGD-step corresponds to
the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015). In our experiments we observe that single-step at-
tacks (FGSM) are strictly weaker than iterative ones, and
training against a higher number of PGD-steps provides
defense against FGSM attacks, as is the case for adversarial
training.

4. Results on Kernels and Wide Neural Nets
Setup: We apply Adversarial KIP for learning ro-
bust datasets on MNIST (Deng, 2012) and CIFAR-10
(Krizhevsky, 2009) against ℓ∞ adversaries of size ϵ equal
to 0.3 and 8/255, respectively. We consider several differ-
ent fully connected (FC) and convolutional (Conv) kernels,
whose expressions are available through the Neural Tangents
library (Novak et al., 2020), built on top of JAX (Bradbury
et al., 2018). In particular, for MNIST we implement fully
connected kernels of depth 3, 5 and 7 (FC3, FC5, FC7)
and a 3-layer convolutional kernel (Conv3), and fully con-
nected kernels of depth 2 and 3 for CIFAR-10. For FC
kernels data set sizes are |XS | = 30K (MNIST) and 40K
(CIFAR10) with |XT | = 10K. For Conv3, computational
resources have restricted us to runs with data sets of size
|XS | = 5K and |XT | = 1K. We set the number of PGD-
steps in the inner loop (line 4) to 10 for MNIST and 6 for
CIFAR10. We implement early stopping if robust validation
accuracy ceases to decrease. In all cases, robust performance
is measured on adversarially perturbed original images.

Robustness on Kernels: In a first set of experiments with
MNIST, we verify on the validation set that Algorithm 1
learns “robustness”. Fig. 1 shows accuracy throughout train-
ing for 3-layer kernels. We see how robust validation ac-
curacy against FGSM and PGD attacks increases with the
number of outer loop steps, essentially without compromis-
ing performance on clean data. Note that at the start of
optimization the robustness of the dataset is effectively 0%,
as expected from studies on neural nets. We also note that
the convolutional architecture achieves better performance,
despite the fact that we can only deploy it with a smaller
dataset XS of size 5K. This indicates that convolutional
architectures might be more optimizable than their fully
connected counterparts.

Table 1 tabulates clean and robust test accuracy after the
algorithm has converged or stopped on the validation set.
Here, we record accuracy for our deepest models, Conv3
and FC7 on MNIST. We see that robust performance gen-
eralizes well to the test set (where we have tested against
pgd-attacks with the same number of steps as optimized for
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Figure 1. MNIST: Training curves on kernels. Shows validation
performance as a function of training epochs. Setting: ce outer loss,
trained labels, trained against 10 pgd. Top: CONV3, |XS | = 5K,
|XT | = 1K Bottom: FC3, |XS | = 30K, |XT | = 10K.

in line 4 of Algorithm 1). Producing these robust classifiers
with kernel regression is an encouraging step, in particular
since kernel machines are not directly amenable to adver-
sarial training, and thus robustness to PGD attacks has not
been observed before.

Robust
Kernel, Dataset Size Clean FGSM PGD10

Conv3, 5k 96.31 94.82 76.62
FC7, 30k 97.21 67.04 50.34

Table 1. MNIST Kernel results: Clean/robust test accuracy (%).

Similar test results for CIFAR-10 are shown in Table 2. We
see a marked drop in both clean and robust accuracy, but
note that generally fully connected architectures are not very
suitable classifiers for the CIFAR-10 dataset. To achieve
some level of robustness with these simple architectures
gives credence to our approach.

Robust
Kernel, Dataset Size Clean FGSM PGD6

FC2, 40k 59.65 20.49 20.37
FC3, 40k 59.95 21.67 21.56

Table 2. CIFAR-10 Kernel results. Clean/robust test accuracy (%).

As a sanity check we evaluate robust accuracy on data sets
produced by the original KIP algorithm (Nguyen et al.,
2021a;b), which is designed for reduction of dataset size,
while keeping (clean) accuracy as uncompromised as possi-
ble. It could be reasonable to hypothesize that such infor-
mation compression might possibly lead to an increase of
robustness as well, but we find that this is not at all the case.
We follow up by producing a larger data set using the KIP
algorithm (of the same size as used in our adv-KIP algo-
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rithm) but find that even these large data sets do not provide
any robust accuracy, neither against FGSM nor PGD attacks
(see Appendix A.3). This indicates the clear need to adjust
the optimization objective to robust performance, as is done
in the adv-KIP algorithm.

Transfer results for wide FC networks: In a next step, we
evaluate how well datasets produced with kernel methods
in Algorithm 1 transfer to relatively wide neural nets of the
same architecture and depth as used in the adv-KIP opti-
mization. We implement multilayer fully connected neural
nets of width 1024 and perform a hyperparameter search
for the (constant) learning rate. We use the Adam optimizer
(Kingma & Ba, 2015) and test for both FGSM and PGD
accuracy, where we apply the most common PGD attacks
(PGD40 for MNIST and PGD20 for CIFAR10). Tables 3
and 4 summarize our results for MNIST and CIFAR-10.

Robust
Kernel, Dataset Size Clean FGSM PGD40

FC3, 30k 80.08 77.67 53.85
FC5, 30k 97.75 64.83 35.14
FC7, 30k 97.45 70.58 40.70

Table 3. Transferability (MNIST): Kernel to Neural Network of
same architecture, test accuracy in %.

Robust
Kernel, Dataset Size Clean FGSM PGD20

FC2, 40k 46.29 20.98 16.89
FC3, 40k 46.33 40.07 39.15

Table 4. Transferability (CIFAR-10): Kernel to Neural Network of
same architecture, test accuracy in %.

We find that robustness properties transfer well from kernels
to their corresponding neural nets, an encouraging sign. Our
sweeps also show that this holds for a rather wide range
of learning rates, evidencing a certain insensitivity to exact
parameter choices.

5. Experiments on common neural nets
We now turn our attention to commonly employed con-
volutional neural networks to study the relevance of our
datasets for robust classification using modern architectures.
In particular we report how datasets generated by FC kernels
transfer to such convolutional architectures.

Models and Training Strategies. For MNIST, we train
a simple three-layer CNN of width 64 with Max-Pooling
on several Adv-KIP distilled datasets generated by Fully-
Connected Kernels1 (FC3, FC5, FC7) with dataset size of

1We are currently unable to produce large datasets with Con-
volutional Kernels. We leave the exploration and potential perfor-
mance improvement to future work.

30K. For CIFAR-10, we train this three-layer CNN, as well
as two modern architectures, namely AlexNet (Krizhevsky
et al., 2012) and VGG11 (Simonyan & Zisserman, 2015),
in a similar manner for a dataset of size 50K produced
with an FC3 kernel. In each case |XT | = 10K and we
optimize with 10 (MNIST) or 6 (CIFAR-10) pgd-steps. We
use the Adam optimizer (Kingma & Ba, 2015) and perform
a small grid search over the fixed learning rate. We stop
training when robust validation accuracy ceases to decrease,
where we measure against PGD40 attacks for MNIST and
PGD20 attacks for CIFAR-10, as is often standard. We
report the best results across the sweep for FGSM and PGD
test accuracies.

Tables 5 and 6 summarize our findings for MNIST and
CIFAR-10. We note an astonishing ”boost” in robust test
accuracy on these convolutional networks when compared
to the fully connected kernel results in Tables 1 and 2. Very
remarkably, it seems that datasets optimized for relatively
simple kernels “transfer” their pgd-performance to networks
far removed from this ”idealistic” regime, even to more
expressive architectures.

Robust
Train method Clean FGSM PGD40

FC3 98.15 ± 0.12 98.06 ± 0.18 97.17 ± 0.10
FC5 97.96 ± 0.55 97.87 ± 0.64 97.20 ± 0.74
FC7 98.03 ± 0.16 97.91 ± 0.22 97.14 ± 0.43

Adversarial Training 99.11 97.52 95.82

Table 5. Simple-CNN test accuracies when trained on Adv-KIP
MNIST datasets optimized with FC kernels (first 3 rows). We also
show test accuracies obtained through adversarially training the
simple-CNN (without any data augmentation).

Robust
Neural Net Clean FGSM PGD20

Simple CNN 72.10 ± 0.10 67.45 ± 0.37 67.03 ± 0.24
AlexNet 68.87 ± 0.76 49.30 ± 0.69 49.06 ± 0.63
VGG11 74.88 ± 0.45 53.98 ± 9.71 53.18 ± 10.32

Table 6. Test accuracies of several convolutional architectures
trained on our Adv-KIP CIFAR-10 dataset from the FC3 kernel.

CIFAR-10 AT Baseline

Neural Net Clean FGSM PGD ℓ∞ 20 PGD ℓ2 20 AA

Simple CNN 58.07 33.94 31.49 43.89 26.18
AlexNet 44.35 30.12 24.41 16.68 18.95
VGG11 69.65 31.30 24.68 46.67 23.85

Table 7. Test accuracies for the adversarial training baseline on
CIFAR-10. AA refers to AutoAttack test suite with ℓ∞ (Sec. 6).

Figure 3 (App. A.2) shows the evolution of test accuracies
during training. We point out that while clean accuracy in-
creases rapidly, robust accuracy only starts to increase once
clean accuracy is essentially optimized. We hypothesize that
this might be due to the fact that our distillation optimizes
using the expression of the kernel at the end of training.
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Remarkably, it seems that modern networks trained with
adv-KIP datasets enjoy astonishing defense properties
against PGD-attacks in various settings, similar, or in some
cases even higher, than what truly robust models (i.e adver-
sarially trained) obtain (see Table 7). This is particularly
remarkable given we have not fine tuned or optimized our
algorithm (for instance through preprocessing or data aug-
mentation). We view this as a very promising direction for
getting robustness though data alone, even if, as we outline
in the next section, the current approach still falls short to
guarantee widespread robustness.

6. Shortcomings and discussion
We have established that data sets optimized for robustness
with the adv-KIP algorithm show excellent FGSM and PGD
test accuracies when deployed in the wild, with modern
convolutional architectures. Note that Algorithm 1 applies
PGD-optimization in steps 4, 5 and 6 and we have so far
only tested against PGD-type attacks.

When we deploy the AutoAttack suite, introduced in (Croce
& Hein, 2020; 2021), to the convolutional nets studied in
Sec. 5, we observe a sharp drop in robust test accuracy
close to zero (see App. A.4). The purpose of the AutoAt-
tack benchmark, which includes 4 different attacks, some of
which do not use gradient information, is to provide a min-
imal adaptive attack suite to uncover shortcomings in the
defense. In particular, adversarially trained networks retain
their robustness against adaptive attacks such as AutoAttack
(Croce & Hein, 2020) (see also Table 7).

We find that datasets produced with Algorithm 1 suffer
from what is commonly termed the obfuscated gradient
phenomenon (Athalye et al., 2018), a situation where model
gradients do not provide good directions for generating
successful adversarial examples. However, in the past, this
has only been observed with techniques that were either
introducing non-differentiable parts in the inference pipeline
or stochasticity to the model. Interestingly, we now observe
this phenomenon from altering the training data alone and,
even more remarkably, from data optimized using kernels.

To check whether this is a shortcoming of our optimization
method or a more general phenomenon related to ”robusti-
fied” data sets, we analyze the only dataset we are aware of
that provides some notable robustness via standard training
(Ilyas et al., 2019) (”Robust Feature Dataset” RFD). Recall
that RFD is generated by traversing the representation layer
of an adversarially trained (with PGD) neural network, and
is thus believed to provide a general sense of robustness
(Ilyas et al., 2019). We train the same networks as in Sec-
tion 5 to ensure a fair comparison with our methods. Note
that the publicly available RFD is derived from an adversar-
ially trained network trained against an ℓ2 adversary, so we

include such an ℓ2 evaluation in our results. Table 8 shows
the test accuracies.

CIFAR-10 Accuracy with Robust Feature dataset (Ilyas et al., 2019)

Neural Net Clean PGD ℓ∞ 20 PGD ℓ2 20 AA ℓ2

Simple CNN 65.25 ± 0.44 60.73 ± 0.24 63.73 ± 0.40 0.47 ± 0.11
AlexNet 57.07 ± 1.25 25.12 ± 5.46 26.58 ± 4.80 0.62 ± 0.25
VGG11 68.41 ± 1.95 42.92 ± 11.23 47.49 ± 6.12 6.94 ± 2.47

Table 8. Test accuracies for various models trained on the publicly-
available 50K “robust feature” dataset (RFD) for CIFAR-10.

We find that neural networks trained with the RFD also
suffer from the obfuscated gradient phenomenon, as they
record high robustness against PGD attacks, but almost 0%
against the adaptive suite of AutoAttack. This is a perhaps
surprising finding, since the dataset was generated using
adversarially trained networks that guarantee a wide sense
of robustness. It could be an indication that achieving true
robustness from data alone might be a challenging task when
decoupled from the training algorithm. Better understanding
how adversarial training with PGD techniques alone yields
models that achieve broad robustness is key for improving
the final robustness of data-centered approaches, like ours.

To further elucidate this mystery, we analyze both gradients
and loss values during neural net training on our data set and
the RFD dataset of (Ilyas et al., 2019). Figure 2 shows the
loss value and the gradient magnitude of the model through-
out training, where we further decomposed the values into
2 parts; one coming from correctly classified (clean) images
and one from misclassified ones. We observe that for both
datasets the loss increases on the misclassified examples,
concurrently with an increase of the average norm of the
gradient. In contrast, for correctly classified examples we
see both quantities progressively vanish. This behavior, to-
gether with the false sense of robustness that AutoAttack
evaluation reveals, suggests that the model learns to shatter
the gradients locally in the neighborhood of correctly classi-
fied examples, causing simple gradient-based attacks to fail.
We find that during our distillation procedure this is indeed
the case (Figure 4 in App. A.5), and the data optimization
effectively shrinks the gradients of the model.

This analysis suggests several ideas on how to improve the
distillation procedure. Penalizing small gradient norm in
Algorithm 1 could prevent the data to settle for these ill-
behaved representations, while modifying the inner loop
objective with variations of different attacks (like the ones
considered in AutoAttack) should provide a broader defense.
A mixture of clean and robust loss for the outer loop of Algo-
rithm 1, as in (Chen et al., 2021), could also be a promising
direction, that could help prevent differing behaviors on mis-
classified and correct data. Based on our observations on the
dataset of (Ilyas et al., 2019), we expect our insights from
this work to be relevant for other data-based approaches for
robust classification.
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Figure 2. Loss and Gradient curves on test data during training of simple-CNN on datasets from adv-KIP and the RFD method of (Ilyas
et al., 2019).
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A. Appendix
A.1. Experimental Details

For all models trained on our Adv-KIP dataset and the RFD dataset (Ilyas et al., 2019), we use the Adam optimizer to
perform a small grid search for the learning rate, and pick the best model with respect to the PGD test accuracy.

On MNIST, we train fully connected networks of width 1024 in Sec. 4, and the simple-CNN network in Sec. 5. FC networks
are trained for 2,000 epochs and the simple-CNN network for 800 epochs.

On CIFAR, we again train fully connected networks of width 1024 in Sec. 4, and the simple-CNN, AlexNet and VGG11
networks in Sec. 5. We train all these networks for 2,000 epochs.

For the Adversarial Training baseline, on MNIST, we adopt the setting of (Madry et al., 2018), that is we train the simple-
CNN network with the Adam optimizer towards convergence, and set the initial learning rate to 1e-4. In (Madry et al., 2018)
the number of epochs was set to 100, while we use 200.

On CIFAR, since we do not use data augmentation, we train with both SGD and Adam for 200 epochs for each model, and
pick the better one in terms of robustness. For the simple-CNN and AlexNet, the Adam optimizer is better. For VGG11, we
use the SGD optimizer, with initial learning rate 1e-1, decay rate of 10 at the 100-th and the 150-th epoch, and with weight
decay 5e-4.

Simple-CNN architecture: We use a simple convolutional architecture with three convolutional layers and a linear layer.
Each convolutional layer computes a convolution with a 3×3 kernel, followed by a ReLU and a max-pooling layer (of kernel
size 2×2 and stride 2). The linear layer is fully-connected with ten outputs. All convolutional layers have a fixed width of
64.

Description of Evaluation Metrics: For all the adversarial attack related measurements including FGSM, ℓ∞ PGD and ℓ2
PGD, we adopt the cleverhans code implementation (Papernot et al., 2018). For ℓ∞ PGD, on MNIST we use step size 0.1
and radius 0.3, while on CIFAR we use step size 2/255 and radius 8/255. For ℓ2 PGD on CIFAR, we use step size 15/255
and radius 128/255.

For AutoAttack, we adopt the open-source original implementation (Croce & Hein, 2020; 2021). For MNIST the radius is
0.3, and for CIFAR the radius is 8/255.

A.2. Evolution of accuracy during training for Simple ConvNet

0 250 500 750 1000 1250 1500 1750 2000
# Epochs

0

20

40

60

80

100

Va
lu

e

Accuracy Curve, ConvNet, Adv-KIP Dataset

Training Acc
Test Acc
FGSM Test Acc
PGD-20 Test Acc

Figure 3. Evolution of accuracies during training with our 50K Adv-KIP dataset for CIFAR-10 on ConvNet.

A.3. KIP baseline

The original KIP algorithm (Nguyen et al., 2021a;b) is designed to reduce the size of the training set, while keeping the
induced accuracy close to the original one. To check for robustness, we reproduce KIP datasets (Table 9), and find that
effectively the robustness of the datasets remains close to 0, as is the case for the original datasets.

We also evaluated FC{3, 5, 7} and Conv{3, 5, 7} kernels (together with a Convolutional Kernel with 1 hidden layer followed
by global average-pooling) on datasets (with 50 images per class) released by (Nguyen et al., 2021b) and we found their
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Kernel, Dataset Size Clean FGSM

MNIST FC3, 5k 97.51 ± 0.03 0.00 ± 0.00
FC7, 30k 98.23 ± 0.06 0.00 ± 0.00

CIFAR-10
FC3, 1k 48.45 ± 0.34 2.50 ± 0.21
FC3, 5k 52.48 ± 0.23 0.22 ± 0.05

FC3, 10k 54.04 ± 0.41 0.10 ± 0.04

Table 9. KIP baseline datasets (reproduced). Setting: No preprocessing/data augmentation, target size 1k images, learned labels, mse loss,
lr=1e-3, datasets were optimized for 1000 epochs, with potential early stopping if validation accuracy did not increase across 200 epochs.
Random seed denotes different draws of the initial support images.

FGSM robustness to be 0% in all cases. URLs for the datasets we considered: 1st and 2nd.

A.4. AutoAttack results on adv-KIP datasets

Here we provide test accuracies for alternative attacks on networks trained with our adv-KIP optimized datasets.

MNIST: For our simple-CNN, the test accuracy under AutoAttack for all three training methods (FC3, FC5, FC7, setting
as in Table 5) becomes 0.00± 0.00%, while it retains 88.77% accuracy under AA attack when adversarially trained.

CIFAR-10: Table 10 shows AA test accuracy for the setting of Table 6. We also show robust test accuracy against ℓ2
PGD20 attack to show that our PGD robustness holds to even stronger extend for ℓ2 (even though adv-KIP optimizes against
ℓ∞ in the inner loop).

Alternative attacks on adv-KIP CIFAR-10 dataset
Neural Net AA PGD ℓ2 20

Simple CNN 0.00 ± 0.00 70.79 ± 0.07
AlexNet 0.89 ± 1.41 50.07 ± 1.42
VGG11 0.27 ± 0.18 59.60 ± 6.71

Table 10. Test accuracies from alternative attacks of several convolutional architectures when trained on our Adv-KIP CIFAR-10 dataset
from FC3 kernel.

A.5. Kernel gradient norms
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Figure 4. The average gradient norm of an FC3 kernel on a validation set during the distillation procedure of Algorithm 1. We see that the
training data evolves to cause gradient shrinkage of the model. Setting: CIFAR-10, FC3, |XS | = 40k, |XT | = 10k, 10 PGD steps, cross
entropy loss in outer loop.

A.6. Visualization of advKIP distilled images

gs://kip-datasets/kip/mnist/ConvNet_ssize500_nozca_l_noaug_ckpt1000.npz
gs://kip-datasets/kip/mnist/ConvNet_ssize500_nozca_l_noaug_ckpt50000.npz
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Figure 5. MNIST distilled images with trained labels from an FC7 kernel
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Figure 6. CIFAR-10 distilled images with trained labels from an FC3 kernel


