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Abstract

Autonomous intelligent agents deployed to the
real-world need to be robust against adversarial
attacks on sensory inputs. Existing work in re-
inforcement learning focuses on minimum-norm
perturbation attacks, which were originally intro-
duced to mimic a notion of perceptual invariance
in computer vision. In this paper, we note that
such minimum-norm perturbation attacks can be
trivially detected by victim agents, as these re-
sult in observation sequences that are not con-
sistent with the victim agent’s actions. Further-
more, many real-world agents, such as physical
robots, commonly operate under human supervi-
sors, which are not susceptible to such perturba-
tion attacks. As a result, we propose to instead
focus on illusionary attacks, a novel form of at-
tack that is consistent with the world model of the
victim agent. We provide a formal definition of
this novel attack framework, explore its character-
istics under a variety of conditions, and conclude
that agents must seek realism feedback to be ro-
bust to illusionary attacks.

1. Introduction

Deep learning-based algorithms (Mnih et al., 2015; Schul-
man et al., 2017; Haarnoja et al., 2018; Salimans et al., 2017,
DQN, PPO, SAC, ES) have found applications across a num-
ber of sequential decision making problems, ranging from
simulated and real-world robotics (Todorov et al., 2012;
Andrychowicz et al., 2020) to arcade games (Mnih et al.,
2015) . It has recently been found, however, that deep neural
network control policies conditioning on high-dimensional
sensory input are prone to observation-space adversarial
attacks, which poses threats to security and safety-critical
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applications (Kos & Song, 2017; Huang et al., 2017) and
thus stimulates research into robust learning algorithms (zha,
2020).

Adversarial attacks on high-dimensional perceptual sensory
inputs are commonly based on approaches that exploit uni-
versal shortcomings of neural network function approxi-
mators (Chaubey et al., 2020). In applications outside of
sequential decision-making, the dominant school of thought
is that adversarial perturbation vectors should be of mini-
mum norm - either because it is thought that attacks carry
a cost proportional to the perturbation size (Biggio et al.,
2013), or by thinking of this requirement as a proxy to hu-
man perceptual invariance in image classification (Szegedy
et al., 2013). Recent work applies the minimum-norm per-
turbation framework to deep reinforcement learning agents,
both to identify possible attacks and defenses thereagainst
(Lin et al., 2017; Chen et al., 2019; Sun et al., 2020)

We argue that the minimum-norm perturbation framework
on its own is not adequate for adversarial attacks on
sequential-decision makers, as minimum-norm attacks re-
sult in inconsistent action-observation sequences, and can
be trivially detected by agents that possess a model of the
environment. Powerful adversaries that seek to remain unde-
tected will hence conduct illusionary attacks, which would
perfectly replace a victim agent’s reality by an internally
coherent alternative one. Further, the framework of illusion-
ary attacks generalizes beyond neural-network policies of
autonomous agents and is feasible for adversarial attacks
on human-in-the-loop settings, required for almost every
enacted or emerging Al regulatory framework.

Illusionary attacks assume a threat model in which the ad-
versary can inject perturbations into the victim agent’s ob-
servations in order to trick it into executing a policy that
is aligned with the adversary’s objective. In practice, such
perturbations could be achieved both through a software-
level attack, or through direct operations on sensory input .
The illuysionary attack framework requires perturbations to
be world-model aligned, meaning that the resultant victim
agent’s action-observation histories need to be aligned with
the model of the environment possessed by the agent, e.g., a
model learned during training.

In practice, parts of an agent’s observations may not be



accessible to the adversarial attacker. For example, a rescue
robot’s optical sensors may be perturbed by an adversary,
but internal accelerometers and logging frameworks might
be inaccessible. Such unperturbed parts of the victim agent’s
observations may thus form realism feedback. The existence
of realism feedback channels therefore opens avenues for
the victim agent to robustify its policy through preventative
information gathering (Zintgraf et al., 2020).

In this paper, we proceed by first discussing related work
(Section 2) and giving the necessary background (Section
3). We define our novel illusionary attack framework and
the specialisations empirically investigated in this paper
(Section 4.2). We analyse various illusionary attack set-
tings empirically (Section 5), followed by a discussion and
conclusion in Section 6.

2. Related Work

Adversarial attacks literature originates in non-sequential
decision making applications such as image classification
(Szegedy et al., 2013; Goodfellow et al., 2014), where the
goal is to find perturbations ¢ for a given classifier f such
that f yields different predictions for x and x + J, despite
the difference between = and x + ¢ being imperceptible
to humans. To enforce the imperceptibility requirement,
such works enforce simple minimum-norm perturbations
constraints (Goodfellow et al., 2014). Adversarial robust-
ness aims at training networks that are robust against ad-
versarial attacks. Among the most popular approaches are
adversarial training (Madry et al., 2017) and randomized
smoothing (Cohen et al., 2019).

Prior work on adversarial attacks on sequential decision
making agents (Lin et al., 2017; Chen et al., 2019; Qiaoben
et al., 2021) largely builds upon the minimum-norm per-
turbation framework. In particular, the observations of the
agents are perturbed with minimum-norm attacks at every
step. On another note, Hussenot et al. (2019) introduced
a class of adversaries for which a unique mask is precom-
puted and added to the agents observation at every time step.
Gleave et al. (2021) studied adversarial attacks in embodied
multi-agent environments, defining the latter as a compet-
itive multi-agent learning problem in which the adversary
is part of the environment state, i.e. the adversary does not
perturb the observation but affects the environment state.

Similarly to adversarial attacks on classification tasks, the
minimum-norm perturbations framework has also been uti-
lized towards building robust agents in sequential deci-
sion environments. For example, empirical robustness ap-
proaches were also proposed for this setting where approx-
imations of worst case adversaries are augmented during
policy training (Pattanaik et al., 2018). Moreover, certified
methods for lower bound performance have also been pro-
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Figure 1: Test-time loop of adversarial attacks on agent
observations.

posed for sequential decision settings. For instance, Everett
et al. (2021) proposed interval bound propagation through
the network approximating the Q-function towards com-
puting a certifiable lower bound on the cumulative reward.
Moreover, following the recent advances in randomized
smoothing, policy smoothing techniques were also shown to
be effective in attaining provable lower bounds on the cumu-
lative rewards, i.e. certifiably robust performance, (Kumar
etal., 2021; Wu et al., 2021).

We argue that definitions of minimum-norm perturbations
are not adequate for sequential decision making agents as
they can be easily detected and accordingly propose a new
class of adversarial attacks, namely illusionary attacks. For
completion, we will cover various robustness and detec-
tion approaches against minimum-norm perturbations in
sequential decision settings.

Another extensive body of work has been focusing on
detecting adversarial attacks. ? develop an action-
conditioned frame module that allows agents to detect ad-
versarial attacks by comparing both the module’s output
distribution with the realised output distribution. Behzadan
& Munir (2017) show that DQN (Mnih et al., 2015) agents
under noncontiguous random perturbation training-time at-
tacks can recover and adapt to the adversarial conditions
by reactively by adjusting their policy. Havens et al. (2018)
demonstrate how agents can detect adversairal attacks by
comparing the attained reward to the estimated Q values,
thereby assuming that the agent observes the unperturbed re-
wards. Tekgul et al. (2021) detect adversaries by evaluating
the feasibility of past action sequences.

3. Background
3.1. Notations and setup — victim agent

POMDPs. We generally consider two agents: The vic-
tim agent and the adversary agent. We assume that the
victim agent partially observes its environment and hence
model it with a partially observable markov decision pro-
cess (POMDP) (Astrom, 1965). A POMDP generalizes
the classic markov decision process to partial observabil-
ity and is given by a tuple (S, A, Z, F,U, R, by), where
S, A and Z are the state, action, and observation spaces,



respectively. Given a policy m(a¢|o<¢, a<¢), and starting
from an initial belief state by : S — [0,1], an agent
chooses an action a; € A at time ¢ where consequently
the latent environment transitions to s¢11 ~ F (St11]8¢, at)
upon which a noisy, occluded or otherwise incomplete ob-
servation zyy1 ~ U(zt41]St41,a¢) and a scalar reward
ri41 ~ R (riy1]8141,a¢) are returned to the agent. A
commonly associated decision problem is one where the
agent maximises the expected future return E[Zthl Y1y,
given a discount factor where the expectation is taken over
the trajectory of actions, states, and observed states and
0 <~ < 1isadiscount factor.

POMDPs as belief MDPs. While POMDPs are not
Markovian in observation space, agents can instead learn so-
called belief states, which allows to transform the POMDP
into a Markovian belief MDP. A belief MDP consists of
belief states b = P(s¢|o<¢, a<¢), where IP denotes a proba-
bility distribution, and contains a belief transition function
K:BxAxB—[0,1], as well as the belief-conditioned
reward function r : B x A — R. Here, B denotes the space
of belief states b : S — [0, 1].

Minimum-Norm Perturbation Attacks. In image classi-
fication tasks (Szegedy et al., 2013), an adversarial attack
constructs a perturbation § so that it causes a given clas-
sifier f to produce different predictions for  and = + 9.
The minimum-norm perturbation (MNP) adversarial attack
seeks to find such perturbations ¢ that also satisfy budgeted
constraints, e.g. ||d||, < e. It is important to note that MNP
attacks can, in principle, attack a neural networks f in two
ways: First,  + § could be generated to perceptually re-
semble different inputs classes — which would not result in
a perceptually invariant input — we call this type of attack
a semantic attack. Second, x + ¢ could be semantically-
invariant but still classified differently than the unperturbed
input x; we call this type of attack a neural attack. Typi-
cally, the distance 0 in observation space between samples
belonging to different input types is much larger than the
size of adversarial perturbations, i.e.

" > i el ¥y € D
That is to say, the smallest pixel distance between objects
of different categories is typically much larger than the min-
imum perturbations required for neural attacks. Altogether,
the MNP framework does not by itself allow to restrict
attacks learnt to semantic attacks. Empirically, given typi-
cal perturbation budgets, MNP attacks are indeed found to
heavily rely on neural attacks.

Minimum-Norm Perturbation Attacks on decision-
making agents. Similarly, if an adversary has access to
the observations of a decision-making victim agent with

a neural network policy ,, it can attack the victim by re-
placing its observations z; by perturbed ones z;. Such an
attack is aimed at aligning the victim’s behaviour with the
adversary’s arbitrary objective J,qy. The minimum-norm
perturbation (MNP) adversary attack therefore seeks to
identify and apply an additive perturbation e € R4m(Z)
to each agent observation z, where Z = z + ¢, while min-
imising ||Z — z||, = ||¢||, for some p-norm. Similarly to
image classification, this can result in semantic or neural
attacks, with the latter being much more frequent due to
small perturbation budgets.

We define a scalar cost function for the adversarial agent,
R (rdv|s, a,), note that the action is that taken by the
victim agent. For the special case that R = —R, the
adversary’s goal is exactly anti-aligned with the victim’s
goal. However, in general the adversary’s goal does not
need to be exactly anti-aligned with the victim’s goal, but
could be arbitrarily partially aligned.

We extend the classical formulation of minimum-norm per-
turbation attacks on MDPs (Kumar et al., 2021) to belief
MDPs, with the adversaries objective therefore given as

Juov = max [E,

€0, €T —1

T-1
Z ’YtR?ﬁ(St’ at+1)] )
=0 (1)

where ay ~ 7TU( . |l~)t)78t+1 ~ F(-|st,at),
st. e < B

Here b, denotes the victim’s perturbed belief state, i.e. a
belief based on a history of actions and perturbed observa-
tions.

4. Methods

4.1. Perceptual Incoherence under MNP attacks

We argue that minimum-norm perturbation attacks on
POMDPs (see. Equation 1) may be detected by the vic-
tim agent, assuming that it has a model of the world in the
form of a belief transition function K. Given K, the vic-
tim can, after each environment step, check whether the
previous belief state transitions and the actions taken are
permissible under .

More specifically, at time step ¢, the victim can compute
the likelihood of the sequence of belief states, given the
actions taken and the world model K, i.e. P(b<, a<(|K).
The victim can use this to detect adversarial attacks if this
likelihood is either zero or smaller than a threshold.

4.2. llusionary Adversaries

To remain undetected, the adversary hence needs to fool
K and 7, simultaneously with the same perturbation. We



assume that the victim agent computes the likelihood of the
observed transitions as:

P(5<t7 A<t VC)

= K(gtflmtfl»Bt72)7r(at71|l~7t72) Tt IP>(50)
t—1 2)
= P(EO) H /C(Bt’|at/7 Et/—l)ﬂ(at/|gt/—1)

t'=1

Illusionary Attacks on Belief MDPs. We assume that the
victim agent possesses a belief-state transition model /C of
the environment. We therefore define the objective of the
illusionary attack as finding perturbations that maximize the
objective function of the adversary while ensuring that the
probability of observed belief-state transitions is larger than
a threshold ¢, with ¢ > 0:

Juov = max E.

€0, €T —1

T—1
Z Y RIE (st at+1)]
t=0 (3)

where ay ~ 7Tv( . |l~)t)78t+1 ~ F(-|st,at)7

s.t. P(bey, act|K) > ¢

When is access to /C realistic? Access to an environment
& does not automatically grant accessto K : B x A x B —
[0,1], as & defines solely the state tramsition function
F:S8xAxS — [0,1], as well as the observation function
U. Wherever K (or a suitable estimate K ) cannot be cal-
culated from F, U in an analytically tractable fashion, one
can attempt to approximate C through supervised training
of a neural network ICy. However, Ky might then itself be
susceptible to MNP attacks, although these would require
minimum-norm perturbations to be simultaneously feasible
on both Ky and 7, making such MNP attacks strictly harder.
Instead, one could employ a non-neural pipeline using tradi-
tional scene understanding methods, such as fixed-feature
object detectors, as an (approximation) to K that is not im-
mediately susceptible to MNP attacks.

4.3. Fooling Humans.

We now investigate the special case in which, instead of
a digitally represented belief transition model /C, victim
agents employ a human supervisor in order to detect adver-
sarial attacks at test time. This renders illusionary attack
generation as in Equation 3 infeasible, as the volume of
attainable human feedback is clearly highly limited.

While humans are not susceptible to neural attacks, they can
be fooled by semantic attacks. Unlike neural attacks, seman-
tic attacks are effectuated first in an abstract entity space,
and only subsequently rendered to high-dimensional agent
observations using access to the environment’s observation
function.

Entity POMDPs. To make the notion of semantic attacks
more concrete, we introduce Entity POMDPs (Schroeder de
Witt et al., 2019, cf. Dec-POMDP with Entities), in which
each entity e € £ has a state representation s¢. At any time,
the environment state is then given by s; = {sf{le € £} U
{simbl € S, where si™ subsumes any ambient, i.e. non-
entity, state features. Each entity state feature contains two
parts, s = [f€, ¢°] with ¢ € P representing a (fixed)
entity type, and f€ representing any other (dynamic) entity
attributes (e.g. location, or velocity).

An explicit treatment of environment entities allows to rea-
son over environment dynamics at a certain level of semantic
abstraction, meaning we can express a subset of environ-
ment dynamics through discrete rules or logical constraints.
For example, a common physicality constraint in environ-
ments of interest is that entities cannot change type over
time, and that the dynamics of entity attributes are con-
strained by physics. As long an attacker respects these
underlying entity dynamics ©, and renders credible asso-
ciated high-dimensional observations, humans are clearly
unlikely to raise suspicion.

To guarantee MNP-free, semantic illusionary adversarial
attacks, we follow Equation 3, but restrict the attacker’s
perturbation space to the entity space:

T—1
Z WtR?f{(St, at+1)]

max [E,,
€0,---€ET—1

Jadv =
t=0

“4)

where a; ~ wv( . |l~)t),st+1 ~ F(:|s¢,a¢),
S.t. P(6<t, a<t‘©) > c,

Crucially, here the perturbed observations Z # z + ¢, but
rather Z = f(s°+¢, s9™), where f is the rendering function
defined by the environment’s observation function U.

Note that techniques introduced in this section may also be
the attacker’s preferred choice when it does not have access
to (or is unsure about) X as used by the defender.

4.4. Realism feedback

While perfect illusionary attacks, i.e. those that fully comply
with /C (or ®) may not be detectable, illusionary attacks that
can only modify part of the agent’s observation space may
not always succeed. Hence, ensuring access to hardened
realism feedback channels is a potentially powerful defense
strategy.

S. Experimental Evaluation
5.1. Experimental Setup

The Environment and the Agent. We use a 2D gridworld
(Minigrid, (Chevalier-Boisvert et al., 2018)) of variable size
in which a single agent can navigate around by moving to
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Figure 2: Environment that contains green goal cell (reward
+1) and unfavourable cell with pile of red lava (reward -
1). Top row: Trajectory of agent that executes optimal
policy without perturbations. Middle row: Trajectory as
observed by the victim agent under a minimum distance
adversarial attack. Bottom row: Trajectory as observed by
the agent under an illusionary adversarial attack. Perturbed
observations in blue, true trajectories in red.

any of the four cells adjacent to the agent. The set of actions
is given as A = {move forward, turn right, turn left}. The
environment is deterministic, i.e. the state-transition prob-
ability of the environment is either Oor 1,7 : S x A —
{0,1}. The lava environment in Figure 2 is fully observ-
able (agent position and direction displayed by red triangle),
while in the larger environment in Figure 4 the victim agent
only partially observes the environment, indicated by the
dashed cone (agent represented by camera). Throughout,
we assume a fixed victim agent with a deterministic policy
m, trained until convergence using PPO (Schulman et al.,
2017). We assume that the victim agent possesses a model
of the world which accurately models the transition proba-
bilities between different environment states, but observes
no other variables except for its actions and observations;
it does not observe the achieved reward which is a typical
assumption for real-world deployment.

Adversary Agent. We now introduce our proposed non-
embodied adversary agent. The adversary can modify the
observations of the victim agent by taking actions on the
environment as depicted in Figure 1. At each timestep, the
adversary observes the previous state of the environment
s¢, takes an adversarial action a3, ~ m*%"(-|s;) from a
predefined set of actions 4" and applies the action on
the environment, generating the new perturbed observation
Zi11 = 241 + @ to be observed by the victim agent. The
adversaries action space A! is different across the pre-
sented environments and defines the ability of the adversary
to modify the different entities present in the environment.
If the adversary takes an action that would yield an impossi-
ble state, the adversarial action is interpreted as a no action
and thereof z;1 = z;. The policy of the victim agent is

y @

assumed to be frozen during the training of the adversary.
The observations for the adversary are the last action taken
by the victim along with the victims last observation. The
adversarial policy is a parameterized by a Gaussian distri-
bution, i.e. 7% (-|s;) = N (pg(st), Xo(s¢)) where 6 are the
parameters of the neural network parameterizing the mean
and the diagonal covariance, which are then used to sample
the action of the adversary (which is afterward discretized).
The reward function of the adversary is individually defined
for the respective types of adversaries.

5.2. Adversaries in the Loop: Minimum Distance vs
Ilusionary

In this section, we show experimental results for rollouts of
the victim agent under two adversaries, a MNP adversary
and our proposed illusionary adversary. We consider the
small environment shown in Figure 2. We assume that both
adversaries are rewarded for minimizing the reward of the
victim, i.e. , the goal of the adversary is to lure the victim
agent into the lava cell at (2, 3). For simplicity, we fix the
initial state of the agent s to cell (2, 1), where the cell (1,1)
is the top left most corner, facing to the right. Rolling out
the victim agent under the adversary-free setting according
to its policy 7, is shown in Figure 2 (top) where the agent
correctly navigates to the green target cell. We note that,
as this environment is fully observable, the belief states
of the victim agent correspond to the actual environment
state. We consider that the adversary performs (d,, d,) on
the current position of the agent, i.e. A = {a*" € R?}
where a® = [6,,0,]". That is to say, if the adversarial
action is @® = [0,1] T for an agent at position (2, 1), then
the agent observes its perturbed state as (1,1).

Minimum Distance Adversary. Here, the adversary re-
ceives as reward the negative of the victim agents reward,
and an additional negative reward corresponding to the norm
of each induced perturbation. An optimal minimum-norm
perturbation attack is displayed in Figure 2 (middle row).
Only the observation of the victim agent at cell (2,2) is
perturbed. In this setting, the observed state s;, compared
to the true environment state s, differs only by one one
value. Such adversary, as shown in the middle row of Fig-
ure 2, will correctly lure the agent into the lava cell. It is
easy to observe that such adversary is not consistent with
the state-transition probability of the environment, i.e. , it
is not world-model aligned, which can be observed in the
Figure as the agent “jumps” between cells (2, 1) and (1, 2),
irrespective of having taken the forward action.
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Figure 3: (True states in red, observed states in blue.) This
Figure shows the perturbation added by the illusionary ad-
versary for two different starting positions of the victim
agent. If the agent starts in the top left cell, no perturbation
is added by the illusionary adversary as the victim agent
cannot be lured into the bottom right cell without violating
the agent’s world model. If the agent starts in the bottom
left cell, the adversary chooses the correct illusionary per-
turbations to lure the agent into the lava cell at the bottom
right.

Illusionary Adversary. Here, the adversary receives as
reward the negative of the victim agents reward, and an addi-
tional negative reward for actions that result in observations
that are impossible under the victim agent’s belief (state)
transition model . Unlike minimum distance attacks, our
proposed illusionary adversary that maximizes the objective
in equation 3 is world-model aligned. It correctly lures the
victim agent to the lava cell just like the minimum distance
adversary. However, the illusionary adversary perturbs the
observed position of the victim agent consistently, as it can
be observed in Figure 2 (bottom row). This simple exper-
iment supports our hypothesis that MNP attacks may be
easily detected by agents with a world model.

Worldmodel Aligned Adversaries trade off reward for re-
maining undetected. Consider the previously introduced
environment depicted in Figure 3. We now modify this en-
vironment, such that the victim agent’s initial position is
randomly chosen to be either (1, 1) or (2,1). We observe in
Figure 3 that the adversary agent trades off achieved reward
for remaining undetected, i.e. ensuring that all observations
are worldmodel-aligned.

Detectable Adversarial Attacks. We now consider the
environment depicted in Figure 4, where the victim agent
has to navigate to the green goal position (which it does not
observe), by using the red and blue square as landmarks.
We significantly limit the influence that the adversary has on
the victim agent’s observation. Instead of being able to com-
pletely change the observation of the agent by modifying
the position from which it observes the world, the adversary
can now only modify the positions of the two red and blue
landmark tiles (entities). Thereby, the agent could detect the
adversarial attack, as the adversary does not have access to
the victim’s full observation, but only to the two landmarks.

Figure 4: This large environment awards the agent with
+1 for reaching the green goal square; no other rewards
exist. The agents field of view is indicated by the camera
viewing angles. The agent does not observe the goal square
any different from other squares and therefore relies on the
landmarks (red and blue colored cells) for navigating to the
goal. The adversary agent can perturb the observation of the
agent by shifting the landmarks. Left: The true environment
state. Right: The perturbed environment state as observed
by the agent.

The adversary hence chooses a perturbation action at each
time step which modifies the observed position of both the
blue and red landmark by [—1, 0, +1] in x and y individually.
The reward of the adversary agent is further changed such
that it performs a targeted attack, by rewarding it for luring
the victim agent into the cell that is northwest of the actual
goal position (indicated by the skull in Figure 4). We again
pretrain the victim agent and afterward train the adversary
until convergence. We find that the adversary has learned to
perform an illusionary attack on the victim agent by shifting
the positions of both landmarks in northwest direction (see
Figure 4, right image).

However, in this environment the victim agent could have
detected the adversary by having a policy that seeks realism
feedback. The victim agent could detect the adversary by
using its world model to find that the distance between the
landmarks and the walls has changed. It could then have
developed a robust policy that relies on the walls instead of
the landmarks, and could thereby successfully navigate to
the true goal position under adversarial perturbations.

6. Discussion and Conclusion

In this paper, we introduce illusionary attacks, a novel form
of adversarial attacks on sequential decision makers, that
can fool even agents with access to transition models. Im-
portantly, we show that illusionary attacks, unlike traditional
minimum-norm perturbation adversarial attacks, can fool
human supervisors. We show how defenders may employ
realism feedback in order to mitigate the chance of being
fooled by an illusionary attack. This implies that any real-
world autonomous decision making systems need to provi-
sion for adequate, hardened realism feedback channels, and
maximise their utility through test time policies that employ
information gathering and environment probing functional-

ity.
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