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Robustness in deep learning: The width (good),
the depth (bad), and the initialization (ugly)
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Abstract
We study the average robustness notion in deep
neural networks in (selected) wide and narrow,
deep and shallow, as well as lazy and non-lazy
training settings. We prove that in the under-
parameterized setting, width has a negative ef-
fect while it improves robustness in the over-
parameterized setting. The effect of depth closely
depends on the initialization and the training
mode. In particular, when initialized with Le-
Cun initialization, depth helps robustness with
lazy training regime. In contrast, when initial-
ized with Neural Tangent Kernel (NTK) and
He-initialization, depth exacerbates the robust-
ness. Moreover, under non-lazy training regime,
we demonstrate how the width of a two-layer
ReLU network benefits robustness. Our theoret-
ical developments improve the results by Huang
et al. (2021); Wu et al. (2021) and are consis-
tent with Bubeck and Sellke (2021); Bubeck et al.
(2021).

1. Introduction
It is now well-known that deep neural networks (DNNs) are
susceptible to adversarially chosen, albeit imperceptible per-
turbations to their inputs (Goodfellow et al., 2015; Szegedy
et al., 2014). This lack of robustness is worrying as DNNs
are now deployed in many real-world applications (Eykholt
et al., 2018). As a result, new algorithms are more and more
being developed to defend against adversarial attacks to
improve the DNN robustness. Among the current defense
methods, the most commonly used and arguably the most
successful method is adversarial training based minimax
optimization (Athalye et al., 2018; Croce and Hein, 2020;
Madry et al., 2018).

The literature focuses on several aspects of the robustness
issue, from algorithms to their initialization as well as from
width of neural networks to their depth (i.e., the archi-
tecture). On the practical side, Madry et al. (2018) ad-
vocate that adversarial training requires more parameters
(e.g., width) for better performance in minimax optimiza-

Figure 1. Schematic of our deep fully connected ReLU neural net-
work.

tion, which would fall into the so-called over-parameterized
regime1 (Zhang et al., 2021). On the theory side, recent
works suggest that over-parameterization may damage the
adversarial robustness (Huang et al., 2021; Wu et al., 2021;
Zhou and Schoellig, 2019). In stark contrast, Bubeck and
Sellke (2021); Bubeck et al. (2021) argue that the robustness
of DNNs needs enough parameters to be guaranteed.

Our work is motivated to investigate this apparent contradic-
tion in theory, and to close the gap as much as possible. We
begin with a definition of perturbation stability of DNNs,
which allows for average robustness, following the spirit of
Wu et al. (2021); Dohmatob and Bietti (2022). Specifically,
given a data point x ∼ DX , the ϵ-perturbation stability
P(f , ϵ) of a deep ReLU neural network f (cf., Fig. 1) is
given by:

P(f , ϵ) = Ex,x̂

∥∥∇xf(x)
⊤(x− x̂)

∥∥
2
,

∀x ∼ DX , x̂ ∼ Unif(B(ϵ,x)) ,

where x̂ is uniformly sampled from an ℓ2 norm ball of x
with radius ϵ, denoted as Unif(B(ϵ,x)).

Based on this definition, we study the average robustness of
neural networks under different initializations in (selected)
wide and narrow, deep and shallow, as well as lazy and
non-lazy2 training settings. Generally, non-lazy training
makes the analysis of neural networks intractable as DNNs
in this regime cannot be simplified as a time-independent

1Over-parameterized regime works in the setting that the num-
ber of parameters in DNN is (much) larger than the number of
training data.

2Here the lazy/non-lazy training regime indicates that neural
network parameters change little/much during training. These
two phases are determined by different initializations (Woodworth
et al., 2020; Luo et al., 2021).
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model (Chizat and Bach, 2018), and accordingly, the anal-
ysis in this regime is mainly restricted to the two-layer set-
ting (Mei et al., 2018; 2019).

Overall, our results suggest that the width (good) helps
robustness in the over-parameterized regime but the depth
(bad) can help only under certain initializations (ugly). To be
specific, we make the following contributions and findings
under the lazy/non-lazy training regimes, see Table 1.

In the lazy training regime, we derive upper-bounds, sug-
gesting that

• along with the increase in width, the average ro-
bustness P(f , ϵ) first becomes worse in the under-
parameterized setting and then gets better, and finally
tends to be a constant in highly over-parameterized re-
gions, which implies the existence of phase transition.

• the depth has more complex tendency on average ro-
bustness, which largely depends on the initialization
and the training mode. It can be grouped into two
main classes (cf., Table 1): depth helps robustness in
an exponential order under LeCun initialization (Le-
Cun et al., 2012), whereas it exacerbates robustness in
a polynomial order under He-initialization (He et al.,
2015) and under Neural Tangent Kernel (NTK) initial-
ization (Allen-Zhu et al., 2019a).

Surprisingly, standard tools on training dynamics of neu-
ral networks (Allen-Zhu et al., 2019a; Du et al., 2018a)
are sufficient to obtain our bounds, which explain the rela-
tionship between average perturbation robustness and the
structural/architectural parameters of neural network. Our
theoretical developments improve the results by Huang et al.
(2021); Wu et al. (2021), and are supported by empirical
evidence.

In the non-lazy training regime, we derive upper-bounds
for two-layer networks, suggesting that

• the width improves average robustness P(f , ϵ) under
different initializations.

We also derive a sufficient condition to identify when DNNs
enter in this regime, as an initial but first attempt on under-
standing DNNs in this regime. Our technical contribution
lies in connecting average robustness to changes of neu-
ral network parameters during the early stages of training,
which could expand the application scope of deep learn-
ing theory beyond lazy training analysis (Jacot et al., 2018;
Allen-Zhu et al., 2019b).

Notations: We use the shorthand [n] := {1, 2, . . . , n}
for some positive integer n. We denote by a(n) ≲ b(n):
there exists a positive constant c independent of n such

that a(n) ⩽ cb(n). The standard Gaussian distribution is
N (0, 1) with the zero-mean and the identity variance. Uni-
form distribution inside the sphere is Unif(B(ϵ,x)) with
the center x and radius ϵ. We follow the standard Bach-
mann–Landau notation in complexity theory e.g., O, o, Ω,
and Θ for order notation.

2. Related work
DNNs are demonstrated to be fragile, sensitive to adversari-
ally chosen but undetectable noise both empirically(Szegedy
et al., 2014) and theoretically Huang et al. (2021); Bubeck
and Sellke (2021). Adversarial training (Athalye et al., 2018;
Croce and Hein, 2020; Zhang et al., 2020b) is a reliable way
to obtain adversarially robust neural network. Nevertheless,
improving the overall robustness of neural networks is still
an unsolved problem in machine learning, especially when
coupling with initializations and parameters.

Over-parameterized neural networks under lazy/non-
lazy training regimes: Modern DNNs in practice (He et al.,
2016) work under the setting where the number of parame-
ters is (much) larger than the number of training data. Anal-
ysis of DNNs in terms of optimization (Safran et al., 2021;
Zhou et al., 2021) and generalization (Cao and Gu, 2019)
has received great attention in deep learning theory (Zhang
et al., 2021), and further brings in new insights, e.g., double
descent (Hassani and Javanmard, 2022), implicit bias (You
et al., 2020).

In deep learning theory, neural tangent kernel (NTK) Jacot
et al. (2018) and mean field analysis are two powerful tools
for neural network analysis. To be specific, NTK builds an
equivalence between training dynamics by gradient-based
algorithms of DNNs and kernel regression under a specific
initialization, and thus allows for deep networks analysis
(Allen-Zhu et al., 2019a; Du et al., 2019; Chen et al., 2020).
However, this way actually requires neural networks falling
in a lazy training regime (Chizat et al., 2019), where neu-
ral networks are able to achieve zero training loss but the
parameters change little, or even remain unchanged during
training. In contrast, mean-field theory establishes global
convergence by casting network weights during training as
an evolution in the space of probability distributions under
some certain initialization to results (Mei et al., 2018; Chizat
and Bach, 2018). This strategy goes beyond lazy training
regime, which allows for neural networks parameters chang-
ing in a constant order after training.

If neural networks parameters changes a lot after training,
or even tend to infinity, then neural networks work in non-
lazy training regime. Analysis of DNNs under this setting
appears intractable and challenging, so current work mainly
focus on two-layer neural networks (Maennel et al., 2018;
Luo et al., 2021).
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Table 1. Comparison of the average robustness of a deep ReLU neural network (see Fig. 1) under three common Gaussian initializations
with different variances. A formal definition of this neural network refers to Eq. (1).

Initialization name Initialization form Our bound for P(f , ϵ)/ϵ

LeCun et al. (2012) β = βL =
√

1
m , β1 =

√
1
d , α = 1

(√
πL3m
8d e−m/L3

+ 1

)
(
√
2
2 )L−2

He et al. (2015) β = βL =
√

2
m , β1 =

√
2
d , α = 1

√
πL3m
2d e−m/L3

+ 1

Allen-Zhu et al. (2019a) β = β1 =
√

2
m , βL =

√
1
o , α = 1

√
πL3m
4o e−m/L3

+ 1

Robustness and over-parameterization Goodfellow et al.
(2015) demonstrate that adversarial learning helps robust-
ness and reduces overfitting, and in the following, many
works focus on the trace the origin and influencing fac-
tors of adversarial examples and robustness for neural net-
work (Schmidt et al., 2018; Zhang et al., 2020a; Allen-Zhu
and Li, 2022). The relation between model capacity and ro-
bustness is empirically investigated by Madry et al. (2017),
i.e., neural network with insufficient capacity can seriously
exacerbate the robustness. Bubeck et al. (2021) theoreti-
cally study the inherent trade-off between the size of neural
networks and their robustness, and they claim that over-
parameterization is necessary for the robustness of two-layer
neural networks.

However, some recent works propose the opposite view.
Under the lazy training regime, Huang et al. (2021) demon-
strate that when over-parameterized neural networks get
wider, the robustness will be exacerbated in a polynomial or-
der. At the same time, the depth exacerbates the robustness
in an exponential order. Wu et al. (2021) affirm the view
of Huang et al. (2021) on the width. However for depth,
they derive a stronger bound that the robustness gets worse
in a polynomial decay as depth increases. In addition, Gao
et al. (2019) also make a similar view: more model capacity
(i.e., wider width and deeper depth) leads to the robustness
of neural networks worse. These contradict the previous
results in theoretical and experimental. In this work, we
adopt a complementary view to these vast literature. We
provide an in-depth theoretical analysis to investigate this
apparent contradiction in theory, and to close the gap as
much as possible.

3. Problem setting
Let X ⊆ Rd and Y ⊆ Ro be compact metric spaces. We
assume that the training set Dtr = {(xi,yi)}ni=1 with data
dimension x ∈ Rd and label dimension y ∈ Ro is drawn
from a probability measure D on X × Y . Its marginal
data distribution is denoted by DX . The goal of the clas-
sification task is to find a neural network f : X → Y
such that f(x;W ) parameterized by W is a good ap-
proximation of the label y ∈ Y corresponding to a new
sample x ∈ X . In this paper, we use the empirical risk

L(W ) = 1
2n

∑n
i=1 ∥f(xi;W )− yi∥22. Then we make the

following assumptions.

Assumption 1. We assume that the data satisfy ∥x∥2 = 1.

Remark: This is a standard assumption in theory on over-
parameterized neural networks and it is also commonly used
in practice. (Du et al., 2018b; 2019; Allen-Zhu et al., 2019a;
Oymak and Soltanolkotabi, 2020; Malach et al., 2020).

3.1. Network

We focus on the typical depth-L fully-connected ReLU
neural networks with the width of the l-th hidden layer
ml, ∀l ∈ [L] (cf., Fig. 1):

hi,0 = xi; hi,l = ϕ(Wlhi,l−1);

f(xi;W ) = fi =
1

α
WLhi,L−1; ∀l ∈ [L− 1] i ∈ [n] ,

(1)

where the x ∈ Rd, f(x) ∈ Ro, α is the scaling factor,
weights W := {Wi}Li=1 ∈ {Rm×d × (Rm×m)L−2 ×
Ro×m} represent the tuple of weight matrices and ϕ =
max(0, x) is ReLU activation function. According to
the property ϕ(x) = xϕ′(x) of ReLU, we have hi,l =
Di,lWlhi,l−1, where Di,l is a diagonal matrix under the
ReLU activation function defined as below.

Definition 1 (Diagonal sign matrix). For each i ∈ [n],
l ∈ [L − 1] and k ∈ [m], the diagonal sign matrix Di,l is
defined as: (Di,l)k,k = 1 {(Wlhi,l−1)k ≥ 0}.

Initialization: Let m0 = d, mL = o and m2 = · · · =
mL−1 = m, we make the standard random initialization
[Wl]i,j ∼ N (0, β2

l ) for every (i, j) ∈ [ml] × [ml−1] and
l ∈ [L]. This work holds for three commonly used Gaus-
sian initializations, i.e., LeCun initialization (LeCun et al.,
2012), He-initialization (He et al., 2015) and Neural Tangent
Kernel (NTK) initialization (Allen-Zhu et al., 2019a). The
formulation of these intilization refer to Table 1.

3.2. Robustness metric

Here we introduce perturbation stability (cf., Definition 2)
as a measure to describe the average robustness of neu-
ral networks by defining an ℓ2 norm ball B(ϵ,x) =
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{x̂| ∥x̂− x∥2 ≤ ϵ}. Then, assume that the perturbation
is uniformly distributed in the ℓ2 norm ball with the radius
ϵ, termed as Unif(B(ϵ,x)), the perturbation stability is de-
fined as the expectation of the product of perturbation and
gradient of the network output.

Definition 2 (perturbation stability). The perturbation sta-
bility of the neural network f under data distrubution DX

and perturbation radius ϵ is defined as follows:

P(f , ϵ) = Ex,x̂

∥∥∇xf(x)
⊤(x− x̂)

∥∥
2
,

∀x ∼ DX , x̂ ∼ Unif(B(ϵ,x)) .
(2)

Remark: Under the same ϵ, smaller P(f , ϵ) implies more
robust f . This metric can be viewed as an inner prod-
uct of first-order approximation of adversarial risk (Madry
et al., 2017) and the perturbations with uniform distribution,
which measures the average robustness of the neural net-
work. Previous works (Hein and Andriushchenko, 2017;
Weng et al., 2018; Wu et al., 2021; Bubeck and Sellke, 2021)
use Lipschitzness to describe the robustness of the network,
suggesting that smaller Lipschitzness leads to robust models.
However, Lipschitzness is only a worst-case measure, and
cannot reasonably describe the average changes of the entire
dataset. Instead, we follow the measure of Wu et al. (2021);
Dohmatob and Bietti (2022), that aims to comprehensively
considers the overall distribution of the data, not only the
extreme case.

4. Main results
In this section, we state the main theoretical results. Firstly,
in Section 4.1 we provide the upper bound of perturbation
stability in lazy training regime for deep neural networks
defined by Eq. (1). The sufficient condition that the neural
network Eq. (1) is under non-lazy training regime is given
in Section 4.2. Finally, in Section 4.3, we provide the upper
bound on perturbation stability during early training of two-
layer network under non-lazy training regime. The proofs of
our theoretical results are deferred to Appendix B, C, and D,
respectively.

4.1. Upper bound of perturbation stability of DNNs
under the lazy training regime

We are now ready to state the main results under the lazy
training regime. The following theorem provides the up-
per bound of perturbation stability and connects to depth
and width of network and dimension of data for a deep
fully-connected neural network under standard Gaussian
initialization.

Theorem 1. Given an L-layer neural network f defined
by Eq. (1) trained by {(xi,yi)}ni=1 satisfying Assumption 1,
for the convenience of analysis, we set α = 1 and β :=

β2 = · · · = βL−1, define a constant γ := β/
√

2
m , then

under a small perturbation ϵ , we have the following:

P(f , ϵ)

ϵ
≲

(√
πL3m2β2

1β
2
L

8
e−m/L3

+ 1

)
γL−2 . (3)

Remark: Our results cover the effect of the width and
depth of neural network on average robustness under various
common initializations depending on γ ⪌ 1.

For the initializations used in practice, our theoretical results
can be mainly divided into two classes. 1) Depth helps ro-
bustness in an exponential order under LeCun initialization:

our Theorem 1 implies
(√

πL3m
8d e−m/L3

+1

)
(
√
2
2 )L−2; 2)

Depth exacerbates robustness in a polynomial order under

He-initialization
(√

πL3m
2d e−m/L3

+ 1

)
and under NTK

initialization
(√

πL3m
4o e−m/L3

+1

)
derived by Theorem 1.

When employing other initializations, robustness could be
exacerbated in a exponential order. Below, we elaborate on
these three initalizations:

LeCun initialization (γ =
√
2
2 ): The order has three main

parts
√

πL3m
8d , e−m/L3

and (
√
2
2 )L−2. The first two parts

implies a phase transition phenomenon between average
robustness and over-parameterization for the width m. Con-

cretely,
√

πL3m
8d is an increasing function with respect to m

and e−m/L3

is a decreasing function with respect to m. In

the under-parameterized region (m is small),
√

L3m
d plays

a major role, so the stability will increase as m increases.
After a critical point, e−m/L3

plays a major role, so the
stability will decrease as m increases. When m tends to
infinity, the first term of bound tends to 0. Hence the per-
turbation stability tends to be a constant and independent
with width m as the width m tends to infinity. However,
for depth L, it holds that γ =

√
2
2 . So the third part has

the faster increase/decrease speed than the first and second
part and play a major role in the tendency. The perturbation
stability of the neural network exponentially decreases with
respect to the depth. That means that for LeCun initializa-
tion, the deeper the network, the better average robustness.
Nevertheless, the energy of LeCun initialization decreases
with the increase of network depth, which means that train-
ing deep network with LeCun initialization is very difficult.
Hence we need a trade off between robustness and training
difficulty regarding network depth in practice for LeCun ini-
tialization. He initialization and NTK initialization (γ = 1):
here the perturbation stability bounds only have the first
two parts. From this, it is easy to see that for the network
width m, the two initializations have similar phase transi-
tion phenomena with LeCun initialization. Regarding to the
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depth, when L is large, the first part
√
L3 plays a major role

in the perturbation stability. So these two initializations
exacerbate the average robustness of the neural network
polynomially. In addition, if the initialization admits γ ≥ 1,
then the depth L of network will exponentially exacerbate
average robustness of the neural network.

Comparison with previous work: Theorem 1 provides
a new relationship between the robustness with width and
depth of DNNs. We compare our result with (Wu et al.,
2021; Huang et al., 2021) using a basic NTK initializa-
tion Allen-Zhu et al. (2019a) (suppose that m ≫ o and
m ≫ d). For better comparison, we derive their results
under our average robustness metric, reported by Table 2.

Our results indicate a behavior transition on the width. For
the over-parameterized regime, the perturbation stability
of neural network only depends on the perturbation energy,
and it is almost independent of the width m. The results
on width are significantly better than the previous results
increasing as the square root of m. For depth L, our results
provide a tighter and more precise estimate as compared
to (Wu et al., 2021) in a two-degree polynomial increasing
order and (Huang et al., 2021) in an exponential increasing
order.

4.2. Sufficient condition for neural network under
non-lazy training regime

Beyond the lazy training regime, we turn our attention to
non-lazy training regime and present results about the suf-
ficient condition for (well-chosen) initialization of neural
networks when entering into the non-lazy training regime.
This is a first attempt to understanding training dynamics of
DNNs in this regime.

Our result requires a further assumption on the data and the
empirical risk as follows.

Assumption 2. For a single-output network defined in
Eq. (1), we assume that maxi∈[n] yi ≥ C1 ≥ 0. We also
assume that the neural network can be well-trained such
that the empirical risk is O( 1n ).

Remark: This is a common assumption in the field of
optimization (Song et al., 2021) in the under- and over-
parameterized regime, and we can even assume zero risk.
Here we follow the specific assumption of Luo et al. (2021).

Now we are ready to present our result, a sufficient condition
to identify when deep ReLU neural networks fall into non-
lazy training regime, as a promising extension of (Luo et al.,
2021) on two-layer neural networks. To avoid cluttering the
analysis, we consider a single-output i.e., o = 1.

Theorem 2. Given an L-layer neural network f de-
fined by Eq. (1) with one-dimensional output, trained by
{(xi,yi)}ni=1 satisfy Assumptions 1 and 2. Suppose that

α ≫ (m3/2
∑L

i=1 βi)
L and m ≫ d in Eq. (1), then for

sufficiently large m, with probability at least 1 − (L −
2) exp(−Θ(m2)) − exp(−Θ(md)) − exp(−Θ(m)) over
the initialization, we have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≫ 1 .

Remark: The condition α ≫ (m3/2
∑L

i=1 βi)
L implies

that, a neural network falls in a non-lazy training regime
when the variance of the Gaussian initialization is very small.
A typical case is, taking m ≫ L2, choosing α = 1 and
∀l ∈ [L]; βl =

1
m2 . Commonly used initializations such as

NTK initialization, LeCun initialization, He’s initialization
lead to lazy training.

4.3. Upper bound of perturbation stability for two-layer
networks in non-lazy training

Unlike lazy training, weights of non-lazy training concen-
trate on few directions determined by the input data in the
early stages of training. The following theorem describes
the neural network perturbation stability in the early train-
ing stage as a function of network width in the non-lazy
training regime. For ease of description, here we consider
a special initialization scheme under the non-lazy regime,
more cases under this theorem and proof are deferred to
the Appendix D.

Theorem 3. Given a two-layer neural network f defined
by Eq. (1) and trained by {(xi, yi)}ni=1 satisfying Assump-
tion 1, using gradient descent under the squared loss, con-
sider the following initialization in Eq. (1) : L = 2, α ∼ 1,
β1 ∼ β2 ∼ β ∼ 1

mc with c ≥ 1.5, m ≫ n2 and
t ≤ t⋆(n,m,α), then for a small range of perturbation
ϵ, with probability at least 1− n exp(−n

2 )−
3
n over initial-

ization, we have the following:

P(ft, ϵ)

ϵ
≤ Θ

(√
n logm+ n

mc−1

(
1√
n3m

+
1

mc−0.5

))
.

(4)

Remark: Under this setting of non-lazy training regime,
the perturbation stability and width of the neural network
are negatively correlated in the early stages of training.
That is, as the width m increases in the over-parameterized
regime, a Gaussian initialization with smaller variance re-
sults in the perturbation stability decreasing in a faster
decay. Our result holds for other initialization schemes
in the non-lazy training regime, e.g., c = 2 leads to

P(ft, ϵ)/ϵ ≤ Θ

(√
n logm+n
m2.5

)
; and c = 3 leads to

P(ft, ϵ)/ϵ ≤ Θ

(√
n logm+n
m4.5

)
.
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Table 2. Comparison of the orders of the proposed bound with other two recent works. Our results are general to cover both under- and
over-parameterized regimes, which expands the application scope of previous results (Wu et al., 2021; Huang et al., 2021). (The original
result of (Wu et al., 2021) contains the condition m

(logm)6
≥ L12, then the result is reduced to

√
mL).

Metrics Our result Wu et al. (2021) Huang et al. (2021)

P(f , ϵ)/ϵ
√

πL3m
4o e−m/L3

+ 1 L2m1/3
√
logm+

√
mL 2

3L−5
2

√
m

5. Numerical evidence
We validate our theoretical results with a series of ex-
periments. Our experimental setting is discussed in Ap-
pendix E.1. In Section 5.1, we first explore the effect of vary-
ing widths from under-parameterized to over-parameterized
regions on the perturbation stability of neural networks.
Then in Section 5.2, we compare the effect of two different
initializations and the network depth on the perturbation
stability. Additional experimental results can be found in
Appendix E.

5.1. Validation for width

We verify the relationship between the perturbation stability
and the width of network as illustrated by Eqs. (3) and (4).
We conduct a series of experiments on MNIST dataset using
FCN with different widths. Fig. 2 shows the relationship
between perturbation stability and width of FCN with dif-
ferent depths and training regimes. Here for lazy training
and non-lazy training we use the same initialization as Ap-
pendix E.2.

Fig. 2(a) exhibits the relationship between the perturbation
stability and the width for neural networks with different
depths of L = 2, 4, 6, 8, and 10. All of the five curves show
the phase transition with width, and the perturbation sta-
bility first increases and then decreases with width, which
match our theoretical results. Fig. 2(b) shows the difference
of the effect of width on the robustness of lazy and non-lazy
training for two-layer neural networks. First, the perturba-
tion stability of non-lazy training is significantly smaller
than that of lazy training, which means non-lazy training
regime is more robust. Besides, the perturbation stability of
non-lazy training decrease with the width of the neural net-
work increases, which coincides with our theoretical result,
i.e., no phase transition phenomenon.

5.2. Validation for depth and initialization

Here we explore the effect of depth on robustness under
lazy training regime with different initializations in Fig. 3(a)
and Fig. 3(b). Our results show the tendency of perturbation
stability for different layers FCN with different widths under
He initialization and LeCun initialization, respectively. We
observe a similar phase transition phenomenon, and find
that, the perturbation stability under He initialization in-
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(a) Lazy training with dif-
ferent widths and depths
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Figure 2. Influence of width of neural network on perturbation
stability. (a) phase transition of perturbation stability vs. width
with four different depths under lazy training. (b) the difference
between lazy training and non-lazy training regimes for two layer
neural networks.
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Figure 3. Relationship between perturbation stability and depth of
FCN under He initialization (a) and LeCun initialization (b).

creases with depth, while the LeCun initialization shows the
opposite tendency, which verified our theory.

6. Conclusions
In this work, we explore the interplay of the width, the depth
and the initialization of neural networks on their average ro-
bustness with new theoretical bounds in an effort to address
the apparent contradiction in the literature. Our theoretical
results hold in both under- and over-parameterized regimes.
Intriguingly, we find a change of behavior in average ro-
bustness with respect to the depth, initially exacerbating
robustness and then alleviating it. We suspect that this could
help explain the contradictory messages in the literature.
We also characterize the average robustness in the non-lazy
training regime for two layer neural networks and find that
width always help, coinciding the with the results (Bubeck
and Sellke, 2021; Bubeck et al., 2021). We also provide
numerical evidence to support the theoretical developments.
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Appendix introduction
The Appendix is organized as follows:

• In Appendix A, we state the symbols and notation used in this paper.

• In Appendix B, we provide the proofs and related lemmas of Theorem 1.

• In Appendix C, we provide the proofs of Theorem 2.

• In Appendix D, we provide the proofs and related lemmas of Theorem 3.

• In Appendix E, we detail our experimental settings and exhibit additional experimental results.

• In Appendix F, we discuss several limitations of this work.

A. Symbols and Notation
In the paper, vectors are indicated with bold small letters, matrices with bold capital letters. To facilitate the understanding
of our work, we include the some core symbols and notation in Table 3.

Table 3. Core symbols and notations used in this project.
Symbol Dimension(s) Definition

N (µ, σ) - Gaussian distribution of mean µ and variance σ
Ber(m, p) - Bernoulli (Binomial) distribution with m trials and p success rate.
χ2(ω) - Chi-square distribution of order ω.

∥v∥2 - Euclidean norms of vectors v
∥M∥2 - Spectral norms of matrices M
∥M∥F - Frobenius norms of matrices M
∥M∥∗ - Nuclear norms of matrices M
λ(M) - Eigenvalues of matrices M
M [l] - l-th row of matrices M
Mi,j - (i, j)-th element of matrices M

ϕ(x) = max(0, x) - ReLU activation function for scalar
ϕ(v) = (ϕ(v1), . . . , ϕ(vm)) - ReLU activation function for vectors

1 {event} - Indicator function for event

n - Size of the dataset
d - Input size of the network
o - Output size of the network
L - Depth of the network
m - Width of intermediate layer
βl - Standard deviation of Gaussian initialization of l-th intermediate layer
α - Scale factor for the output layer

xi Rd The i-th data point
yi Ro The i-th target vector
DX - Input data distribution
DY - Target data distribution

W1 Rm×d Weight matrix for the input layer
Wl Rm×m Weight matrix for the l-th hidden layer
WL Ro×m Weight matrix for the output layer

hi,l Rm The l-th layer activation for input xi

fi Ro Output of network for input xi

O, o, Ω and Θ - Standard Bachmann–Landau order notation
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B. Proof of upper bound of Perturbation Stability in lazy training regime for deep neural network
We present the details of our results from Section 4.1 in this section. Firstly, we introduce some lemmas in Appendix B.1 to
facilitate the proof of theorems. Then, in Appendix B.2 we provide the proof of Theorem 1.

B.1. Relevant Lemmas

Lemma 1. Let w ∼ N (0, σ2). Then define two random variables X = (w × 1 {w ≥ 0})2 and Y = sw2, where
s ∼ Ber(1, 1/2) follows a Bernoulli distribution with 1 trial and 1

2 success rate. Then X and Y have the same distribution.

Proof. Firstly, we derive the cumulative distribution function (CDF) of X . Obviously, X is non-negative and P(X = 0) =
1/2, which holds by X = 0 iff w < 0. Accordingly, for x ≥ 0 , we have:

P(X ≤ x) = P (w < 0) + P (0 ≤ w ≤
√
x) =

1

2
+

∫ √
x

0

1√
2πσ2

e−
t2

2σ2 dt .

Then X has the following cumulative distribution function:

F (X ≤ x) =


0 if x < 0
1
2 if x = 0

1
2 +

∫√
x

0
1√

2πσ2
e−

t2

2σ2 dt if x > 0 .

(5)

We then derive the CDF of Y . Obviously, Y is non-negative and P(Y = 0) = 1/2, which holds by Y = 0 iff s = 0.
Accordingly, for x ≥ 0 , we have:

P(Y ≤ x) = P (s = 0) + P (s = 1)P (−
√
x ≤ w ≤

√
x) =

1

2
+

1

2

∫ √
x

−
√
x

1√
2πσ2

e−
t2

2σ2 dt .

Then Y has the following cumulative distribution function:

F (Y ≤ x) =


0 if x < 0
1
2 if x = 0

1
2 + 1

2

∫√
x

−
√
x

1√
2πσ2

e−
t2

2σ2 dt if x > 0

(6)

Comparing Eq. (5) to Eq. (6), we conclude that X and Y admit the same distribution.

Lemma 2. Let h ∈ Rp be a fixed non-zero vector, W ∈ Rq×p be random matrix with i.i.d. entries Wi,j ∼ N (0, 2/q). The

vector v ∈ Rq is defined as v = ϕ(Wh). Then, q∥v∥2
2

2∥h∥2
2

∼ χ2(ϱ), where ϱ ∼ Ber(q, 1/2).

Proof. According to the definition of v = ϕ(Wh), we have:

∥v∥22 =

q∑
i=1

(
Di,i

〈
W [i],h

〉)2

,

where Di,i = 1
{〈

W [i],h
〉
≥ 0

}
.

Let ϖi =
〈
W [i],h

〉
/

(√
2∥h∥2

2

q

)
, then ϖi ∼ N (0, 1) independently. Accordingly, we have:

q ∥v∥22
2 ∥h∥22

=

q∑
i=1

(
1 {ϖi ≥ 0}ϖi

)2

.
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By Lemma 1 and definition of chi-square distribution, we have q∥v∥2
2

2∥h∥2
2

∼ χ2(ϱ), where ϱ ∼ Ber(q, 1/2).

Lemma 3. Given an L-layer neural network f defined by Eq. (1), we have:

f(x) = ŴLϕ(ŴL−1 · · ·ϕ(Ŵ1x) · · · ) , (7)

where [Ŵl]i,j satisfy the initialization in Section 3.1, i.e., β := β2 = · · · = βL−1.

Define another L-layer neural network f ′ by Eq. (1), then we have:

f̃(x) = γLW̃Lϕ(W̃L−1 · · ·ϕ(W̃1x) · · · ) , (8)

where [W̃l]i,j = [Ŵl]i,j/γ.

Then if we choose an appropriate learning rate, f and f ′ will have the same dynamics.

Proof. According to the chain rule, we have:
df̃

dW̃l

= γ
df

dŴl

.

If we choose learning rate η̃ := η
γ2 , then we have:

dW̃l

dt
=

1

γ

dŴl

dt
.

Consider that W̃l(0) =
1
γŴl(0), then we have:

W̃l(t) =
1

γ
Ŵl(t) .

That means f(t) = f̃(t), which concludes the proof.

Lemma 4. Given an L-layer neural network f defined by Eq. (1) trained by {(xi,yi)}ni=1, under a small perturbation ϵ,
we have:

Ex,x̂,W

∥∥∥∇xf(x)
⊤(x− x̂)−WLDL−1 · · ·D1W1(x− x̂)

∥∥∥
2
≤ Θ

(
ϵγL−2

√
πL3m2β2

1β
2
L

8
e−m/L3

)
, (9)

where [Wl]i,j satisfy the initialization in Section 3.1, x ∼ DX and x̂ ∼ Unif(B(ϵ,x)).

Proof. We set the network after training with the following form:

f(x) = ŴLϕ(ŴL−1 · · ·ϕ(Ŵ1x) · · · ) .

According to the standard chain rule, we have:

∇xf(x)
⊤ = ŴLD̂L−1 · · · D̂1Ŵ1 = γLŴ ′

LD̂L−1 · · · D̂1Ŵ
′
1 .

Assume that perturbation matrices satisfy
∥∥∥Ŵl −Wl

∥∥∥
2
≤ ω , ∀l ∈ [L]. Then by Allen-Zhu et al. (2019b, Lemma 7.4,

Lemma 8.6, Lemma 8.7), we obtain that for any integer s ∈
[
Ω( d

logm ),O( m
L3 logm )

]
, for d ≤ O( m

L logm ), with probability

at least 1− exp

(
− Ω(s logm)

)
over the randomness of {W }Ll=1, it holds that:

∥∥∥Ŵ ′
LD̂L−1 · · · D̂1Ŵ

′
1 −W ′

LDL−1 · · ·D1W
′
1

∥∥∥
2
≤ O

(√
L3s logm+ ω2L3m

d

√
dm

2

β1βL

γ2

)
,
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which implies:

∥∥∇xf(x)
⊤ −WLDL−1 · · ·D1W1

∥∥
2
≤ O

(√
L3s logm+ ω2L3m

d

√
dm

2
β1βLγ

L−2

)
,

with probability at least 1− exp

(
− Ω(s logm)

)
.

If we choose s := m
L3 logm + ω2

logm , then we have:

∥∥∇xf(x)
⊤ −WLDL−1 · · ·D1W1

∥∥
2
≤ O

(√
L3ω2 +m+ ω2L3m

d

√
dm

2
β1βLγ

L−2

)
,

with probability at least 1− exp

(
− Ω( m

L3 + ω2)

)
.

Let δ :=
√

L3ω2+m+ω2L3m
d

√
dm
2 β1βLγ

L−2 , then ω2 = uδ2−m
L3(m+1) , u = 2

mβ2
1β

2
Lγ2(L−2) , then we have:

P
( ∥∥∇xf(x)

⊤ −WLDL−1 · · ·D1W1

∥∥
2
> δ

)
≤ exp

(
− uδ2 −m

L3(m+ 1)
− m

L3

)
= exp

(
− δ2u+m2

L3(m+ 1)

)
.

Then we can compute the expectation:

EW

∥∥∥∇xf(x)
⊤ −WLDL−1 · · ·D1W1

∥∥∥
2
=

∫ +∞

0

P
(∥∥∥∇xf(x)

⊤ −WLDL−1 · · ·D1W1

∥∥∥
2
> δ

)
dδ

≤
∫ +∞

0

exp

(
− δ2u+m2

L3(m+ 1)

)
dδ

=

√
πL3(m+ 1)

4u
exp

(
− m2

(m+ 1)L3

)
= Θ

(
γL−2

√
πL3m2β2

1β
2
L

8
e−m/L3

)
,

(10)

where the first equality holds by the expectation integral equality Vershynin (2018, Lemma 1.2.1).

Finally, by the definition of x̂, we have:∥∥∥∇xf
⊤(x)(x− x̂)−WLDL−1 · · ·D1W1(x− x̂)

∥∥∥
2
≤ ϵ

∥∥∥∇xf(x)
⊤ −WLDL−1 · · ·D1W1

∥∥∥
2
. (11)

By Eq. (10) and Eq. (11), we finish the proof.

Lemma 5. Given an L-layer neural network f defined by Eq. (1) trained by {(xi,yi)}ni=1, under a small ϵ, expectation
over W , we have:

Ex,x̂,W ∥WLDL−1 · · ·D1W1(x− x̂)∥22 ≤ moβ2
1β

2
Lγ

2(L−2)

2
ϵ2 , (12)

where [Wl]i,j satisfy the initialization in Section 3.1 and x ∼ DX , x̂ ∼ Unif(B(ϵ,x)).

Proof. Let tl = Dl · · ·D1W1(x− x̂), then:

Ex,x̂,W ∥WLDL−1 · · ·D1W1(x− x̂)∥22 = Ex,x̂,W ∥WLtL−1∥22 .

By Lemma 2 we have ∥tl∥2
2

β2∥tl−1∥2
2

∼ χ2(ϱ), where ϱ ∼ Ber(m, 1/2),∀l = 2, · · · , L− 1. This implies that:

EW
∥tl∥22

∥tl−1∥22
= β2Eϱχ

2(ϱ) = β2Eϱ =
mβ2

2
= γ2 , ∀l = 2, · · · , L− 1 .
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Similarly, we have:

EW
∥t1∥22

∥x̂− x∥22
=

mβ2
1

2
.

By the definition of chi-square distribution, we have ∥WLtL−1∥2
2

β2
L∥tL−1∥2

2

∼ χ2(o), which means EW ∥WLtL−1∥22 / ∥tL−1∥22 = oβ2
L.

Then we have:

Ex,x̂,W ∥WLtL−1∥22 = Ex,x̂,W
∥WLtL−1∥22
∥tL−1∥22

∥tL−1∥22
∥tL−2∥22

· · ·
∥t1∥22

∥x̂− x∥22
∥x̂− x∥22

= EW
∥WLtL−1∥22
∥tL−1∥22

EW
∥tL−1∥22
∥tL−2∥22

· · ·EW
∥t1∥22

∥x̂− x∥22
Ex,x̂ ∥x̂− x∥22

=
moβ2

1β
2
Lγ

2(L−2)

2
Ex,x̂ ∥x̂− x∥22 ,

using the definition of x̂ which conclude the proof.

B.2. Proof of Theorem 1

Proof. According to the triangle inequality and the Jensen’s inequality, we have:

P(f , ϵ) = Ex,x̂ ∥∇xf(x)(x− x̂)∥2
≤ Ex,x̂ ∥∇xf(x)(x− x̂)−WLDL−1 · · ·D1W1(x− x̂)∥2 + Ex,x̂ ∥WLDL−1 · · ·D1W1(x− x̂)∥2

≤ Ex,x̂ ∥∇xf(x)(x− x̂)−WLDL−1 · · ·D1W1(x− x̂)∥2 +
√

Ex,x̂ ∥WLDL−1 · · ·D1W1(x− x̂)∥22

≤ ϵ

(√
πL3m2β2

1β
2
L

8
e−m/L3

+

√
moβ1βL√

2

)
γL−2 ,

where the last inequality using the results of Lemma 4 and Lemma 5.

Finally we analyze the
√
moβ1βL√

2
term, for three common Gaussian initializations in Table 1 we have

√
moβ1βL√

2
=

√
o
2d in

LeCun initialization,
√
moβ1βL√

2
=

√
2o
d in He initialization and

√
moβ1βL√

2
= 1 in NTK initialization. Regarded d and o as

constant order, then
√
moβ1βL√

2
will be of constant order in these three initializations, then we have:

P(f , ϵ) ≲ ϵ

(√
πL3m2β2

1β
2
L

8
e−m/L3

+ 1

)
γL−2 .

C. Proof of sufficient condition for DNNs under the non-lazy training regime
In this section, we provide the proof of Theorem 2.

Proof. By Assumption 2 and by following the setting of Luo et al. (2021), without loss of generality, we have that there
exits a T ⋆ > 0 such that L(W (T ⋆)) ≤ 1

32n and y1 ≥ 1
2 . Therefore, we have:

1

2n
(f1(T

⋆)− y1)
2 ≤ 1

2n

n∑
i=1

(fi(T
⋆)− yi)

2 ≤ L(W (T ⋆)) ≤ 1

32n
,
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which means |f1(T ⋆)− y1| ≤ 1
4 . Accordingly, we conclude:

1

4
≤ y1 −

1

4
≤ f1(T

⋆)

=
1

α
WL(T

⋆)σ(WL−1(T
⋆) · · ·σ(W1(T

⋆)x1))

=
1

α
WL(T

⋆)D1,L−1(T
⋆)WL−1(T

⋆) · · ·D1,1(T
⋆)W1(T

⋆)x1

≤ 1

α
∥WL(T

⋆)∥2 ∥D1,L−1(T
⋆)∥2 ∥WL−1(T

⋆)∥2 · · · ∥D1,1(T
⋆)∥2 ∥W1(T

⋆)∥2 ∥x1∥2

≤ 1

α
∥WL(T

⋆)∥2 ∥WL−1(T
⋆)∥2 · · · ∥W1(T

⋆)∥2 ,

(13)

where the last inequality uses Assumption 1 and 1-Lipschitz of ReLU.

According to Du et al. (2018a, Corollary 2.1) , we have:

d

dt
(∥W1∥2F) =

d

dt
(∥W2∥2F) = · · · = d

dt
(∥WL∥2F) .

Then for any l1, l2 ∈ [L], we have:

∥Wl1(T
⋆)∥2F − ∥Wl1(0)∥

2
F = ∥Wl2(T

⋆)∥2F − ∥Wl2(0)∥
2
F ,

which implies:

∥Wl1(T
⋆)∥2 ≤ ∥Wl1(T

⋆)∥F

=

√
∥Wl1(T

⋆)∥2F

=

√
∥Wl2(T

⋆)∥2F − ∥Wl2(0)∥
2
F + ∥Wl1(0)∥

2
F

≤
√
∥Wl2(T

⋆)∥2F + ∥Wl1(0)∥
2
F

≤ ∥Wl2(T
⋆)∥F + ∥Wl1(0)∥F .

(14)

According to Luo et al. (2021, Proposition 16) and the relationship between ℓ2 norm and Frobenius norm, i.e. ∥·∥F ≤√
r ∥·∥2, where the r is the rank of matrix, with probability at least 1 − (L − 2) exp(−Θ(m2)) − exp(−Θ(md)) −

exp(−Θ(m)) over the initialization, we have ∥W1(0)∥F ≤
√
d ∥W1(0)∥2 ≤

√
3md2

2 β1, ∥Wl(0)∥F ≤
√
m ∥Wl(0)∥2 ≤√

3m3

2 βl, ∀l ∈ [L− 1] and ∥WL(0)∥F = ∥WL(0)∥2 ≤
√

3m
2 βL.

If we combine Eqs. (13) and (14), for any l⋆ ∈ [L], with probability at least 1− (L− 2) exp(−Θ(m2))− exp(−Θ(md))−
exp(−Θ(m)) over the initialization, we have:

1

4
≤ 1

α
∥WL(T

⋆)∥2 ∥WL−1(T
⋆)∥2 · · · ∥W1(T

⋆)∥2

=
1

α

L∏
l=1

(
∥Wl⋆(T

⋆)∥F + ∥Wl(0)∥F

)

≤ 1

α

(
∥Wl⋆(T

⋆)∥F +
1

L

L∑
l=1

(
∥Wl(0)∥F

))L

≤ 1

α

(
∥Wl⋆(T

⋆)∥F +

√
3m3

2L2

L∑
l=1

βl

)L

.



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly)

Then with probability at least 1− (L− 2) exp(−Θ(m2))− exp(−Θ(md))− exp(−Θ(m)) over the initialization, we have:

∥Wl⋆(T
⋆)∥F ≥

(
α

4

)1/L

−
√

3m3

2L2

L∑
l=1

βl . (15)

Therefore, with probability at least 1− (L− 2) exp(−Θ(m2))− exp(−Θ(md))− exp(−Θ(m)) over the initialization, we
have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≥
∥Wl(T

⋆)−Wl(0)∥F
∥Wl(0)∥F

≥
∥Wl(T

⋆)∥F
∥Wl(0)∥F

− 1

≥
(α4 )

1/L −
√

3m3

2L2

∑L
i=1 βi√

3m3

2 βl

− 1

≥
(α4 )

1/L −
√

3m3

2L2

∑L
i=1 βi√

3m3

2

∑L
i=1 βi

− 1

=
(α4 )

1/L√
3m3

2

∑L
i=1 βi

− 1

L
− 1 ,

where the second inequality uses triangle inequality and third inequality uses Eq. (15).

If α ≫ (m3/2
∑L

i=1 βi)
L, then with probability at least 1− (L− 2) exp(−Θ(m2))− exp(−Θ(md))− exp(−Θ(m)) over

the initialization, we have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≫ 1 .

D. Proof of perturbation stability in non-lazy training regime for two-layer networks
Without loss of generality, we consider two-layer neural networks with a scalar output without bias.

f(x) =
1

α

m∑
r=1

arσ(w
⊤
r x) , (16)

where x ∈ Rd, f(x) ∈ R, α is the scaling factor. The parameters are initialized by ar(0) ∼ N (0, β2
2), wr(0) ∼ N (0, β2

1Id).
Our result can be extended with slight modification to the multiple-output case with bias setting.

Our proof requires some additional notation, which we establish below:

H∞
ij =

m

α2
Ew∼N (0,β2

1Id),a∼N (0,β2
2)
a2rx

⊤
i xj1

{
w⊤

r xi ≥ 0,w⊤
r xj ≥ 0

}
,

H̃i,j(t) =
1

α2

m∑
r=1

a2r(t)Ew∼N (0,β2
1Id)

x⊤
i xj1

{
w⊤

r xi ≥ 0,w⊤
r xj ≥ 0

}
,

Hi,j(t) =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
,
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Ĥi,j =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
,

Gi,j(t) =
1

α2
σ(wr(t)

⊤xi)σ(wr(t)
⊤xj) .

Then, minimum eigenvalue of H∞
ij is denoted as λ0 and is assumed to be strictly greater than 0, i.e.

λ0 = λmin(H
∞) > 0 .

Remark: This assumption follows Du et al. (2018b) but can be proved by Nguyen et al. (2021) under the NTK initialization.
Moreover, Chen and Xu (2021); Geifman et al. (2020); Bietti and Mairal (2019) discuss this assumption in different settings.

The following two symbols are used to measure the weight changes during training:

Ra :=
α

n

√
λ0

8nm
−
√

2

π
β2, and Rw :=

α2λ0

√
2πβ1

32n3m(Ra(Ra +
√
8/πβ2) + β2

2)
, (17)

The last two symbols are used to characterize the early stages of neural network training:

t⋆1 = − 2

λ0
log

(
1− Rwλ0α

2
√
n(
√
nβ2 +Ra) ∥y − f(0)∥2

)
,

t⋆2 = − 2

λ0
log

(
1− Raλ0α

2
√
n(3β1

√
log(mn2) +Rw) ∥y − f(0)∥2

)
.

Then we present the details of our results on Section 4.3 in this section. Firstly, we introduce some lemmas in Appendix D.1
to facilitate the proof of theorems. Then in Appendix D.2 we provide the proof of Theorem 3.

D.1. Relevant Lemmas

Lemma 6. (Du et al., 2018b, Appendix A.1) Given a two-layer neural network f defined by Eq. (16) and trained
by {xi, yi}ni=1 using gradient descent with the quadratic loss, let y = (y1, . . . , yn) ∈ Rn be the label vector and
f(t) = (f1(t), . . . , fn(t)) ∈ Rn be the output vector at time t, then we have:

df(t)

dt
= (H(t) +G(t))(y − f(t)) . (18)

Proof. Our proof here just re-organizes Du et al. (2018b, Appendix A.1). For self-completeness, we provide a formal proof
here.

We want to minimize the quadratic loss:

L(W ,a) =

n∑
i=1

1

2
[f(W ,a,xi)− yi]

2 .

Using the gradient descent algorithm, the formula for update the weights is:

W (t+ 1) = W (t)− η
∂L(W (t),a(t))

∂W (t)
,

a(t+ 1) = a(t)− η
∂L(W (t),a(t))

∂a(t)
.
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According to the standard chain rule, we have:

∂L(W (t),a(t))

∂W (t)
=

1

α

n∑
i=1

[f(W (t),a(t),xi)− yi]ar(t)1
{
w⊤

r (t)xi ≥ 0
}
xi ,

∂L(W (t),a(t))

∂a(t)
=

1

α

n∑
i=1

[f(W (t),a(t),xi)− yi]σ(w
⊤
r (t)xi) .

Then we have:

dfi(t)

dt
=

m∑
r=1

〈
∂fi(t)

∂wr(t)
,
∂wr(t)

∂t

〉
+

m∑
r=1

dfi(t)

dar(t)

dar(t)

dt

=

n∑
i=1

[yi − fi(t)][Hij(t) +Gij(t)] .

Written in vector form, we have:

df(t)

dt
= (H(t) +G(t))(y − f(t)) ,

Lemma 7. If α ≥ 16nβ2

√
log(2n3)

λ0
, with probability at least 1− 1

n , we have:

∥H(0)−H∞∥2 ≤ λ0

4
, and λmin(H(0)) ≥ 3

4
λ0 ,

Remark: This lemma is a modified version of Du et al. (2018b, Lemma 3.1), which differs in the initialization of a from
Unif({−1,+1}) to Gaussian initialization. This makes our analysis relatively intractable due to their analysis based on
a2i = 1, ∀i ∈ [m].

Proof. Firstly, for a fixed pair (i, j), H∞
ij is an average of H̃i,j with respect to ar . By Bernstein’s inequality (Vershynin,

2018, Chapter 2), with probability at least 1− δ we have:

∣∣∣H∞
ij − H̃i,j

∣∣∣ ≤ 2β2

√
log( 1δ )

α
.

Then, for fixed pair (i, j), H̃i,j is an average of Hij(0) with respect to wr. By Hoeffding’s inequality (Vershynin, 2018,
Chapter 2), with probability at least 1− δ′ we have:

∣∣∣Hij(0)− H̃i,j

∣∣∣ ≤ 2β2

√
log( 1

δ′ )

α
.

Choose δ := δ′ := 1
2n3 , we have with probability at least 1− 1

n3 , for fixed pair (i, j):

∣∣Hij(0)−H∞
ij

∣∣ ≤ 4β2

√
log(2n3)

α
.

Consider the union bound over (i, j) pairs, with probability at least 1− 1
n we have:

∣∣Hij(0)−H∞
ij

∣∣ ≤ 4β2

√
log(2n3)

α
.
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Thus we have:

∥H(0)−H∞∥22 ≤ ∥H(0)−H∞∥2F ≤
∑
i,j

∣∣Hij(0)−H∞
ij

∣∣2 ≤ 16n2β2
2 log(2n

3)

α2
.

when α ≥ 16nβ2

√
log(2n3)

λ0
we have the desired result.

Lemma 8. With probability at least 1− 2
n over initialization , if a set of weight vectors {wr}mr=1 and the output weight

{ar}mr=1 satisfy for all r ∈ [m], ∥wr(t)−wr(0)∥2 ≤ Rw and |ar(t)− ar(0)| ≤ Ra, then we have:

∥H(t)−H(0)∥2 ≤ λ0

4
, and λmin(H(t)) ≥ λ0

2
,

Proof. Firstly, we can derive that:

Ĥi,j(t)−Hi,j(0) =
1

α2

m∑
r=1

(ar(t)
2 − ar(0)

2)x⊤
i xj1

{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
,

Hi,j(t)− Ĥi,j(t) =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
− 1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
.

Then we can compute the expectation of
∣∣∣Ĥi,j(t)−Hi,j(0)

∣∣∣:

E
∣∣∣Ĥi,j(t)−Hi,j(0)

∣∣∣ = E

∣∣∣∣∣ 1α2

m∑
r=1

(ar(t)
2 − ar(0)

2)x⊤
i xj1

{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}∣∣∣∣∣
≤ m

α2
E
∣∣ar(t)2 − ar(0)

2
∣∣

=
m

α2
E |(ar(t)− ar(0))(ar(t) + ar(0))|

≤ mRa

α2
E |ar(t) + ar(0)|

≤ mRa

α2
(Ra + 2E |ar(0)|)

≤ m(Ra + E |ar(0)|)2

α2

=
m(Ra +

√
2
πβ2)

2

α2
.

(19)

Then we define the event:

Ai,r =
{
∃ : ∥wr(t)−wr(0)∥ ≤ Rw, 1

{
wr(0)

⊤xi ≥ 0
}
̸= 1

{
wr(t)

⊤xi ≥ 0
}}

.

This event happens if and only if
∣∣wr(0)

⊤xi

∣∣ < Rt. According to this, we can get P(Ai,r) = Pz∼N (0,β2
1)
(|z| ≤ Rw) ≤

2Rw√
2πβ1

, further:
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E
∣∣∣Hi,j(t)− Ĥi,j(t)

∣∣∣ = 1

α2
E
∣∣∣∣ m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
−

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

} ∣∣∣∣
≤ 1

α2

m∑
r=1

E
(
ar(t)

2x⊤
i xj1 {Ai,r ∪Aj,r}

)

≤ 1

α2

m∑
r=1

E
(
ar(t)

2 4Rw√
2πβ1

)

=
4Rw

α2
√
2πβ1

m∑
r=1

E(ar(t)2 − ar(0)
2 + ar(0)

2)

≤ 4Rwm

α2
√
2πβ1

(
Ra(Ra +

√
8

π
β2) + β2

2

)
,

(20)

where the last inequality uses the result of Eq. (19).

From Eqs. (19) and (20), using Markov’s inequality. with probability at least 1− 2
n , we have:

∣∣∣Ĥi,j(t)−Hi,j(0)
∣∣∣ ≤ nm(Ra +

√
2
πβ2)

2

α2
,

∣∣∣Hi,j(t)− Ĥi,j(t)
∣∣∣ ≤ 4Rwnm

α2
√
2πβ1

(
Ra(Ra +

√
8

π
β2) + β2

2

)
.

Then we have:

∥H(t)−H(0)∥2 ≤ ∥H(t)−H(0)∥F

≤
(n,n)∑

(i,j)=(1,1)

|Hi,j(t)−Hi,j(0)|

≤
(n,n)∑

(i,j)=(1,1)

( ∣∣∣Ĥi,j(t)−Hi,j(0)
∣∣∣+ ∣∣∣Hi,j(t)− Ĥi,j(t)

∣∣∣ )

≤ mn3

α2

(
(Ra +

√
2

π
β2)

2 +
4Rw√
2πβ1

(Ra(Ra +

√
8

π
β2) + β2

2)

)
.

Then, by Eq. (17) we have:

∥H(t)−H(0)∥2 ≤ λ0

4
,

which implies:

λmin(H(t)) ≤ λmin(H(0))− λ0

4
≤ λ0

2
.

Lemma 9. Suppose that for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and |ar(s)− ar(0)| ≤ Ra. Then with probability at least
1− n exp(−n/2) over initialization we have ∥wr(t)−wr(0)∥2 ≤ Rw for all r ∈ [m] and the t ≤ t⋆1.
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Proof. By Lemma 6, we have df(t)
dt = (H(t) +G(t))(y − f(t)). Then we can calculate the dynamics of risk function:

d

dt
∥y − f(t)∥22 = −2(y − f(t))⊤(H(t) +G(t))(y − f(t))

≤ −2(y − f(t))⊤(H(t))(y − f(t))

≤ −λ0 ∥y − f(t)∥22 ,

in the first inequality we use that the G(t) is Gram matrix thus it is positive. Then we have d
dt

(
eλ0t ∥y − f(t)∥22

)
≤ 0,

then eλ0t ∥y − f(t)∥22 is a decreasing function with respect to t. Thus, we can bound the risk:

∥y − f(t)∥22 ≤ e−λ0t ∥y − f(0)∥22 . (21)

Then we bound the gradient of wr. For 0 ≤ s ≤ t, With probability at least 1− n exp(−n/2) we have:

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥ 1α
n∑

i=1

[f(W (s),a(s),xi)− yi]ar(s)1
{
w⊤

r (s)xi ≥ 0
}
xi

∥∥∥∥∥
2

≤ 1

α

n∑
i=1

|f(W (s),a(s),xi)− yi| |ar(0) +Ra|

≤
√
n

α
∥y − f(s)∥2 (

√
nβ2 +Ra)

≤
√
n

α
(
√
nβ2 +Ra)e

−λ0s/2 ∥y − f(0)∥2 ,

where the second inequality is because of ar(0) ∼ N (0, β2
2), then with probability at least 1 − exp(−n/2) we have

ar(0) ≤
√
nβ2. Then we have:

∥wr(t)−wr(0)∥2 ≤
∫ t

0

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

ds ≤ 2
√
n

λ0α
(
√
nβ2 +Ra) ∥y − f(0)∥2 (1− exp(−λ0t

2
)) . (22)

If we account for t, then we conclude the proof.

Lemma 10. Suppose that for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and ∥wr(s)−wr(0)∥2 ≤ Rw. Then with probability at least
1− 1

n over initialization we have |ar(t)− ar(0)| ≤ Ra for all r ∈ [m] and the t ≤ t⋆2.

Proof. Note for any i ∈ [n] and r ∈ [m], w⊤
r (0)xi ∼ N (0, β2

1). Therefore applying Gaussian tail bound and union
bound we have with probability at least 1− 1

n , for all i ∈ [n] and r ∈ [m],
∣∣w⊤

r (0)xi

∣∣ ≤ 3β1

√
log(mn2), That means for

0 ≤ s ≤ t, With probability at least 1− 1
n we have:

∣∣∣∣ ddsar(s)
∣∣∣∣ =

∣∣∣∣∣ 1α
n∑

i=1

[f(W (t),a(t),xi)− yi]σ(w
⊤
r (t)xi)

∣∣∣∣∣
≤

√
n

α
∥y − f(s)∥2 (

∣∣w⊤
r (0)xi

∣∣+Rw)

≤
√
n

α
e−λ0s/2 ∥y − f(0)∥2

(
3β1

√
log(mn2) +Rw

)
.
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Then we have:

|ar(t)− ar(0)|2 ≤
∫ t

0

∣∣∣∣ ddsar(s)

∣∣∣∣ ds ≤ 2
√
n

λ0α

(
3β1

√
log(mn2) +Rw

)
∥y − f(0)∥2 (1− exp(−λ0t

2
)) . (23)

Bring in t, then finish the proof.

Lemma 11. Suppose 0 ≤ t ≤ min(t⋆1, t
⋆
2). Then with probability at least 1−n exp(−n/2)− 3

n over initialization we have:
λmin(H(t)) ≥ λ0

2 ,

|ar(t)− ar(0)| ≤
2
√
n

λ0α

(
3β1

√
log(mn2) +Rw

)
∥y − f(0)∥2 (1− exp(−λ0t

2
)) := R⋆

a(t) ,

∥wr(t)−wr(0)∥2 ≤ 2
√
n

λ0α
(
√
nβ2 +Ra) ∥y − f(0)∥2 (1− exp(−λ0t

2
)) := R⋆

w(t) ,

for all r ∈ [m].

Proof. When t = 0, λmin(H(s)) ≥ 3
4λ0, |ar(t)− ar(0)| = 0 < Ra and ∥wr(t)−wr(0)∥2 = 0 < Rw. Using induction,

combine Lemma 8, Lemma 9 and Lemma 10, we have the result.

D.2. Proof of Theorem 3

Proof. We can compute the gradient of the network that:

∇xft(x) =
1

α

m∑
r=1

ar(t)1
{
w⊤

r (t)x ≥ 0
}
w⊤

r (t) .

Then we can derive that:

P(ft, ϵ) = Ex,x̂

∣∣∣∣∣ 1α
m∑
r=1

ar(t)1
{
w⊤

r (t)x ≥ 0
}
w⊤

r (t)(x− x̂)

∣∣∣∣∣
≤ 1

α
Ex,x̂

m∑
r=1

∣∣ar(t)w⊤
r (t)(x− x̂)

∣∣
≤ 1

α
Ex,x̂

m∑
r=1

|ar(t)| ∥wr(t)∥2 ∥x− x̂∥2

≤ ϵ

α

m∑
r=1

|ar(t)| ∥wr(t)∥2 .

(24)

Then by Lemma 11, we have:

|ar(t)| ≤ |ar(t)− ar(0)|+ |ar(0)| ≤ R⋆
a(t) + |ar(0)| .

∥wr(t)∥2 ≤ ∥wr(t)−wr(0)∥2 + ∥wr(0)∥2 ≤ R⋆
w(t) + ∥wr(0)∥2 .

From Eq. (19), we have E |ar(0)| =
√

2
πβ2. That means with probability at least 1 − 1

n over initialization we have

|ar(0)| ≤
√

2
πnβ2.
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By Vershynin (2018, Chapter 3), with probability at least 1−δ over initialization, we have ∥wr(0)∥2 ≤ 4β1
√
m+2β1

√
log n.

By combining the results above with Eq. (24) and Lemma 11, with probability at least 1−n exp(−n/2)− 3
n over initialization

we obtain that:

P(ft, ϵ) ≤
ϵ

α

m∑
r=1

|ar(t)| ∥wr(t)∥2

≤ ϵm

α
(R⋆

a(t) +

√
2

π
nβ2)(R

⋆
w(t) + 4β1

√
m+ 2β1

√
log n)

(25)

Suppose that α ∼ 1, β1 ∼ β2 ∼ β ∼ 1
mc , c ≥ 1.5, m ≫ n2. Then Ra = Θ( 1√

n3m
), Rw = Θ( 1

mc ), R⋆
a(t) = Θ(

√
n logm
mc )

and R⋆
w(t) = Θ( 1√

n3m
). Bring these results into Eq. (25), with probability at least 1− n exp(−n

2 )−
3
n over initialization

we have:

P(ft, ϵ) ≤ Θ

(
ϵ

√
n logm+ n

mc−1

(
1√
n3m

+
1

mc−0.5

))
.

E. Additional Experiments
A number of additional experiments are conducted in this section. The following experiments are conducted below:

1. Firstly, in Appendix E.1, we introduce the experimental settings of this paper.

2. In Appendix E.2 we verify that our initialization settings belong in the lazy and the non-lazy training regimes.

3. In Appendix E.3, we compare the two different training regimes, lazy training and non-lazy training.

4. In Appendix E.4, we extend the experiments in Section 5.1 from fully connected network to Convolutional Neural
Network.

5. In Appendix E.5, we extend the experiments to some other initializations under non-lazy training regime.

E.1. Experimental settings

Here we present our experimental setting including models, hyper-parameters, the choice of width and depth, and initial-
ization schemes. We use the popular datasets of MNIST (Lecun et al., 1998), CIFAR10 (Krizhevsky et al., 2014) and
CIFAR100 (Krizhevsky et al., 2014) for experimental validation.

Models: We report results using the following models: fully connected ReLU neural network named “FCN”, convolutional
ReLU neural network named “CNN” and residual neural network named “ResNet-110”.

Hyper-parameters: Unless mentioned otherwise, all models are trained for 50 epochs with a batch size of 64. The initial
value of the learning rate is 0.001. After the first 25 epochs, the learning rate is multiplied by a factor of 0.1 every 10 epochs.
The SGD is used to optimize all the models, while the cross-entropy loss is used.

Width and depth: In order to verify our theoretical results, we conduct a series of experiments with different depths and
widths of the same type neural network. Specifically, our experiments include 11 different widths from 24 to 214, and four
different choices of depths, i.e., 2, 4, 6, 8, 10.

Initialization: We report results using the following initializations: 1) He initialization where Wij ∼ N (0, 2
min

), 2) LeCun
initialization where Wij ∼ N (0, 1

min
) and 3) An initialization allows for non-lazy training regime on two-layer networks,

i.e., β1 = β2 = 1/m2 and α = 1.
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Figure 4. (a) Tendency with respect to time (training epochs) and (b) relationship between width and lazy training ratio of neural networks.
Fig. 4(a) shows that ratio κ is small and almost unchanged, recognized as lazy training. In Fig. 4(b), we can see that the κ decreases with
the increasing width.
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Figure 5. (a) Tendency with respect to time (training epochs) and relationship with width of non-lazy training ratio of neural networks.
Fig. 5(a) shows that ratio κ is changed a lot (increasing and then remains unchanged), recognized as non-lazy training. The tendency of κ
for non-lazy training is increasing with the width and then decreasing, i.e., a phase transition in Fig. 5(b).

E.2. Validation for lazy and non-lazy training regimes

Firstly, we need identify the lazy and non-lazy training regime under different initializations. To this end, we define a
measure lazy training ratio, i.e., κ =

∑L
l=1∥Wl(t)−Wl(0)∥F∑L

l=1∥Wl(0)∥F

to measure whether the neural network is under the lazy training
regime. A smaller κ implies that the neural network is more close to lazy training.

According to the theory, we employ He initialization and non lazy training initialization we state in Appendix E.1 then
conduct the experiment under two-layer neural networks to verify that their lazy training ratio matches the theoretical results
of lazy training and non-lazy training (i.e. the experiment is under the correct regime). Fig. 4(a) and Fig. 4(b) show the
tendency of ratio with respect to time (training epochs) and relationship between width and lazy training ratio of neural
networks under lazy training regime, respectively. We can find that the ratio of lazy traing regime is almost a constant that
does not change with time, and this constant decreases with the width of network increases. This is in line with what we
know about lazy training (Chizat et al., 2019).

Likewise, Fig. 5 shows the ratio tendency with time and width under non-lazy training regime. The ratio increases almost
linearly over time in Fig. 5(a). (In epoch 25 we decrease the learning rate, which results in the increase rate of κ changes.)
At the same time Fig. 5(b) shows the similar tendency between width and lazy training ratio as lazy training. However, the
value of κ is much higher than that of lazy training regime. Combining the results about tendency with time, the ratio will
be expected to increase as time at a slow decay and tend to infinity under highly wide width setting.



1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly)

Table 4. Comparison results of lazy training regime and non-lazy training regime of ResNet-110 under practical network/datasets.
Dataset Lazy training Non-lazy training

CIFAR10 92.89% 92.14%
CIFAR100 71.08% 70.55%
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Figure 6. Relationship between perturbation stability and width of CNN under He initialization for different depths of L = 4, 6, 8 and 10.

E.3. Comparison of Lazy training and Non-lazy training

In this section, we test the performance of lazy training regime and non-lazy training regime on practical task and networks.
We choose the ResNet-110 model3 for these experiments. We adopt a narrow model width for computational efficiency.
We utilize the He initialization and the non-lazy training initialization as mentioned in Appendix E.1 on two commonly
used datasets CIFAR10 and CIFAR100, of which results are provided in Table 4. Notice that the non-lazy training regime
achieves a similar performance to lazy training regime. This implies that non-lazy training regime is also needed for studying
practical learning tasks.

E.4. Extend the experiment in Section 5.1 to CNN

In this section, we extend the experiments in Section 5.1 from fully connected networks to convolutional neural networks
in Fig. 6. Compared with the fully connected network, the main difference of the convolutional neural network is that
the gap between different depths is much larger than fully connected network, which is more in line with the relationship
between robustness and depth under He initialization in Theorem 1.

3https://github.com/bearpaw/pytorch-classification

https://github.com/bearpaw/pytorch-classification
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Figure 7. Influence of width of neural network on perturbation stability under non-lazy training regime. (a) the variance of the initial
weight is 1

m3 . (b) the variance of the initial weight is 1
m4 .

E.5. More experiments in non-lazy training regime

In this section, we extend the experiments of Fig. 2(b) to more initializations under non-lazy training regime (the variance
of the initial weight are 1

m3 and 1
m4 ). Fig. 7 provides the relationship between robustness and width of neural network for

these two initializations and shows that the robustness improves with the increase of the width of network which consistent
with Theorem 3, but the difference between different initializations is not as large as our theoretical expectation, which may
indicate that the bound in Theorem 3 is not tight enough.

F. Limitation and discussion
The limitation of this work is mainly manifested in that Theorem 3 is built on two-layers neural networks. Extending this
results to deep neural networks beyond lazy training regime is non-trivial. Firstly, the dynamics of the deep neural network
and the bounds of the gap between the initialization and the expectation of the gram matrix will become more complex.
Secondly, due to the coupling relationship between different layers, the critical change radius of the weight in Lemma 8
is also coupled with each other and is difficult to analyze. Then, due to the superposition of the previous two points, the
relationship between the weights changing with time in the early stage of training (similar to Lemma 9) and the width and
initialization of the neural network will be difficult to distinguish, which leads to the final result being complex, demanding
and difficult to obtain a valid conclusion about width and initialization.


