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Abstract
The overwhelming vulnerability of deep neural net-
works to carefully crafted perturbations known as ad-
versarial attacks has led to the development of various
training techniques to produce robust models. While
the primary focus of existing approaches has been di-
rected toward addressing the worst-case performance
achieved under a single-threat model, it is imperative
that safety-critical systems are robust with respect to
multiple threat models simultaneously. Existing ap-
proaches that address worst-case performance under
the union of such threat models (e.g., ℓ∞, ℓ2, ℓ1) either
utilize adversarial training methods that require multi-
step attacks which are computationally expensive in
practice, or rely upon fine-tuning of pre-trained models
that are robust with respect to a single-threat model.
In this work, we show that by carefully choosing the
objective function used for robust training, it is pos-
sible to achieve similar, or even improved worst-case
performance over a union of threat models while utiliz-
ing only single-step attacks during the training, thereby
achieving a significant reduction in computational re-
sources necessary for training. Furthermore, prior work
showed that adversarial training against the ℓ1 threat
model is relatively difficult, to the extent that even
multi-step adversarially trained models were shown to
be prone to gradient-masking and catastrophic over-
fitting. However, our proposed method—when applied
on the ℓ1 threat model specifically—enables us to ob-
tain the first ℓ1 robust model trained solely with single-
step adversarial attacks.

1. Introduction
Recent years have demonstrated the success of deep learning
in solving machine learning tasks spanning across various
domains—computer vision, natural language texts, speech,
etc. In addition, it has even exceeded the human level per-
formance for certain tasks (He et al., 2016; 2015). However,
despite their successes, these systems exhibit severe vulnera-
bilities: Deep learning models are very susceptible to imper-
ceptible perturbations in the input at test time (Szegedy et al.,

1Department of Computer Science, University of Maryland,
College Park, USA. Correspondence to: Gaurang Sriramanan
<gaurangs@cs.umd.edu>, Maharshi Gor <mgor@cs.umd.edu>,
Soheil Feizi <sfeizi@cs.umd.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2013). Such human-imperceptible noise, known as adver-
sarial attacks, can be used to induce networks to confidently
predict incorrect labels, and can thus have disastrous im-
plication in safety critical applications such as autonomous
navigation and identity verification. To make models robust
against such vulnerabilities at test time, a paradigm of ad-
versarial robust training of machine learning models has
been developed in recent years (Goodfellow et al., 2015;
Madry et al., 2018; Zhang et al., 2019). These adversarial
training procedures have primarily been used to train models
robust to a single threat model—perturbations constrained
within an ℓp-ball of εp radius for some p. For instance,
the predominant threat model of interest that has been ex-
tensively studied in existing literature corresponds to the
ℓ∞threat model (mostly ε∞ = 8/255). However, human-
imperceptible adversarial perturbations can be sourced from
multiple threat-models; hence in practice, it is pertinent to
ensure that networks are robust against perturbations from
a union of threat models simultaneously. More so, it has
been observed that robust training procedures for a chosen
threat model are not effective against attacks from other
threat models (Tramer & Boneh, 2019; Maini et al., 2020),
thus necessitating the development of adversarial defenses
against multiple perturbation models simultaneously.

Over recent years, training procedures have been proposed
to make systems simultaneously robust against perturba-
tions constrained within a union of ℓ∞, ℓ1 and ℓ2 balls.
Systems trained in such manner are then evaluated over the
worst-case performance across perturbations from all the
threat-models. Tramer & Boneh (2019) proposed simple
aggregations of different adversaries for adversarial training
against multiple perturbation models utilizing multi-step
adversarial attacks for robust training. Maini et al. (2020)
further established SOTA for adversarial accuracy against
union of (ℓ∞, ℓ1, ℓ2) perturbations through the adversarial
training procedure Multi Steepest Descent (or, MSD) that
also uses multi-step (k = 50) adversarial attacks to generate
adversaries for training. However, these methods, owing
to their requirement of great number of adversarial training
steps as compared to a regular setting for multi-step adver-
sarial training procedure (10 steps), are computationally
inefficient. This leads to our research question: Is it possible
to achieve worst-case performance over a union of threat
models that is similar to that of the SOTA methods, while
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utilizing training procedures that requires only single-step
attacks to generate adversaries? We answer the same in
affirmation: we first analyse failure modes of existing ap-
proaches during ℓ1 based adversarial training, and thereby
propose to use a dynamic curriculum schedule to effectively
mitigate robust overfitting. Furthermore, we extend this
approach to develop a training routine that utilizes a single-
step adversarial training across a union of threat models to
be robust against them simultaneously. In summary, we
make the following contributions1 in this work:

• We demonstrate the first successful single-step robust
training procedure, NCAT-ℓ1, to achieve ℓ1 robustness
by using a curriculum schedule with Nuclear Norm
based training.

• We extend this approach to propose a training pro-
cedure NCAT, that yields SOTA-like robust accuracy
under the union of multiple ℓp threat models, while re-
quiring only a single-step attack budget per minibatch.

• We further demonstrate that the proposed defense can
scale-up to high-capacity networks and large-scale
datasets such as ImageNet-100. Additionally, NCAT
trained models generalize to unseen threat models,
achieving near-SOTA robustness even on Perceptual
Projected Gradient Descent (PPGD), which comprises
one of the strongest attacks known to date.

2. Preliminaries
Here, we lay down the notations and conventions used in this
work. We denote x to be a d-dimensional image from an N -
class dataset D, while its corresponding ground-truth label
as a one-hot vector y. fθ represents a Deep Neural Network
with parameters θ, that maps an input image x to its pre-
softmax output fθ(x). The cross-entropy loss corresponding
to the network prediction on a sample (x, y) is denoted as
ℓCE(fθ(x), y). For a minibatch B = {(xi, yi)}Mi=1, we
denote X as the image matrix whose ith row consists of
flattened pixel intensities of the image xi, and Y as the
corresponding ground-truth array. Thus, X is a matrix
of size (M × d), and Y is a matrix of size (M × N).
Also, ℓCE(fθ(X), Y ) now denotes the sum of cross-entropy
losses over all data samples in the minibatch B. Further, for
a matrix A, let ∥A∥∗ denote the Nuclear Norm, the sum of
the singular values, of A.

Adversarial Threat Model: In this work, we primarily
consider the robustness of Deep Networks against the union
of ℓ∞, ℓ1, and ℓ2 constrained adversaries. Thus, a network
fθ is said to be εp-robust under a threat model ℓp on a clean
sample x with label y, if fθ(x̃) = y, for all perturbations x̃
such that ∥x− x̃∥p ≤ εp.

1Our code and pre-trained models are available here:
https://github.com/GaurangSriramanan/NCAT.

3. Related Works
In this section we briefly discuss the adversarial attacks and
defences that builds up to efficient multi-step adversarial
training procedures, work that introduces adversarial train-
ing against the union of multiple threat models, and their
limitations that we propose to alleviate.

While adversarial training methods have been observed to be
the most effective defenses in recent times, early attempts of
improving robustness to adversarial attacks included input
pre-processing based defenses that were computationally
cheap. However, such methods primarily relied upon mask-
ing of input gradients in order to counter white-box attacks.
Several such defenses of this category were circumvented
using smooth approximations of the non-differentiable com-
ponents, or by utilizing expectation over randomized com-
ponents (Athalye et al., 2018; Carlini et al., 2019).

3.1. Effectiveness of FGSM and its limitations

Perhaps the most successful defense which has stood the test
of time is Projected Gradient Descent or PGD adversarial
training (Madry et al., 2018). This involved minimization
of cross-entropy loss on the worst-case perturbations gen-
erated using multiple iterations of constrained optimization,
leading to a significantly higher computational cost when
compared to standard training. Multi-step defenses achieve
the state-of-the-art robustness today and typically use
10-steps of optimization for attack generation, leading to 11
times higher forward and backward propagations. FGSM
or the Fast Gradient Sign Method (Goodfellow et al., 2015)
based adversarial training alleviates the computational cost
by utilizing single-step adversarial samples for training.
However, in practice it is observed that during the course
of FGSM training, degenerate solutions are frequently
observed, wherein the local linearity assumption of the loss
surface is violated. Indeed, Kurakin et al. (2017) showed
that such models exhibited the phenomenon of gradient
masking, wherein stronger multi-step attacks were seen to
reduce the robust accuracy drastically. Wong et al. (2020)
proposed to incorporate early-stopping using R-FGSM
based adversarial training (Tramèr et al., 2018), in order
to identify the failure-point during robust training with
single-step adversaries. However, the method was later
shown to not be effective on large capacity networks such
as the WideResNet (Zagoruyko & Komodakis, 2016)
architecture in subsequent work (Sriramanan et al., 2020).

Nuclear Norm Adversarial Training (NuAT): Sriramanan
et al. (2021) proposes a Nuclear Norm regularizer to
improve the adversarial robustness of Deep Networks
through the use of single-step adversarial training under
ℓ∞constraints. This Nuclear Norm Adversarial Training
(NuAT) enforces function smoothing in the vicinity of clean
samples by incorporating joint batch-statistics of adversarial

https://github.com/GaurangSriramanan/NCAT
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samples, which results in enhanced robustness. Further, this
limits the oscillation of function values and prevents the
over-smoothing of loss surface uniformly in all directions,
leading to a better robustness-accuracy trade-off.

3.2. Union of Threat Models

While above described works trains a target to be robust
against a single threat model of ℓp-ball, there has been recent
effort in the direction of making models robust against mul-
tiple threat models simultaneously. Tramer & Boneh (2019)
study the theoretical and empirical trade-offs of adversarial
robustness in various settings when defending against
aggregations of multiple adversaries, proposing to train on
the average (AVG) or maximizers of loss (MAX) amongst
the different threat models considered for each minibatch
of samples. Madaan et al. (2020) train using perturbations
generated using a Meta-Noise Generator, and also propose a
variant, Stochastic Adversarial Training wherein they utilize
multi-step adversaries (10 steps for ℓ∞and ℓ2, 20 steps
for ℓ1), though the authors note sub-optimal performance
from the same. Croce & Hein (2019) propose a provable
adversarial defense against all ℓp norms for p ≥ 1 using
a regularization term for ReLU networks, by enforcing
robustness against ℓ∞and ℓ1 adversaries in particular.

Multi Steepest Descent (MSD): The core idea that
MSD (Maini et al., 2020) adopts, which helps establish bet-
ter worst-case accuracies against the union of adversaries,
is to create a single adversarial perturbation by simultane-
ously maximizing the worst-case loss over all perturbation
models at each projected steepest descent step. Unlike pre-
vious approaches Tramer & Boneh (2019) that generate
worst-case adversaries for each threat model, or augment
adversaries from multiple threat models, MSD chooses a
projected steepest descent direction in each iteration that
maximizes the loss over all threat models. This has been es-
tablished to be superior to the standard adversarial training
and the simpler approaches that use comparatively myopic
PGD subroutines that only use one perturbation model at a
time. However, MSD requires 50 adversarial attack steps
for each training iteration. Additionally, for each training
step, it performs three forward passes (one for each threat
model) and a backward pass.

Extreme Norms Adversarial Training (EAT): In order
to achieve robustness against a union of ℓp threat models,
Croce & Hein (2021b) propose to fine-tune models that were
originally trained to be robust against a single ℓp norm threat
model. The authors demonstrate that fine-tuning of robust
models to previously unseen ℓp threat models is effective,
in contrast to adversarial fine-tuning of normally trained
networks which yields non-robust models. Furthermore,
the authors propose to train solely on ℓ1 and ℓ∞adversaries,
such that other ℓp balls on interest are contained within the

union of these two threat models (Extreme Norms Adver-
sarial Training or EAT). However, this can place excessive
restrictions during robust training if the perturbation budget
of intermediate ℓp adversaries is large. As with MSD (Maini
et al., 2020), EAT is computationally expensive in practice,
since it relies upon multi-step adversarially pre-trained
models, and further performs robust fine-tuning of such
models using 10-step adversaries in the second phase.

4. Proposed Method
As noted by prior works (Madry et al., 2018; Croce & Hein,
2021a; Maini et al., 2020), robust training against the ℓ1
threat model is significantly more complicated when com-
pared to standard adversarial training techniques for ℓ∞or
ℓ2 threat models. Croce & Hein (2021a) note that even ad-
versarial training using expensive 10-step adversaries gen-
erated from SLIDE (Tramer & Boneh, 2019) is prone to
catastrophic overfitting (Wang et al., 2020): Over the course
of training, models overfit to the adversaries generated, lead-
ing to a false notion of being robust, while achieving close to
0% accuracy against stronger attacks during test evaluation.
While such phenomena are frequently seen in single-step
training Goodfellow et al. (2015), the occurrence of such
failure modes even with 10-step adversaries exhibits the
difficulty in training ℓ1 robust networks. Croce & Hein
(2021a) demonstrate that using the 10-step APGD ℓ1 attack,
robust models can be trained by automatically tuning the
sparsity level induced in the ℓ1 perturbations seen during
training. Building upon these in this work, we demonstrate
the first successful instance of achieving ℓ1 robustness using
single-step adversaries during training. Further, we extend
the technique to achieve simultaneous robustness against
the union of ℓp threat models using single-step training.

4.1. Nuclear Norm Attack and Curriculum Schedule

We first focus on understanding the phenomenon of catas-
trophic overfitting under the ℓ1 adversarial training and an-
alyze what methods can help alleviate it in the single-step
setting. We begin by plotting the prediction accuracy and
cross-entropy loss of different models over training and val-
idation (Figure 1). We find that when trained with R-FGSM
based adversaries, models suffer from catastrophic overfit-
ting early on during the training. However, we make a cru-
cial observation that dynamically varying the perturbation
budget during training, effectively setting up a curriculum,
helps immensely in improving overall stability of training.
For instance, with the final ℓ1 threat model of interest given
by the ball of radius 12, we propose to linearly increase
this parameter from 0 to 12 to prevent catastrophic overfit-
ting. However, applying this curriculum to RFGSM-AT only
leads to a delay in catastrophic failure, indicating the unsuit-
ability of using R-FGSM adversaries for robust training.
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Figure 1: Catastrophic Overfitting in ℓ1 Adversarial Training: To analyze the stability of single-step training, we plot
accuracy (left) and cross-entropy losses (Right) over epochs of different single-step adversarially trained models. With
R-FGSM based adversarial training (Wong et al., 2020), catastrophic overfitting occurs with extreme gradient masking
(orange); adversarial accuracy (loss) is high (low) on the train set, while being close to zero (high) for validation images.
More so, even using a curriculum schedule used for ℓ1 adversaries during training only delays the overfitting (blue). In
contrast, the proposed training approach NCAT (green) does not display catastrophic overfitting due to gradient masking.

Since the goal here is to utilize only single adversarial train-
ing step, it becomes imperative that the loss that we opti-
mize over to generate the adversaries is smooth and does
not showcase gradient masking. Hence, we build upon
Nuclear-Norm Adversarial Training (NuAT) (Sriramanan
et al., 2021) to generate single-step adversaries. Formally,
in a given minibatch B, if X is the matrix composed of row-
wise vectorized pixel values of each image, ∆ is a matrix of
independently sampled Bernoulli noise, and Y is the matrix
containing the corresponding ground truth one-hot vectors,
maximization of the following loss function that utilizes the
pre-softmax values fθ(·) generates single-step adversaries:

L̃ = ℓCE (fθ(X +∆), Y )+

λ · ||fθ(X +∆)− fθ(X)||∗ (1)

Sriramanan et al. (2021) note that since the Nuclear norm
forms a tight convex relaxation for the rank of the predicted
matrix of logit values, the corresponding attack generates
diverse adversaries in a given minibatch, which then helps
mitigate robust overfitting. Crucially, we observe however
that this supplemental attack diversity is not sufficient for
single-step training on the ℓ1 threat model, as even NuAT
is observed to be susceptible to catastrophic failure in Fig-
1. However, by utilizing the dynamic curriculum schedule,
this phenomenon is successfully remedied in the proposed
method, NCAT. Indeed, using this routine, we demonstrate
for the first time that single-step training can be effectively
used to produce ℓ1 robust models.

4.2. Single-Step Training for ℓ∞ and ℓ2 Robustness

Since the ℓ∞ threat model is the most well-studied setting in
existing literature, we rely upon prior works to obtain excel-
lent baselines. To achieve robustness against ℓ∞ constrained

adversaries using single-step training, we utilize the current
state-of-the-art method, Nuclear Norm Adversarial Train-
ing (NuAT) (Sriramanan et al., 2021). We further seek to
incorporate other threat models during training, in order to
obtain models with non-trivial robustness against the union
of the ℓ1, ℓ2 and ℓ∞ threat models simultaneously. In order
to efficiently train against ℓ2 adversaries, we first propose to
modify the NuAT training algorithm to utilize this constraint
set, using ℓ2 norm based projections. However, similar to
Croce & Hein (2021b), we make the remarkable observation
that models that are trained solely on ℓ∞ adversaries achieve
a great degree of robustness versus ℓ2 adversaries on the
test set. We observe similar transfer of robustness from ℓ1
trained models toward the ℓ2 threat model as well. Thus, the
primary difficulty in achieving robustness to the union of
threat models appears to be that of training networks robust
to the ℓ1 and ℓ∞ threat models in particular.

4.3. Sampling Procedures to Improve Efficiency

To achieve robustness against the union of the three ℓp threat
models considered, it is plausible that training with three
distinct single-step attacks (constrained to ℓ1, ℓ2 and ℓ∞)
using the proposed approach in each minibatch will be effec-
tive. However, in this work, we primarily focus on reducing
the training complexity further, in order to effectively utilise
only a single-step attack for each minibatch. Awasthi et al.
(2021) proposed to utilize the multiplicative weights algo-
rithm, wherein the loss under different adversaries on a
hold-out validation set guides the sampling procedure, us-
ing a set of exponential running weights wi for each threat
model. However, we find that this is contingent on the effi-
cacy of adversaries utilized on the validation set, which can
be restrictive in practice due to computational constraints.
Building upon this, we find in practice that alternating be-
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Algorithm 1 Nuclear Curriculum Adversarial Training for
ℓp Norm Robustness

1: Input: Network fθ with parameters θ, Weight Averaged
Network fω with parameters ω, Training Data D with
input images of dimension d, Minibatch Size M, Attack
Size εp for each ℓp threat model, Epochs E, Learning
Rate η, Decision Function D, Curriculum Schedule C

2: for epoch = 1 to E do
3: εp = C(p)
4: for minibatch {(xi, yi)}Mi=1 ⊂ D do

5: X =

. . . x1 . . .

. . .
... . . .

. . . xM . . .

 , ∆ =

. . . δ1 . . .

. . .
... . . .

. . . δM . . .


6: δi ∼ Bernd(−α, α), X̃ = X+∆, Y =

 y1
...

yM


7: L̃ = ℓCE

(
fθ(X̃), Y

)
+ λ · ||fθ(X̃)− fθ(X)||∗

8: for p in D(θ) do
9: ∆ = ∆+ εp·Proj

(
∇∆L̃, Bp(εp)

)
10: X̃ = Clamp (X +∆, 0, 1)
11: end for
12: L = ℓCE(fθ(X), Y ) + λ · ||fθ(X̃)− fθ(X)||∗
13: θ = θ − 1

M
· η · ∇θL

14: ω = τ · ω + (1− τ) · θ
15: end for
16: end for

tween ℓ∞ and ℓ1 attacks across different minibatches with
a fixed frequency is remarkably effective. Thus, the pro-
posed defense, NCAT, uses nuclear norm based single-step
training following a curriculum schedule, such that different
threat models are selected for attack generation in different
minibatches based on a pre-fixed frequency. We present
a concise, summarised overview of the proposed training
approaches in Algorithm-1. Here, the Decision Function D
(L8, Alg-1) alternately outputs p = 1 or p = ∞ based on a
predetermined frequency, since such models are observed to
simultaneously achieve ℓ2 robustness without explicit train-
ing. As observed in prior works (Chen et al.; Sriramanan
et al., 2021), maintaining a exponential running average of
network weights (SWA (Izmailov et al., 2018)) helps im-
prove robust performance overall as well, particularly so in
this setup since different (random) minibatches are trained
with adversarial perturbations arising from different threat
models. Furthermore, this effectively reducing undesired
bias to a particular threat model due to auto-correlations that
arise in training.

5. Experiments and Analysis
In this work, we primarily consider the CIFAR-10
(Krizhevsky et al., 2009) and ImageNet-100 (Russakovsky
et al., 2014) datasets, since they have come to form the
benchmark for comparative analysis of adversarially ro-
bust models. Following prior works (Maini et al., 2020),
we consider constraint sets given by the ℓ∞ball of radius
8/255, ℓ2 ball of radius 0.5 and ℓ1 ball of radius 12 as the
threat models of interest, and as explained previously, we
attempt to train models that achieve non-trivial worst-case
accuracy against the union of such ℓp threat models. For
the ImageNet-100 dataset, the corresponding radii for ℓ1,
ℓ2 and ℓ∞threat models are 255, 1200/255 and 4/255 re-
spectively, following the constraints considered by Laidlaw
et al. (2021). We present results in the white-box setting,
wherein the adversary is cognizant of the model weights,
architecture and training scheme employed. To accurately
estimate worst-case performance, we focus our evaluation
pipeline to incorporate state-of-the-art attacks such as Au-
toAttack (Croce & Hein, 2020) for each ℓp threat model.
Furthermore, AutoAttack includes strong ℓ1 attack evalua-
tion baselines using techniques proposed by Croce & Hein
(2021a), wherein the authors note that significant improve-
ment in attack efficacy as compared to prior works. We
further include black-box evaluations, generalization to un-
seen domains, gradient masking checks and adaptive attacks
in Sections-A1, A2, A3 of the Appendix.

We first present results obtained using the ResNet-18 (He
et al., 2016) architecture on CIFAR-10 in Table-1. In the first
partition of the table, we present models trained solely on the
ℓ1 threat model. The current state-of-the-art is achieved by
APGD-ℓ1 (Croce & Hein, 2021a), which performs a 10-step
APGD attack during training in order to mitigate gradient
masking and catastrophic overfitting for ℓ1 constrained ad-
versaries. On the other hand, our method, NCAT-ℓ1 which
uses just a single-step attack for adversarial training achieves
ℓ1 robustness much more efficiently. We note that while
the multi-step approach has higher ℓ1 robustness (+3.6%),
the single-step NCAT trained model has significantly better
worst-case accuracy over all three threat models (+15.8). In-
deed, we note once again that NCAT represents the first-ever
successful single-step adversarial training on the ℓ1 threat
model, which also generalizes well to the unseen ℓ∞and ℓ2
threat models simultaneously.

In the second partition of Table-1, we present models that are
explicitly trained to be robust under the union of the ℓ∞, ℓ2
and ℓ1 threat models. Namely, we present comparative anal-
ysis with respect to existing multi-step adversarially trained
defenses such as AVG and MAX (Tramer & Boneh, 2019),
MSD (Maini et al., 2020), EAT (Croce & Hein, 2021b)
and SAT (Madaan et al., 2020). For these methods, we
primarily utilize robust evaluations as presented by Croce &
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Table 1: CIFAR-10: Prediction accuracy (%) of ResNet-
18 models trained using different methods under various
threat models. Robust evaluations are presented under the
constraint sets given by ε1 = 12, ε2 = 0.5 and ε∞ = 8/255
for individual threat models, along with worst-case and
average-case performance under their union.

Method Number of Clean Worst-Case Average ℓ1 ℓ2 ℓ∞
AT Steps Acc Acc Acc Acc Acc Acc

ℓ1 Training Alone

APGD-ℓ1 10 85.9 22.1 48.8 59.5 64.9 22.1
NCAT-ℓ1 1 80.6 36.8 53.2 55.5 67.4 36.8

Training under Union of Threat Models

SAT 13.33† 83.9 40.4 54.2 54.0 68.0 40.7
AVG 30 84.6 40.1 53.8 52.1 68.4 40.8
MAX 30 80.4 44.0 53.4 48.6 66.0 45.7
MSD 50 81.1 43.9 53.4 49.5 65.9 44.9
EAT 10†† 82.2 42.4 54.6 53.6 67.5 42.7
NCAT 1 80.3 42.6 53.3 46.9 67.0 46.0
NCAT+ 1 77.5 43.7 53.4 48.4 65.7 46.1

Hein (2021b) to enable fair comparisons, which comprise
of re-implemented models that obtain higher accuracies as
compared to values reported in the original papers. We first
note that SAT† requires 13.33 adversarial attack steps dur-
ing training, since it utilizes 10-step attacks for ℓ∞and ℓ2
adversaries, and 20 attack steps for ℓ1 adversaries to miti-
gate gradient masking, indicating the considerable difficulty
involved in achieving ℓ1 robustness. In contrast, EAT†† re-
lies upon 10-step fine-tuning of a network that is already
robust against a single threat-model. The current state-of-
the-art approaches comprise of MSD and MAX that achieve
44% worst-case accuracy, while utilizing a budget of 50 and
30 attack steps respectively during training. We observe
that the proposed approach, NCAT achieves comparable
worst-case and average-case performance over the threat
models considered, while requiring a significantly smaller
computational footprint during training. Furthermore, the
proposed method facilitates the trade-off between clean ac-
curacy and worst-case performance as indicated by NCAT+

which achieves near-SOTA robust performance.

In Table-2, we present results on models trained with the
WideResNet-28-10 (Zagoruyko & Komodakis, 2016) ar-
chitecture to demonstrate the scalability of the proposed
defense to high-capacity networks. We thus establish the
efficacy of the curriculum schedule combined with nuclear
norm based training in mitigating catastrophic overfitting,
enabling efficient training of these large networks.
In Table-3, we present evaluations on the ImageNet-100
dataset, wherein we utilize ResNet-18 networks to reduce
computational demands. We observe that NCAT-ℓ1 attains
remarkable robust accuracy on unseen ℓ∞and ℓ2 adversaries,
even achieving 26.6% accuracy against the Perceptual
Projected Gradient Descent (PPGD) attack (Laidlaw et al.,
2021), which forms one of the strongest attacks known to
date. Further, we observe that the NCAT trained achieves

Table 2: CIFAR-10: Prediction accuracy (%) of
WideResNet-28-10 models trained using different methods
under various threat models. Robust evaluations are pre-
sented under the constraint sets given by ε1 = 12, ε2 = 0.5
and ε∞ = 8/255 for individual threat models, along with
worst-case and average-case performance under their union.

Method Number of Clean Worst-Case Average ℓ1 ℓ2 ℓ∞
AT Steps Acc Acc Acc Acc Acc Acc

ℓ1 Training Alone

APGD-ℓ1 10 83.7 30.7 52.5 61.6 65.1 30.7
NCAT-ℓ1 1 80.7 39.2 54.6 56.1 68.6 39.3

Training under Union of Threat Models

SAT 13.33† 80.5 45.7 56.2 55.9 66.7 45.9
AVG 30 82.5 45.1 56.1 55.0 68.0 45.4
MAX 30 79.9 47.4 54.6 50.2 65.3 48.4
MSD 50 80.6 46.9 55.1 51.7 65.6 48.0
EAT 10†† 79.9 46.4 56.3 56.0 66.2 46.6
NCAT 1 81.5 44.6 54.8 49.9 68.3 46.3

Table 3: ImageNet-100: Prediction accuracy (%) of models
trained using different methods under various threat models.
Robust evaluations are presented under the constraint sets
given by ε1 = 255, ε2 = 1200/255 and ε∞ = 4/255 for
individual threat models, along with worst-case and average-
case performance under their union.

Method Number of Arch Clean Worst-Case Average ℓ1 ℓ2 ℓ∞ PPGD
AT Steps Acc Acc Acc Acc Acc Acc Acc

ℓ∞-AT 10 RN50 81.7 0.8 20.7 0.8 3.7 55.7 1.5
PAT 10 RN50 72.6 37.8 41.2 41.2 37.7 45.0 29.2

NCAT-ℓ1 1 RN18 64.9 41.1 43.9 48.3 41.4 42.1 26.6
NCAT 1 RN18 63.9 44.6 43.9 46.8 41.9 45.7 29.1

state-of-the-art worst-case ℓp accuracy, while attaining ro-
bustness similiar to that of Perceptual Adversarial Training
(Laidlaw et al., 2021) for the PPGD attack, with the latter be-
ing a model that was explicitly trained on such adversaries.

6. Conclusions
In this work, we develop an efficient adversarial training
procedure, NCAT, to train networks that are robust against a
union of ℓp threat models, namely ℓ∞, ℓ1 and ℓ2. To do so,
we first focus on developing an efficient, yet effective robust
training procedure for the ℓ1 threat model, by incorporating
a curriculum schedule to mitigate catastrophic overfitting.
Indeed, in this work we present the first ℓ1 constrained
robust model trained solely using single-step adversaries,
achieving robustness similar to that of multi-step SOTA
approaches. Furthermore, we extend the proposed method
to achieve worst-case robustness under multiple ℓp norm
constraints simultaneously. Compared to the current
SOTA that uses 30 adversarial attack steps for its training
procedure to achieve 44% robust accuracy on CIFAR-10,
our method yields 43.7% robustness while solely utilizing
single-step adversaries during the training routine. This
thereby greatly reduces the computational requirements
needed to achieve SOTA-equivalent robust performance.
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Appendix

A1. Black-Box and Zeroth-Order Attacks

Table A1: Black-Box and Unseen attacks on CIFAR-10:
Prediction accuracy (%) of ResNet-18 models trained using
NCAT-ℓ1 and NCAT.

Method Number of Clean Square Square Common Elastic Gabor
AT Steps Acc ℓ1 ℓ∞ Corr.

APGD-ℓ1 10 87.1 71.8 40.8 72.0 48.7 12.4
NCAT-ℓ1 1 81.7 65.2 48.5 67.0 54.1 12.9
NCAT 1 80.3 60.1 53.8 65.0 71.4 14.9

While white-box attacks that utilize first-order methods gen-
erally form the strongest suite of adversarial perturbations,
it is plausible that models are not inherently robust, but
rather rely upon obfuscated or shattered gradients (Athalye
et al., 2018) to falsely display high robust accuracies against
such attacks. In this section, we thus present robust evalu-
ations using attack methods that do not rely upon gradient
information to craft adversaries.

For Black-box evaluation, we primarily rely on the Square
attack (Andriushchenko et al., 2020), since it has been
shown to be the strongest gradient-free attack presently.
As shown in Table-A1, the NCAT and NCAT-ℓ1 models
achieves significantly higher robust accuracy on the Square
Attack as compared to the evaluation presented in Table-1 of
the Main paper, indicating that zeroth-order adversaries are
weaker than gradient-based attacks. As expected, we also
note that the NCAT model trained explicitly on the union of
threat models obtains higher Square ℓ∞ accuracy as com-
pared to the NCAT-ℓ1 model. On the other hand, for Square
ℓ1 adversaries, the NCAT-ℓ1 model outperforms NCAT by
5%, since training on specific adversaries on a narrow threat
model is more efficacious against similar adversaries dur-
ing test-time. Comparing with the APGD-ℓ1 which takes
10 adversarial steps, our approach transfers significantly
better over attacks from other threat models:NCAT-ℓ1 per-
forms roughy 8% better than APGD-ℓ1 on Square Attack-
ℓ∞, though ℓ1 specific robustness is lower as seen with the
Square-ℓ1 attack.

We further verify that such black-box adversaries are indeed
weaker than the suite of white-box attacks presented in
the main paper, thereby helping confirm the absence of
obfuscated gradients in the proposed NCAT trained model.

A2. Generalization to Unseen Domains
In the right-hand partition of Table-A1, we present evalua-
tions of the NCAT-ℓ1 and NCAT trained models on domain
shifts that are not seen during training. We observe that

the single-step trained models generalize well to images
with common corruptions, obtaining 67% and 65% on the
CIFAR10-C dataset (Hendrycks & Dietterich, 2019) with
the highest severity setting (5). The slight increase (0.2%)
in the case of the NCAT-ℓ1 is likely due to the base clean
accuracy being higher as compared to the NCAT model.
Similarly, the APGD-ℓ1 trained model obtains higher accu-
racy on CIFAR10-C largely due to higher performance on
clean samples. We also evaluate the model on Elastic and
Gabor Transformations as introduced by Kang et al. (2019).
For Elastic image distortions, the NCAT model performs
significantly better (+17.4%) as compared to the NCAT-ℓ1
which was trained solely against ℓ1 adversaries. Further,
we observe that single-step training with NCAT or NCAT-
ℓ1 achieves higher accuracy as compared to the APGD-ℓ1
trained model, with even NCAT-ℓ1 achieving an improve-
ment of 5.4% on Elastic distortions over the latter, indicating
the improved generalization seen with single-step training.
However, for other distortions such as Gabor, prediction
accuracy is significantly lower for all three models.

A3. Gradient Masking Checks and Adaptive
Attacks

In order to verify that the white-box attacks utilized are
indeed effective in identifying strong adversaries within
the considered threat model of interest, we present more
detailed robust evaluations (Athalye et al., 2018) for the pro-
posed NCAT trained ResNet-18 model in Fig.-A1. Here, we
present the accuracy versus epsilon plot, and cross-entropy
loss versus epsilon plot for the NCAT-ℓ1 model in the first
column on ℓ1 APGD-CE (Croce & Hein, 2020) adversaries.
In the latter three columns, we present the same metrics
on ℓ1, ℓ2 and ℓ∞ APGD-CE attacks for various values of
epsilon for the NCAT model trained to be robust against the
union of such adversaries. In each case, we observe that the
robust accuracy monotonically decreases to zero as the per-
turbation budget (ε) is increased. Further, the cross-entropy
loss monotonically increases as the perturbation budget (ε)
is increased. This shows that gradient-based white-box
attacks are strong and effective, with a smooth local loss
landscape, indicating the absence of gradient masking in the
single-step defenses NCAT-ℓ1 and NCAT.

Further, we evaluate the NCAT defense against adaptive
adversaries that incorporate modified objectives to obtain
stronger attacks, since we assume that adversaries are cog-
nizant of the training methodology used. We thus maximise
the Nuclear Norm objective, (Eq-1 of the Main paper) to



Toward Efficient Robust Training against Union of ℓp Threat Models

L1-Robust Model performance 
on CIFAR-10 against L1 attack

Union-Robust Model performance on CIFAR-10 against individual threat-models

L1 attack L2 attack L∞ attack

Perturbation Strength ε Perturbation Strength ε Perturbation Strength ε Perturbation Strength ε/255

A
cc

ur
ac

y
C

E 
Lo

ss

A
cc

ur
ac

y
C

E 
Lo

ss

Figure A1: Robustness across varying Perturbation Strengths Row-1: Robust Accuracy is plotted for APGD-CE
adversaries of different perturbation strengths for the NCAT-ℓ1 model in the left partition, and for the NCAT model robust in
the right partition. Row-2: Cross-Entropy Loss is plotted for APGD-CE adversaries of different perturbation strengths for
the NCAT-ℓ1 model in the left partition, and for the NCAT model robust in the right partition.

generate adaptive adversaries:

L̃ = ℓCE (fθ(X +∆), Y ) + λ · ||fθ(X +∆)− fθ(X)||∗
(A1)

Since the AutoAttack framework utilizes automatic updates
to the step-size with restarts at the iteration that maximizes
the overall loss, the incorporation of the Nuclear norm regu-
larizer is sub-optimal since batch-statistics across different
images weaken the attack due to the reduced specificity
in perturbations. We further implement an ℓ1-version of
GAMA-PGD (Sriramanan et al., 2020) to incorporate the
Nuclear norm objective, with a decaying coefficient for the
regularization term in order to mitigate this effect. However,
we find that this adaptive adversary is weak once again, with
NCAT achieving 75.3% accuracy. Thus, we find that the
adaptive attacks are not stronger than the evaluations per-
formed using AutoAttack as presented in the Main paper,
and that the latter is sufficient to obtain a reliable estimate
of the worst-case ℓ1 accuracy obtained by the NCAT model.

A4. Steepest Ascent with Single-Step
Optimization

As explained in the main paper, we generate the Nuclear
Norm attack by identifying a perturbation that maximizes
the loss L̃ as in Eq-A1, such that it conforms to the ℓ1 ball
and [0,1] pixel-wise image constraints. Assuming a first-
order Taylor series approximation for the loss incurred by
the network fθ, the steepest ascent direction to maximize

loss would be parallel to the gradient direction in the un-
constrained setting. Thus, if g represents the gradient of the
loss for an image x, for steepest ascent of loss we have:

max
δ

[
d∑

i=1

giδi

]
such that

(a) 0 ≤ xi + δi ≤ 1 ∀ i, and (b) ||δ||1 ≤ ϵ1 (A2)

In the absence of constraint (b), the optimal perturbation δ
is given by δ = M where Mi denotes the deviation budget
required at pixel i to saturate the same to the pixel constraint
[0, 1] parallel to the gradient gi, and can defined formally
as:

Mi =

{
1− xi if gi ≥ 0

− xi if gi < 0

When the overall available budget is limited by ε1 as in
constraint (b), such that ||M ||1 < ε1, the constraint is in-
active, and the solution is unaltered. On the other hand,
if constraint (b) is active, the solution is necessarily dif-
ferent, wherein a reduction in the perturbation allocated
for some pixel locations is made mandatory. Thus, inner-
product in Eq-A2 is maximized by assigning the pertur-
bations Mi in priority-order for different pixel locations,
based on decreasing magnitude of the absolute gradient val-
ues. Let σ denote the sorted permutation of indices such
that aσ(1) ≥ aσ(1) ≥ · · · ≥ aσ(d), where ai = |gi| repre-
sents the gradient magnitudes at different pixel locations.
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Further, let the cumulative budget utilized be defined as
Si = Σi

j=1|Mσ(j)|. Since each term |Mσ(j)| in the sum-
mand is positive, Si increases monotonically. Thus with
Ii = max{0, ε1 − Si−1} denoting support variables for
indices which receive a lower perturbation allocation due
to constraint (b), the optimal single-step perturbation corre-
sponding to image x is then defined as:

δ∗σ(i) =

{
Mσ(i) if Si ≤ ε1

Mσ(i) · Ii if Si > ε1
(A3)

Thus, in an ℓ1 constrained attack the gradients have to be
sorted by their magnitude, which requires O(d · log d) com-
plexity where d represents the image dimensionality. How-
ever, in practice this overhead is observed to be exceedingly
minimal relative to data loading times etc.

A5. Implementation Details and Training
Methodology

A5.1. Details on Datasets

In this work, we present our evaluations on the CIFAR-10
(Krizhevsky et al., 2009) and ImageNet-100 (Russakovsky
et al., 2014) datasets, as they have come to form the bench-
mark datasets for robust evaluations.

CIFAR-10 (Krizhevsky et al., 2009) is a ten-class dataset,
consisting of 32 × 32 sized RGB images arising from the
following categories: "airplane", "automobile", "bird", "cat",
"deer", "dog", "frog", "horse", "ship" and "truck". The test
set of CIFAR-10 consists of 10,000 images, and the original
training set consists of 50,000 images. The latter is split
in practice, to form 49,000 training images and a hold-out
validation set of 1000 images. On this dataset, we present
robust evaluations against adversaries constrained under an
ℓ1 ball of radius 12, ℓ2 ball of radius 0.5 and an ℓ∞ ball of
radius 8/255, similar to the setting considered in prior work
(Maini et al., 2020; Croce & Hein, 2020).

ImageNet-100 is a hundred-class subset of the original Im-
ageNet Large Scale Visual Recognition Challenge (Rus-
sakovsky et al., 2014), wherein every tenth class by Word-
Net ID order is retained, similar to the methodology fol-
lowed by Laidlaw et al. (2021). This dataset consists of
224× 224 sized RGB images arising from a diverse set of
classes. Given the high-dimensional nature of the images,
and the diversity of classes, it is quite challenging to train
robust models effectively on this dataset. On this dataset, we
present robust evaluations against adversaries constrained
under an ℓ1 ball of radius 255, ℓ2 ball of radius 1200/255
and an ℓ∞ ball of radius 4/255, similar to Laidlaw et al.
(2021). Furthermore, images in this dataset are more real-
istic, with higher visual fidelity as compared to CIFAR-10.
We thus present results on the unseen Neural Perceptual

Threat Model (NPTM) (Laidlaw et al., 2021) on this dataset
in Table-3 of the Main Paper using the Perceptual Projected
Gradient Descent (PPGD) attack for the medium NPTM
bound (0.5).

A5.2. Training and Hyperparameter Details

In this work, all training and experimental evaluations were
performed using Pytorch (Paszke et al., 2019). We primarily
utilize the ResNet-18 (He et al., 2016) architecture for both
the CIFAR-10 and ImageNet-100 datasets. In addition, we
present results on models trained on CIFAR-10 using the
WideResNet-28-10 (Zagoruyko & Komodakis, 2016) archi-
tecture, that is, a WideResNet network with a depth of 28,
and a width-factor of 10. We utilise a 100-epoch training
schedule for the ResNet-18 models, and a 50-epoch regime
for training WideResNet models. In all training runs, we use
a cyclic schedule (Smith, 2015), with the maximum learning
rate set to 0.1. We further utilize the Stochastic Gradient
Descent (SGD) optimizer using a momentum parameter
set to 0.9 and weight-decay of 5e-4. Further, we utilize
Random-Crop and Random-Horizontal-Flip as augmenta-
tions for training images. Similar to prior works (Izmailov
et al., 2018; Sriramanan et al., 2021), we utilize Stochastic
Weight Averaging with the exponential parameter τ being
largely optimal, together with a setting of 0.9998 with a
batch-size of 64. For NCAT-ℓ1, we set the coefficient of
the Nuclear Norm regularizer λ to 5, and for NCAT we use
λ = 3 for ℓ1 adversaries and λ = 5 for ℓ∞ adversaries to
achieve robustness against the union of threat models. The
proposed approach NCAT requires the same computational
complexity in training as Nuclear Norm Adversarial Train-
ing (NuAT), and thus achieve the same reduction in compu-
tational requirements over existing multi-step approaches as
reported by Sriramanan et al. (2021). We use Nvidia RTX
2080 TI and Nvidia RTX A4000 GPU cards for training and
experimental evaluations.

A5.3. Details on Curriculum Schedule

As explained in Section-4.1 of the Main Paper, we propose
to utilize a curriculum schedule for training on adversar-
ial perturbations of increasing difficulty over the training
regime. To do so, we linearly increase the radius of the ℓp
ball considered for generating adversaries, thereby signif-
icantly reducing the extent of overfitting and eliminating
catastrophic failure entirely during training. Further, we
linearly increase the coefficient of the Nuclear norm regular-
ization term λ in-sync with the increase in ℓp radii. These
techniques are particularly efficacious when we seek to
achieve robustness against multiple threat models simulta-
neously, since different threat models can offer relatively
different strengths of adversaries as the radii are increased
during training. Similar to Sriramanan et al. (2020), we also
set the value of λ used in the attack to zero in alternate mini-
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batches, in order to further boost diversity of adversaries
seen during the training regime. In practice, we require that
the model is trained on the final union of threat models for
a sufficiently short duration, comprising of a few epochs
of training. Hence, we linearly ramp up the ℓp radii such
that adversaries are generated from the final threat model of
interest in the last 10 epochs of training, following which
the radii are kept constant.

A6. Ablation Analysis

Table A2: Ablations on CIFAR-10: Prediction accuracy
(%) of ResNet-18 models trained on the ℓ1 threat model us-
ing NCAT-ℓ1 (left), and on the union of ℓ1, ℓ2 and ℓ∞ threat
models using NCAT (right). Robust accuracy is computed
using only ℓ1 adversaries in the left partition, while worst-
case accuracy over adversaries constrained under the union
of ℓ1, ℓ2 and ℓ∞ threat models is presented in the right par-
tition.

Method Clean ℓ1 Robust Method Clean Worst-Case
Acc Acc Acc Acc

A1: RFGSM-ℓ1 89.9 0.0 A5: Exp. Wts. Samp 79.9 39.2
A2: RFGSM-ℓ1 + Early-stop. 71.8 32.5 A6: NCAT-AVG 79.1 40.4
A3: NuAT-ℓ1 92.8 1.2 A7: NCAT p = 0.4 80.9 42.4
A4: NuAT-ℓ1 + Early-stop. 81.2 36.1 A8: NCAT p = 0.6 80.1 42.0

NCAT-ℓ1 80.6 55.5 NCAT 80.5 42.5

In this section, we perform ablative experiments to study
the significance of different components in the proposed
defense. In the left partition of Table-A2, we present results
for various ℓ1 trained models, while the right partition
corresponds to models that are trained to be robust against
adversaries under the union of ℓ1, ℓ2 and ℓ∞ threat models.
In Ablations A1 and A2, we present results obtained using
RFGSM training (Wong et al., 2020), wherein we note that
catastrophic failure occurs early during the course of train-
ing. Even with early-stopping as suggested by Wong et al.
(2020), the model obtains low clean accuracy (71.8%), and
subpar robust accuracy due to the early collapse in training.
We observe a similar phenomenon with Nuclear Norm
adversarial training (A3,A4), wherein the model undergoes
failure at a delayed phase as compared to RFGSM trained
models. Thus, though NuAT obtains improved results, catas-
trophic failure during training results in the sub-par models
with very low robust performance (36.1%). However, with
the curriculum schedule as explained in Section-A5.3 and
Section-4.1 of the Main Paper, the training dynamics in
NCAT is highly stabilized, resulting in the first ℓ1 robust
model trained solely using single-step adversaries.

In the right partition, we first present ablation A5, wherein
the frequency of sampling adversaries from different threat
models is dynamically altered according to an exponential
weights algorithm as proposed by Awasthi et al. (2021),
based on metrics recorded on a hold-out validation set. In
practice, these updates are seen to be excessively sensitive

to the degree of convergence achieved by adversaries on
the validation set resulting in lower robust accuracy on the
union of adversaries (39.2%), and further requires additional
hyperparameter tuning for the exponential weighting, along
with an added computational budget for recording valida-
tion performance at each epoch. In Ablation A6, we present
NCAT-AVG, which uses a Decision Function D that outputs
the collection of p = {1, 2,∞} in Line-8 of Alg-1, and
effectively uses a budget of three single-step attacks, one
for each threat model. Further, we observe that the robust
accuracy under the union of threat models is reduced de-
spite the increase in training cost, and is accompanied with
reduction in clean performance as well. Lastly, we present
ablations A7 and A8 where the frequency of sampling ℓ∞
based adversaries is changed to p = 0.4, p = 0.6 respec-
tively. In practice, it is highly plausible that a subset of
specified threat models is significantly simpler to achieve
robustness as compared to other adversaries. This sampling
mechanism helps incorporate the same in a simple manner,
and subsumes NCAT which utilizes p = 0.5 for all experi-
ments. This sampling technique helps provide yet another
mechanism for trading off robustness for one threat model
against another, as per design or specification requirements.
For example, while both ablation models A7, A8 achieve
similar ℓp-union robustness (42.4% and 42%), on the spe-
cific ℓ1 and ℓ∞ threat models, A7 achieves 48.8% and 44.7%
robust accuracy respectively, while A8 achieves 45.1% and
46.5% robust accuracy respectively. This clearly indicates
the trade-off achieved with sampling, wherein with p = 0.6,
the model achieves higher ℓ∞ robustness, alongside a reduc-
tion in ℓ1 accuracy.

A7. Stability of NCAT

Table A3: Stability across Reruns Prediction accuracy (%)
of ResNet-18 models trained on the ℓ1 threat model using
NCAT-ℓ1 (left), and on the union of ℓ1, ℓ2 and ℓ∞ threat
models using NCAT (right). Robust accuracy is computed
using only ℓ1 adversaries in the left partition, while worst-
case accuracy over adversaries constrained under the union
of ℓ1, ℓ2 and ℓ∞ threat models is presented in the right
partition.

NCAT-ℓ1 Clean ℓ1 Robust NCAT Clean Worst-Case
Acc Acc Acc Acc

Rerun-1 80.71 55.60 Rerun-1 80.46 42.58
Rerun-2 80.43 55.67 Rerun-2 80.52 42.51
Rerun-3 80.56 55.32 Rerun-3 80.38 42.45
Rerun-4 80.39 55.43 Rerun-4 80.56 42.27
Rerun-5 80.60 55.51 Rerun-5 80.47 42.46

Mean 80.54 55.51 Mean 80.48 42.45
Std-Dev 0.13 0.14 Std-Dev 0.07 0.11

In Table-A3, we analyze the variation in predictions accu-
racy for both clean and adversarial samples, for ResNet-18
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models trained on CIFAR-10 using five different random
seeds on the same Nvidia RTX 2080 TI GPU, with hyper-
parameter frozen across reruns. In the left-partition of the
table, we present results for the model trained to be robust
against ℓ1 adversaries in particular, using NCAT-ℓ1, while
in the partition on the right, we present results for the model
trained to be robust against adversaries under the union of
ℓ1, ℓ2 and ℓ∞ threat models. We observe that models trained
using either NCAT-ℓ1 or NCAT are very stable across reruns,
with variance levels similar to that reported from multi-step
training approaches such as PGD-AT (Madry et al., 2018;
Rice et al., 2020) and TRADES (Zhang et al., 2019). Fur-
thermore, we note that NCAT based adversarial training
does not suffer from catastrophic failure during any of the
runs, in sharp contrast to that seen from RFGSM or NuAT
based training, wherein catastrophic failures are observed
in almost every training run.


