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Abstract
Graph neural networks (GNNs) have become a
popular approach for processing non-uniformly
structured data in recent years. These models im-
plement permutation-equivariant functions: their
output does not depend on the order of the graph.
Although reordering the graph does not affect
model output, it is widely recognised that it may
reduce inference latency. Less widely noted, how-
ever, is the observation that it is also possible to
reorder the input graph to increase latency, repre-
senting a possible security (availability) vulnera-
bility. Reordering attacks are difficult to mitigate,
as finding an efficient processing order for an ar-
bitrary graph is challenging, yet discovering an in-
efficient order is practically trivial in many cases:
random shuffling is often sufficient. We focus on
point cloud GNNs, which we find are especially
susceptible to reordering attacks, and which may
be deployed in real-time, safety-critical applica-
tions such as autonomous vehicles. We propose a
lightweight reordering mechanism for spatial data,
which can be used to mitigate reordering attacks
in this special case. This mechanism is effective
in defending against the slowdowns from shuf-
fling, which we find for point cloud models can
increase message propagation latency by 7.1×,
with 81% increases to end-to-end latency with
PosPool models at 1M points.

1. Introduction
In recent years graph neural networks (GNNs) have demon-
strated excellent performance in applications ranging from
drug discovery (Wu et al., 2017) to code analysis (Allama-
nis et al., 2017). Now that we begin to see GNNs being
deployed more widely, practical concerns such as efficiency
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and security are paramount. These models may be deployed
in safety-critical applications such as point cloud processing
in autonomous vehicles, where even the smallest processing
delay has safety implications. To attest the safety of such
deployments, this paper asks the following question: can
we attack the latency of GNN models?

There is a rich body of literature investigating attacks on
neural networks (Szegedy et al., 2013; Shokri et al., 2017).
An unpopular—but still critical—class of attacks are those
that hinder the availability of a model (Shumailov et al.,
2020; 2021; Hong et al., 2020). In this work, we attempt
to increase a model’s inference latency without necessar-
ily attacking the model’s confidentiality or integrity. By
slowing inference, we can cause additional expense to the
model deployment and, if the model is used for real-time
applications, potential safety concerns.

GNNs are typically formulated using the message-passing
paradigm, in which nodes send messages to each other
and aggregate their received messages using a permutation-
invariant function. The process of propagating messages
around the graph is a sparse operation, which is typically
memory-bound. It is necessary to minimize memory la-
tency when processing the graph to reduce the propagation
latency. One way to achieve this is to reorder the graph.
Although there is research into accelerating graph process-
ing by reordering the graph, it has not been noted explicitly
that adversaries could (trivially) reorder the graph to slow-
down processing. This is the key observation of our work.
Defending against these reordering attacks is challenging:
we typically only use a graph once when running inference,
hence the cost of reordering as a defence must be cheap
enough to be break-even in end-to-end latency. In this work,
we propose a data reordering technique for point cloud data
that is fast enough to be applied at inference time and pro-
vide robustness to reordering attacks. In summary, our work
makes the following contributions:

1. We introduce data reordering attacks as an attack vector
for GNNs. Unlike other attacks previously described
on GNNs, this attack does not affect model integrity
or confidentiality, but targets availability by affecting
inference latency.

2. We show that reordering attacks are especially effective
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for point cloud data, with increases of 7.1× on message
propagation latency. We observe increases to end-to-
end model inference latency of 81%.

3. We propose a method for data reordering that leverages
space-filling curves. Our approach is cheap enough
to be applied at inference time as a defence against
reordering attacks.

2. Background and Related Work
2.1. Graph Neural Networks

GNNs are usually described using the message-passing
paradigm (Gilmer et al., 2017). In this paradigm, GNN lay-
ers define a message function that defines the message sent
from node u to node v, an aggregation function that a node
uses to combine all of its received messages, and an update
function that a node applies to its previous representation
and the aggregated messages to obtain an updated repre-
sentation. Mathematically, this takes the form of: h(i)

l+1 =

Update
(
h
(i)
l ,Aggregatej∈N (i)

(
Message

(
h
(i)
l ,h

(j)
l

)))
,

where h
(i)
l is the representation of node i at layer l, and

N (i) defines the neighbourhood of node i.

Permutation Equivariance GNNs are permutation equiv-
ariant: therefore, for all permutation matrices P ∈ RN×N

we have F (PAP⊤,PX) = PF (A,X), where A is an ad-
jacency matrix for the graph and X is the matrix of node
features. This property is why reordering attacks do not
change model output: any labelling of a graph should yield
an equivalent output.

2.1.1. POINT CLOUD GNNS

Point clouds are sets of points, typically in 3D space. There
is no canonical ordering for a point cloud. PointNet (Qi
et al., 2017a) is an early deep learning-based approach for
operating on point clouds. The architecture consists of
shared multi-layer perceptrons (MLPs) that operate on each
point in parallel, followed by a global pooling operation
to share information across the cloud. Recent GNN-based
approaches build on PointNet by considering local aggrega-
tion: graphs are built from the point cloud using a grouping
operation, such as radius or k-Nearest Neighbours (kNN).

Recent work by Liu et al. (2020), Li et al. (2021), and Tailor
et al. (2021) demonstrate how to build point cloud layers that
can be efficiently implemented. We focus on these layers
in this work as they are orders of magnitude more efficient
in practice (Tailor et al., 2021), enabling us to assess their
performance at high point counts. In our experiments on
point clouds, we consider SpMM as Tailor et al. (2021)
demonstrated how to use this primitive to build point cloud
GNNs. In addition, we consider PosPool, as proposed by

Liu et al. (2020): h
(i)
l+1 = 1

|N (i)|
∑

j∈N (i) ∆pij ⊙ h
(j)
l ,

where ∆pij is the vector (pi − pj) repeated to match the
length of h(j)

l , and ⊙ is the Hadamard product. We note
that point cloud GNNs may not be strictly permutation
equivariant due to implementation details such as sampling
operations; however, PosPool, as specified by the reference
implementation, retains this property. Further discussion
and experimental verification is supplied in Appendix A.2.

2.2. Attacks on Graph Neural Networks

In the wider literature, adversarial examples (Biggio et al.,
2013; Szegedy et al., 2013), data poisoning attacks (Nel-
son et al., 2008; Jagielski et al., 2018), membership infer-
ence (Shokri et al., 2017; Salem et al., 2018), and training
data extraction (Carlini et al., 2020) have been explored.
With the rise of GNNs, there has been increased interest in
building attacks for this class of models (Jin et al., 2020; Xu
et al., 2019a; Geisler et al., 2021). Most attacks investigate
how to make changes to the graph topology or the input
features to either poison the data at training time or cause
a misclassification at inference time. A growing body of
literature aims to improve GNN model robustness to these
attacks (Zhang & Zitnik, 2020; Tang et al., 2020; Entezari
et al., 2020; Zhu et al., 2019). In addition to works targeting
more general GNNs, there are works specifically targeting
point cloud GNNs. Approaches including critical points re-
moval (Qi et al., 2017a), point perturbations and introducing
new points (Xiang et al., 2018; Zhao et al., 2020; Liu et al.,
2019; Lang et al., 2020).

Unlike previous works attacking GNNs, our work does not
attack model integrity or confidentiality: instead, we attack
model availability i.e. preventing the timely and dependable
access to information. It has been shown by Shumailov
et al. (2020) that it is possible to find examples for language
models that cause inference to increase by up to 3 orders
of magnitude. Like this work, we demonstrate that provid-
ing adversarially modified input examples can be used to
increase inference latency significantly. However, unlike
Shumailov et al. (2020), we can find adversarial examples
trivially by randomly permuting the graph.

2.3. Space Filling Curves

Space-filling curves (SFC) are defined as continuous func-
tions with domain [0, 1] and range that completely fills a
d-dimensional unit hypercube. It is common to consider dis-
crete variants of these curves: i.e. mappings using N0 rather
than R. We define a space-filling curve C as a bijective map-
ping C : Nd

0 → N0. We focus on Morton curves (Morton,
1966) due to their efficient implementation.

There is limited prior use of SFCs in the context of deep
learning for point clouds. MortonNet (Thabet et al., 2019)
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uses Morton curve orderings for self-supervised training.
PointSCNet (Chen et al., 2022) uses the Morton curve to
sample points, in conjunction with Farthest Point Sampling
(FPS). Our work does not consider SFCs to improve mod-
elling, but to defend against adversarial reordering attacks.

3. Methodology
3.1. Threat Model

In this work, we assume an adversary with the ability to
provide an input graph to the target system, which then
processes the input with a single CPU or GPU. We do not
assume that the adversary can tamper with the system per-
forming inference. However, we make no assumptions re-
garding the adversary’s ability to tamper with pre-processing
stages prior to inference. We also assume that the adversary
has no access to the model parameters.

Our threat model cleanly captures both on-device inference
and cloud inference scenarios. We argue that it also captures
setups seen in autonomous vehicles. Our assumptions are
weaker than those often made for adversarial attacks on
point cloud models: we do not need to perturb any points
and, as we demonstrate in the evaluation, we do not require
a large time or compute budget to run our attack.

3.2. Attack Methods

We now present the data reordering attack against GNNs.
We assume that we are given a graph G with node features
X ∈ RN×F where N is the number of nodes in the graph.
Further, we may be given an adjacency matrix A ∈ RN×N .
Note that the adjacency matrix is not usually provided to
the network in the context of point cloud data and is instead
constructed dynamically during inference using the node
features, which correspond to positional data in this case.

The adversary’s objective is to slow inference. By destroy-
ing any underlying structure in the adjacency matrix, the
adversary can cause the sparse operations to proceed signifi-
cantly more slowly than before as optimizations made by the
underlying hardware to hide memory latency become less
effective. With high probability, the adversary can achieve
this objective by generating a random permutation corre-
sponding to {0, . . . , N − 1} and calculating a reordered
node feature matrix X̃. If present, the adjacency matrix can
be similarly reordered to obtain Ã.

More Sophisticated Attacks Although we focus on ran-
dom shuffling in this paper, we acknowledge that there are
more sophisticated approaches that can further increase la-
tency, at an increased cost to the attacker. These approaches
could be derived by considering the myriad of reordering
approaches in the literature (Balaji & Lucia, 2018), and
inverting the objective: rather than finding an optimal re-
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Figure 1. Visualization of how using an SFC to reorder points
yields more hardware-friendly adjacency matrices after running a
radius query. On the left, points are ordered randomly; we observe
that there is no pattern to the corresponding adjacency matrix. On
the right, we see that relabelling points according to the SFC yields
a matrix that is clustered on the diagonal. This representation
results in better locality, resulting in noticeable speedups.

ordering, instead search for an unfavourable ordering.

3.3. Mitigating Ordering Attacks for Spatial Data

We now describe a defence measure for GNNs operating
on spatial data, such as point clouds. Graph reordering
is a challenging problem (Balaji & Lucia, 2018), and we
leave solutions for the general case to future work; further
discussion is provided in Appendix A.6. However, in the
case of spatial data, we can apply SFCs to find an ordering
for the nodes that preserves locality and therefore ensures
that favourable structure is retained in the adjacency matrix.

Our method for spatial data ordering uses the following
steps: (1) Discretize the space into a voxel grid. (2) Calcu-
late the voxel (i, j, k) for each point. (3) Use the Morton
curve to calculate a curve value c = C(i, j, k) for each point.
(4) Sort the input points X̃ by the SFC values c to obtain X̄.
If there are any features alongside the point positions, such
as colour or intensity, they should also be sorted.

After performing these steps, inference can proceed as usual
with X̄. This approach is simple and hardware efficient:
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calculating the Morton value c requires simple bit manip-
ulation operations. Unlike general reordering approaches,
we have not needed to construct the graph using a group-
ing query, followed by an analysis on the resulting graph,
which adds significant overhead (Appendix A.6). Instead,
we are taking advantage of the properties of the space-filling
curve—namely, the preservation of spatial locality when
translating from 3D to 1D.

Figure 1 provides a visualization of our approach in 2D.
At the top, we see points that have been randomly ordered:
this is the scenario that an adversary could induce by using
the attack described in the previous section. We see that
the corresponding adjacency matrix has no clear pattern,
which will result in poor locality, and, therefore, higher
inference latency. By contrast, the bottom figure shows
the result of labelling points according to their position
on the SFC. In the adjacency matrix, we can see that the
entries are clustered on the diagonals, with a small number
of well-defined blocks off the diagonal, corresponding to
discontinuities in the Morton curve. This ordering is far
more amenable to efficient processing.

4. Evaluation
We will now show that point cloud GNNs are susceptible
to shuffling attacks, and demonstrate the efficacy of the
proposed SFC defence mechanism. Due to space limitations,
we leave analysis for other data modalities to Appendix A.5.
We run all experiments using an Intel i9-7900X for CPU,
and an NVIDIA RTX8000 for GPU experiments. Further
experiment details can be found in Appendix A.1.

4.1. Attacking Point Cloud Models

We will begin by assessing the risk to models operating on
point cloud data. We will focus on the S3DIS dataset in
this section as it is the largest popular dataset we can use
without needing to downsample. Our evaluation will also
include synthetic data to enable us to assess the performance
of different operations at different scales.

We find that point cloud models—which have graph topolo-
gies with highly uniform degree distribution, and high mean
node degree—are especially susceptible to reordering at-
tacks. Even when we consider end-to-end model latency,
we find that reordering attacks can induce noticeable slow-
downs. We acknowledge that model deployers may process
point clouds by sampling minibatches from the cloud, rather
than processing the entire cloud at once. Our attack is viable
even in this scenario: slowdown is induced at cloud sizes as
small as 214, well within the sizes used by the literature (Hu
et al., 2020). In addition, using larger minibatches is prefer-
able as it often improves model performance (Wang et al.,
2019; Xu et al., 2021; Hu et al., 2020).
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Figure 2. Attack latency, consisting of the time to calculate a new
random permutation, followed by shuffling the point cloud.
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Figure 3. Time to perform SFC defence against shuffled points.
Includes calculating SFC values, and sorting the feature matrix.

4.1.1. COST OF REORDERING POINTS

To provide the reader with intuition on the total cost to an
adversary to execute this attack, we provide latency figures
for the time it takes an adversary to generate a random
permutation and then apply it to the point cloud. Figure 2
illustrates the cost of this procedure for different problem
sizes. We observe that this attack can be performed in time
budgets of around 1ms, even for problem sizes reaching
220. We consider both raw 3D point, and points with 4
additional features, such as colour or intensity; we find
that adding additional features has little impact on attack
latency. Even this naive and unoptimized attack can be run
in real-time: this attack latency can easily keep up with
the rate points are generated by high-end LIDAR sensors,
which is on the order of 1 million points per second (Vel).
In comparison to other adversarial attacks, which require
calculating perturbations to the input point cloud, this attack
is far less computationally expensive.

4.1.2. COST OF MOUNTING A SPACE-FILLING CURVE
DEFENCE

Now that we have demonstrated that reordering attacks can
be executed efficiently against point clouds, we now show
that the cost of our proposed mitigation is sufficiently cheap
to enable a robust defence without excessive overheads. We
illustrate the cost of the defence in Figure 3. This procedure
includes the cost of calculating the Morton curve value for
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Figure 4. PosPool propagation latency when considering randomly generated uniform point clouds, with an associated feature dimension
of 128 on CPU; extended results in Appendix A.3. y-axis is time in seconds.

each point, performing an arg-sort on the points by curve
value, and then applying this new ordering to the model
input. Unsurprisingly, this defence is more expensive than
the shuffling attack, but, as we shall see in the next section,
it is still sufficiently inexpensive that it is worth applying
to untrusted data. We note that the cost of sorting may
depend on the underlying data distribution: we performed
these synthetic experiments with data generated from both
the Normal and Uniform distributions. This represents a
worst case with completely unsorted data: if the input data
is partially sorted, then the cost of sorting may be reduced.

4.1.3. IMPACT ON MESSAGE PROPAGATION TIME

We now look at the impact of reordering attacks on individ-
ual point cloud layers. In Figure 4, we provide the message
propagation latency for PosPool on point cloud sizes rang-
ing from 210 to 220 on CPU; figures for GPU and SpMM
can be found in the Appendix. We consider constructing
an adjacency matrix using kNN, with k ∈ {16, 32, 64} us-
ing the point positions, and assume that each point has a
feature vector of length F associated with it. This enables
us to precisely assess the impact of neighbourhood size
and feature dimensionality on message propagation latency.
The points are generated using the uniform distribution; we
consider using the unprocessed ordering and applying the
Morton defence to the points. On CPU, we observe that
the unsorted ordering is slower, even at low point counts,
with large increases to latency occurring at ≥ 214. Simi-
lar results are observed on GPU, with significant increases
once the number of points exceeds 215. We also indicate the
cost of implementing the SFC defence plus the propagation
cost when using the sorted ordering; this corresponds to the
worst-case cost of the defence, assuming it cannot be amor-
tised across multiple layers. Even in this worst case, we
observe that 215 points often reaches the break-even point.

In Appendix A.3, we supply extended results where we
consider feature dimensions in {64, 128, 256}. Increasing
the feature dimension does not significantly affect the slow-

down induced by reordering data. However, we find that
increasing the number of neighbours per node (k) increases
the slowdown ratio. For dimension 128, and point cloud
size of 220, the slowdown ratio is 2.95× / 3.91× for k = 16;
this increases to 4.48× / 7.07× for k = 64 on CPU / GPU.

We now proceed to investigate real-world data distributions.
Table 1 provides the latency of processing point clouds
from the S3DIS dataset on CPU; GPU numbers are in Ap-
pendix A.3. We consider three setups: firstly, when the data
is processed using the ordering provided in the raw dataset;
secondly, when the data is randomly shuffled, and thirdly
with the data sorted using our SFC defence. As before,
we use kNN to allow us to carefully control the number of
neighbours each point has. We observe that the S3DIS data
is also vulnerable to shuffling attack, as the unprocessed
point clouds in the dataset are already spatially clustered:
this is due to the pre-processing procedure used to gener-
ate the clouds (Armeni et al., 2017). Because this data is
spatially clustered, shuffling the raw data causes significant
increases in latency, with slowdown ratios of 2.6 / 3.2×
to 4.0 / 6.2× on CPU / GPU. We also report the latency
when the point clouds are sorted using our SFC defence,
and observe that this ordering is better than the original
ordering. This adds further evidence that our SFC defence
is an effective method to achieve robustness to reordering
attacks, even on real-world data distributions.

4.1.4. END-TO-END IMPACT ON POINT CLOUD
MODELS

We now assess the impact of reordering attacks on end-to-
end inference rather than individual layers. We implement
the PosPool models described by Liu et al. (2020) and assess
both classification and segmentation; for CPU experiments
we halve the model hidden dimensions. Figure 5 plots
the inference latency for a PosPool classifier as the point
count varies from 210 to 220; results for the segmentation
variant can be found in Appendix A.4. For CPU, we observe
increases in latency of 13.8% at 214, reaching 80.6% at 220.
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Table 1. Cost of message propagation for a PosPool layer over point clouds taken from the S3DIS dataset on CPU; GPU results in
Appendix A.3. Reordering attacks are effective on real data.

Feat Dim k Natural Order Shuffled Order Morton Order Shuffled Ratio Morton Ratio

64
16 5.77 ± 0.02 16.22 ± 0.01 5.62 ± 0.02 2.81× 0.97×
32 9.11 ± 0.02 32.89 ± 0.05 8.68 ± 0.02 3.61× 0.95×
64 15.83 ± 0.02 63.56 ± 0.09 14.68 ± 0.01 4.01× 0.92×

128
16 11.26 ± 0.02 28.92 ± 0.04 10.87 ± 0.02 2.57× 0.97×
32 19.10 ± 0.02 60.56 ± 0.06 17.76 ± 0.02 3.17× 0.93×
64 33.90 ± 0.02 116.70 ± 0.13 30.44 ± 0.02 3.44× 0.90×

256
16 21.03 ± 0.02 53.74 ± 0.023 20.36 ± 0.02 2.56× 0.97×
32 38.61 ± 0.03 113.19 ± 0.04 34.87 ± 0.03 2.93× 0.90×
64 86.44 ± 0.05 217.96 ± 0.06 71.51 ± 0.05 2.52× 0.83×
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Figure 5. End-to-end latency for a PosPool classifier using point
clouds from a Uniform distribution. Both logarithmic (left) and
linear (right) y-axes are provided..

Table 2. Total latency for running a PosPool segmentation model
over point clouds in the S3DIS dataset. Bad input data and sample
ordering can induce major slowdowns on real data.

Data
Ordering

Sample
Ordering

Initial
Defence
Cost?

CPU / s GPU / s

Shuffled Unsorted - 231.2 ± 0.3 35.36 ± 0.01
Original Unsorted - 143.8 ± 0.3 25.37 ± 0.01
Original Morton - 134.6 ± 0.2 24.47 ± 0.01
Morton Morton ✓ 131.7 ± 0.2 24.96 ± 0.01
Morton Morton ✗ 128.2 ± 0.2 23.74 ± 0.02

As expected from the experiments in the previous section,
for GPU we see no significant differences in latency between
unsorted and sorted data until 216 points, where we observe
an 8.0% increase in latency. This ratio quickly rises, with the
increase at 220 being 53.9%. When we include the cost of
the defence, the increases are 4.5% and 46.3%, respectively.

Results on S3DIS We consider applying the full PosPool
segmentation model to complete point clouds from S3DIS.
The results are provided in Table 2. We observe that shuf-
fling attacks are highly effective, causing a 80.4% / 48.9%
increase in total CPU / GPU latency. We also observe that

the Morton ordering is superior to the original data ordering.
Once again, applying our defence mechanism can provide
robustness to unfavourable input data distributions.

Naive Point Sampling Can Induce Slowdowns The
model deployer may accidentally shuffle the graph. This
may occur during the sampling step: point cloud models
may downsample the point cloud. For example, the se-
lected point indices are returned unsorted with random or
furthest point sampling when using a naive implementation.
In the case of grid subsampling, as used by PosPool, the
sub-sampled voxel ordering may provide sub-optimal spa-
tial clustering. The effect of naive sampling is illustrated
in Table 2 with the original data ordering: we observe a
noticeable 6.9% / 3.7% CPU / GPU slowdown if the sam-
pled points are not post-processed to ensure that they are
well-ordered (2nd / 3rd row).

5. Conclusion
The take-home message for practitioners is that data reorder-
ing attacks are trivial to perform, and can induce slowdowns
on GNN models. Care must be taken when exposing GNNs
to untrusted data. Our results demonstrate that these at-
tacks are especially problematic for point cloud data: we
observe attacks are viable from as few as 214 points. We
propose a defence mechanism for point cloud data, but find-
ing a general-purpose solution which reaches the end-to-end
break-even threshold on one-shot inference is a challeng-
ing problem. We acknowledge that our work has limita-
tions: firstly, this attack is only viable when the graph is
big enough. Secondly, we have focused on efficient GNN
models in this paper; the impact on GNNs which need to ex-
plicitly calculate a message per-edge (e.g. GAT (Veličković
et al., 2017), PNA (Corso et al., 2020)) will be considerably
smaller, as the sparse operations are a smaller percentage of
total runtime. Future work could assess more sophisticated
attacks: random shuffling is an effective baseline, but is
likely far from optimal.
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P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Davis, T. A. and Hu, Y. The university of florida
sparse matrix collection. ACM Trans. Math. Softw.,
38(1), dec 2011. ISSN 0098-3500. doi: 10.1145/
2049662.2049663. URL https://doi.org/10.
1145/2049662.2049663.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T.,
Perez, L., Nunkesser, M., Lee, S., Guo, X., Wiltshire, B.,
et al. Eta prediction with graph neural networks in google
maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 3767–3776, 2021.

Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., and Pa-
palexakis, E. E. All You Need Is Low (Rank): Defending
Against Adversarial Attacks on Graphs, pp. 169–177.
Association for Computing Machinery, New York, NY,
USA, 2020. ISBN 9781450368223. URL https:
//doi.org/10.1145/3336191.3371789.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and
Yin, D. Graph neural networks for social recommenda-
tion, 2019. URL https://arxiv.org/abs/1902.
07243.

Fey, M. and Lenssen, J. E. Fast Graph Rep-
resentation Learning with PyTorch Geometric, 5
2019. URL https://github.com/pyg-team/
pytorch_geometric.
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A. Appendix
A.1. Experimental Details

Datasets We use Suitesparse (Davis & Hu, 2011) and SNAP (Leskovec & Krevl, 2014) datasets during our evaluation,
along with S3DIS (Armeni et al., 2017). All of these datasets are freely available for academic use like this work.

Kernels We use highly optimised kernel implementations wherever possible. For SpMM, we use the Intel MKL (mkl)
implementation on CPU. On GPU, we use an implementation based on Yang et al. (2018) provided by PyTorch Geomet-
ric (Fey & Lenssen, 2019). For PosPool, we had to write our own kernels. For CPU we used TVM (Chen et al., 2018) to
implement optimised kernels; our baseline SpMM kernels built in TVM provided similar performance to Intel MKL. For
GPU, we adapted the SpMM implementation provided by PyTorch Geometric, which is permitted under its MIT license.

PosPool Implementation We implemented our model using PyTorch, based on the specification provided in (Liu et al.,
2020). To enable scaling to larger clouds, we adapt the methods used for grouping operations, such as those needed for
constructing the graph, or upsampling. On CPU, we use nanoflann (Blanco & Rai, 2014) for fast kd-tree implementation of
the required operations. On GPU, we use a brute-force implementation below 10,000 points, and FRNN (Xue, 2020) above
this threshold. On CPU, we halve the model dimension throughout: i.e. instead of an initial hidden dimension of 144, we
use 72.

We use the same preprocessing routines as the reference model. We adapt the radius and downsampling grid parameters
relative to the reference model. We acknowledge that more significant changes may be made to the model in practice as the
point cloud size changes, depending on precise details regarding the data distribution, such as density. However, the broad
trends we observe regarding increases to latency on unsorted data will remain.

A.2. Permutation Equivariance in Point Cloud GNNs

Point cloud GNNs may not be strictly permutation equivariant depending on implementation choices. However, PosPool, as
specified by the reference implementation, is strictly permutation equivariant. The grouping operation used by both our
implementation and the reference is kNN, bounded by a fixed radius: i.e. any neighbours in the top-k which are outside of
the specified radius are discarded. This is deterministic. Similarly, the subsampling operation used is voxel downsampling:
in each voxel, the mean position of points falling into the voxel is returned. This is also deterministic. We verified this
property for PosPool by assessing classification accuracy on ModelNet40 (Wu et al., 2015) while shuffling points. We
obtained the exact same 92.301% test accuracy and 1.4699 test loss across 50 epochs of testing with different permutations,
confirming that PosPool provides deterministic behaviour regardless of the input point permutation.

PointNet++ (Qi et al., 2017b), however, is not permutation equivariant (or deterministic), due to its choice of Furthest Point
Sampling (FPS). Across 50 epochs using different permutations of the test set, and different random seeds for the FPS
sampler, we observed test accuracy to be 91.96 ± 0.19%, with minimum 91.61% and maximum 92.42%. As expected, there
is a small difference between runs due to the loss of equivariance; however, the difference is sufficiently small that it can be
neglected in many cases. We do not use PointNet++ in this paper regardless.

A.3. Extended Results on Propagation Latency

In Table 3 we provide details for message propagation latency for a PosPool layer using S3DIS data on GPU. In Figure 6 we
provide extended results for message propagation latency for a PosPool layer on synthetic data. In Figure 7 we provide
results for SpMM latency on synthetic data. Figure 8 and Figure 9 provide the analogous results for PosPool and SpMM
respectively on GPU.

The trends are broadly consistent across devices and kernels. Between 214 and 216 we tend to see a large increase in the
unsorted latency, relative to the Morton sorted points. The increase in latency can be substantial, with increases exceeding
5× frequently occurring.

A.4. Extended End-To-End Model Results

Figure 10 provides end-to-end latency results on a PosPool segmentation model. Trends are similar to those seen for
classification models, albeit less severe as a percentage of total model runtime because the upsampling layers account for a
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Figure 6. Extended PosPool propagation latency results for synthetic data on CPU.
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Figure 7. SpMM propagation latency results for synthetic data on CPU.
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Figure 8. PosPool propagation latency results for synthetic data on GPU.
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Figure 9. SpMM propagation latency results for synthetic data on GPU.



Availability Attacks on Graph Neural Networks

Table 3. Total cost of message propagation for a PosPool layer over unmodified point clouds taken from the S3DIS dataset. Run on GPU.
Feat Dim k Natural Order Shuffled Order Morton Order Shuffled Ratio Morton Ratio

64
16 0.420 ± 0.002 1.457 ± 0.000 0.421 ± 0.001 3.47× 1.00×
32 0.510 ± 0.001 2.824 ± 0.001 0.503 ± 0.001 5.54× 0.99×
64 0.898 ± 0.001 5.541 ± 0.002 0.875 ± 0.002 6.17× 0.97×

128
16 0.847 ± 0.002 2.964 ± 0.002 0.845 ± 0.001 3.50× 1.00×
32 1.024 ± 0.002 5.700 ± 0.002 1.009 ± 0.001 5.57× 0.99×
64 1.802 ± 0.004 11.153 ± 0.004 1.758 ± 0.003 6.19× 0.98×

256
16 1.700 ± 0.003 6.026 ± 0.002 1.699 ± 0.002 3.54× 1.00×
32 2.062 ± 0.003 11.502 ± 0.004 2.027 ± 0.002 5.58× 0.98×
64 3.616 ± 0.006 22.407 ± 0.007 3.539 ± 0.004 6.20× 0.98×
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Figure 10. End-to-end inference latency for a PosPool segmentation model.

non-trivial proportion of model runtime.

A.4.1. RASPBERRY PI EXPERIMENTS

We also ran end-to-end experiments on a Raspberry Pi Model 4B in order to demonstrate that the lower end devices with
significantly more limited cache (1MB LLC in the case of the Raspberry Pi) are also affected. Latency numbers are provided
in Figure 11. We observe noticeable deviations above 214 points, as we see with our experiments on higher-end CPUs and
GPUs.

Table 4. The impact of random shuffling on inference latency in a GCN layer with dimension 128 across a variety of graphs taken from
SNAP (Leskovec & Krevl, 2014) and SuiteSparse (Davis & Hu, 2011).

CPU / ms GPU / ms
Dataset Operations Unshuffled Shuffled Slowdown Unshuffled Shuffled Slowdown

web-Google Sparse Only 198.4 ± 1.0 198.5 ± 2.1 1.00× 14.85 ± 0.80 14.08 ± 0.05 0.95×
Full Layer 256.0 ± 1.0 255.0 ± 1.0 1.00× 16.79 ± 0.24 16.58 ± 0.09 0.99×

soc-pokec Sparse Only 509.8 ± 5.0 532.5 ± 2.6 1.04× 42.45 ± 0.03 49.26 ± 0.04 1.16×
Full Layer 600.8 ± 7.9 629.0 ± 3.7 1.05× 46.74 ± 0.15 53.66 ± 0.04 1.15×

roadnet-ca Sparse Only 340.9 ± 1.5 384.6 ± 1.3 1.13× 20.67 ± 0.22 22.28 ± 0.21 1.08×
Full Layer 477.4 ± 1.8 521.5 ± 2.2 1.09× 26.78 ± 0.47 28.38 ± 0.38 1.06×

as-skitter Sparse Only 418.6 ± 1.5 456.5 ± 7.9 1.09× 27.14 ± 0.17 37.86 ± 0.04 1.39×
Full Layer 535.8 ± 1.9 560.6 ± 19.0 1.05× 32.12 ± 0.20 41.78 ± 0.13 1.30×

freescale1 Sparse Only 596.3 ± 2.5 655.9 ± 3.5 1.10× 38.35 ± 0.28 42.74 ± 0.81 1.11×
Full Layer 791.4 ± 5.4 851.8 ± 3.6 1.08× 49.98 ± 1.38 53.27 ± 1.03 1.07×



Availability Attacks on Graph Neural Networks

210 212 214

Number of Points

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100
2.6 × 100

Ti
m

e 
/ s

210 212 214

Number of Points

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
Experiment

Unsorted
Sorted
Sorted 
+ Defence

(a) Classifier

210 212 214

Number of Points

2 × 100

3 × 100

Ti
m

e 
/ s

210 212 214

Number of Points

1.50

1.75

2.00

2.25

2.50

2.75

3.00
Experiment

Unsorted
Sorted
Sorted 
+ Defence

(b) Segmentation

Figure 11. End-to-end inference latency for PosPool models run on a Raspberry Pi Model 4B.

A.5. Reordering Attacks on Graph Data

To demonstrate that reordering attacks generalise beyond point clouds, we now consider the impact of reordering attacks
across a variety of graph topologies with a general purpose GNN layer. Table 4 provides the inference latency for a GCN
layer (Kipf & Welling, 2017) operating on unshuffled and shuffled data. We include graphs from Stanford SNAP (Leskovec
& Krevl, 2014) and SuiteSparse (Davis & Hu, 2011), and provide timings for the entire layer, and just the sparse graph-level
operations. Domains covered include road networks, social graphs, computer network topologies, and circuit simulations.
We use these datasets to represent domains to which GNNs have been applied in the literature (Derrow-Pinion et al.,
2021; Fan et al., 2019; Rusek et al., 2019; Zhang et al., 2019). We observe consistent trends on many datasets that the
propagation latency increases on the shuffled graph relative to the original graph ordering. We note that the unshuffled
ordering is sub-optimal, limiting the impact of reordering attacks: applying reordering can improve latency by >20%, as
we show in Appendix A.6. Even so, this simplistic attack is still capable of inducing measureable slowdowns. We note
that random shuffling attacks are not universally successful: a more sophisticated method is required for scale-free graphs,
such as web graphs. However, for as-Skitter we observe increases to inference latency of up to 39% for the sparse
operations. Although we focus on GCN, our analysis is valid for other GNN layers, including GIN (Xu et al., 2019b),
GraphSAGE (Hamilton et al., 2017), and EGC (Tailor et al., 2022). These layers also rely on the same SpMM primitive used
by GCN for graph-level operations, which constitutes most of the inference latency, as seen in Table 4. In the appendix, we
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Table 5. Latency for permuting adjacency matrices. Shuffling the adjacency matrix is sufficiently cheap that real time attacks are viable.

Dataset CPU / ms GPU / ms

web-Google 12.1 ± 0.2 0.53 ± 0.00
soc-pokec 80.5 ± 0.9 3.74 ± 0.01
roadnet-ca 13.5 ± 1.3 0.40 ± 0.01
as-skitter 52.6 ± 0.3 1.58 ± 0.00
freescale1 41.1 ± 1.2 1.22 ± 0.01

Table 6. The impact of random shuffling on inference latency in a GCN layer with dimension 64 and 256; extended from Table 4.
Measurements are for sparse components of the GCN layer.

CPU / ms GPU / ms
Dataset Feat Dim Unshuffled Shuffled Slowdown Unshuffled Shuffled Slowdown

web-Google 64 103.08 ± 0.93 97.09 ± 1.15 0.94× 7.61 ± 0.02 7.55 ± 0.24 0.99×
256 455.6 ± 7.47 454.12 ± 7.44 1.00× 32.3 ± 0.26 32.44 ± 0.32 1.00×

soc-pokec 64 234.36 ± 1.36 247.35 ± 0.9 1.06× 20.59 ± 0.13 24.49 ± 0.34 1.19×
256 1161.01 ± 4.55 1224.94 ± 3.01 1.06× 93.53 ± 0.16 106.3 ± 0.07 1.14×

roadnet-ca 64 156.03 ± 3.0 190.13 ± 2.8 1.22× 11.25 ± 0.42 11.74 ± 0.42 1.04×
256 660.05 ± 4.31 780.6 ± 3.02 1.18× 52.37 ± 0.83 55.66 ± 0.4 1.06×

as-skitter 64 183.12 ± 0.95 205.54 ± 1.01 1.12× 13.21 ± 0.53 19.42 ± 0.23 1.47×
256 886.13 ± 7.98 985.53 ± 3.21 1.11× 65.4 ± 1.34 82.63 ± 0.29 1.26×

freescale1 64 322.13 ± 1.39 341.76 ± 1.34 1.06× 17.93 ± 0.11 20.13 ± 0.45 1.12×
256 1204.4 ± 3.29 1400.69 ± 3.35 1.16× 98.18 ± 0.87 105.13 ± 0.42 1.07×

extend our analysis for GCN layers with different feature dimensions in Table 6. We observe no major changes to the trends.

We also provide the latency to permute edges in Table 5. Shuffling the adjacency matrix is also sufficiently cheap that
real-time attacks are viable for attackers. However, defensive graph reordering approaches must also consider the cost
of finding a permutation, which may cost too much to break-even in an inference scenario where we use the graph once.
Lightweight approaches such as Rabbit ordering (Arai et al., 2016) may be a viable defence strategy on CPU, but we do
not observe it to be universally effective, and it is substantially slower than our SFC approach. Fortunately, we note that
hardware support for graph reordering in GNN accelerators is being developed (Geng et al., 2021; Zhang & Zhang, 2021),
which can help mitigate these attacks. For more details, see Appendix A.6

A.6. General Reordering Costs

We report extended results for the efficacy of reordering attacks across different graph topologies in Table 6; this is an
extension of Table 4. We observe similar trends to before, although the maximum effect sizes may be larger: for example,
we see increases of 22% on roadnet-ca on CPU, and 47% on as-skitter on GPU.

For completeness, we consider general graph reordering strategies, and their applicability as a defence strategy against
reordering attacks. Data for Rabbit ordering (Arai et al., 2016), a lightweight reordering strategy that may be applied
just-in-time, in provided in Table 7. We see that on CPU, it may be possible to use Rabbit ordering as a viable defence
strategy on some, but not all, datasets. The break-even cost depends on factors such as model depth and the benefit provided
by new ordering. However, there is limited evidence that this strategy will be effective on GPU: we are not aware of any
reordering strategy implemented on GPU, although we acknowledge that simple degree-sorting (Balaji & Lucia, 2018) could
be applied in principle. The reader should note that degree-sorting will be ineffective on point cloud data, as the degree
distribution is not skewed. In practice, Rabbit ordering has relatively high synchronisation overheads, limiting its efficiency
on GPUs; GNNAdvisor (Wang et al., 2021) runs Rabbit ordering on CPU, and applies the generated permutation on GPU.

We also provide timings for running Rabbit ordering on synthetic point clouds, after using kNN queries to construct the
necessary graph. In the worst case, our reordering approach requires 92.4 ± 0.6 ms to calculate a permutation for the same
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Table 7. Latency associated with calculating and applying Rabbit Order. The efficacy of this approach depends on (1) the time required to
calculate the ordering; (2) the time required to apply the ordering; (3) the improvement offered by the new ordering relative to unshuffled
or shuffled results; (4) the depth of the GNN, which is frequently limited to just 3 or 4 layers due to the oversmoothing phenomenon (Li
et al., 2018). For example, this approach will likely be ineffective on soc-pokec.

Dataset Unshuffled Order /
ms

Shuffled Order /
ms

Rabbit Order / ms Time to Apply
Rabbit Order / ms

Time to Calculate
Rabbit Order / ms

web-Google 198.4 ± 1.0 198.5 ± 2.1 140.9 ± 7.3 5.5 ± 0.0 72.1
soc-pokec 509.8 ± 5.0 532.5 ± 2.6 478.5 ± 11.0 52.7 ± 8.0 471.0
roadnet-ca 340.9 ± 1.5 384.6 ± 1.3 314.1 ± 1.1 5.0 ± 0.0 114.7
as-skitter 418.6 ± 1.5 456.5 ± 7.9 331.5 ± 2.0 43.0 ± 0.1 151.7
freescale1 596.3 ± 2.5 655.9 ± 3.5 495.3 ± 2.9 16.4 ± 0.1 291.5

Point Cloud
(220, k = 16)

- - - - 415.7

Point Cloud
(220, k = 32)

- - - - 558.8

Point Cloud
(220, k = 64)

- - - - 802.7

size point cloud. This is at least a 4.5× improvement relative to Rabbit.

Finally, we note that graph reordering approaches are now being implemented in hardware (Zhang & Zhang, 2021; Geng
et al., 2021). If these approaches become widespread, then this can mitigate the impacts of this attack, since the graph will
be reordered regardless to optimise for performance.


