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Abstract
Randomized smoothing is sound when using in-
finite precision. However, we show that random-
ized smoothing is no longer sound for limited
floating-point precision. We present a simple ex-
ample where randomized smoothing certifies a
radius of 1.26 around a point, even though there
is an adversarial example in the distance 0.8 and
extend this example further to provide false cer-
tificates for CIFAR10. We discuss the implicit
assumptions of randomized smoothing and show
that they do not apply to generic image classifi-
cation models whose smoothed versions are com-
monly certified. In order to overcome this prob-
lem, we propose a sound approach to randomized
smoothing when using floating-point precision
with essentially equal speed and matching the cer-
tificates of the standard, unsound practice for stan-
dard classifiers tested so far. Our only assumption
is that we have access to a fair coin.

1. Introduction
Shortly after the advent of deep learning, it was observed
in (Szegedy et al., 2014) that there exist adversarial exam-
ples, i.e., small imperceptible modifications of the input
which change the decision of the classifier. This property is
of major concern in application areas where safety and secu-
rity are critical such as medical diagnosis or in autonomous
driving. To overcome this issue, a lot of different defenses
have appeared over the years, but new attacks were proposed
and could break these defenses, see, e.g., (Athalye et al.,
2018; Croce & Hein, 2020; Tramer et al., 2020; Carlini et al.,
2019). The only empirical (i.e., without guarantees) method
which seems to work is adversarial training (Goodfellow
et al., 2015; Madry et al., 2018) but also there, a lot of de-
fenses turned out to be substantially weaker than originally
thought (Croce & Hein, 2020).
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Hence, there has been a focus on certified robustness. Here,
the aim is to produce certificates assuring no adversarial ex-
ample exists in a small neighborhood of the original image.
This small neighborhood, typically called a threat model,
is usually established as an ℓp ball centered at the original
image. However, there also exist other choices for this, such
as a Wasserstein ball (Wong et al., 2019) or a ball induced
by perceptual metrics (Laidlaw et al., 2021).

The common certification techniques include (1) Bounding
the Lipschitz constant of the network, see (Hein & An-
driushchenko, 2017; Li et al., 2019; Trockman & Kolter,
2021; Leino et al., 2021; Singla et al., 2022) for ℓ2 threat
model and (Zhang et al., 2022) for ℓ∞. (2) Overapproxi-
mating the threat model by its convex relaxation (Admit-
tedly, bounding Lipschitz constant can also be interpreted
this way), possibly combined with mixed-integer linear
programs or SMT; see, e.g., (Katz et al., 2017; Gowal
et al., 2018; Wong et al., 2018; Balunovic & Vechev, 2020).
(3) Randomized smoothing (Lecuyer et al., 2019; Cohen
et al., 2019; Salman et al., 2019), which is hitherto the only
method scaling to ImageNet. We remark that the concept of
randomized smoothing may also be interpreted as a special
case of (1), see (Salman et al., 2019) for the details.

All of these certificates expect that calculations can be done
with unlimited precision and do not take into account how
finite precision arithmetics affects the certificates. For Lips-
chitz networks (1), the round-off error is of the order of the
lowest significant bits of mantissa, which we can estimate
to be in the orders of ∼ 10−8 for single-precision floating-
point numbers. Thus, we should assume that the adversary
can also inject ℓ∞-perturbation bounded by ∼ 10−8 in every
layer. However, since the networks have small Lipschitz
constants by definition, those errors will not be significantly
magnified. Although we cannot universally quantify the
numerical errors of Lipschitz networks, they will likely be
very small and in particular, can be efficiently traced dur-
ing the forward pass so that the certificates will be sound.
For the verification methods from category (2), previous
works have shown that numerical errors may lead to false
certificates for methods based on SMT or mixed-integer
linear programming (Jia & Rinard, 2021; Zombori et al.,
2021). However, it is possible (and often done in practice) to
adapt the verification procedure to be sound w.r.t. floating-
point inaccuracies (Singh et al., 2019); thus, the problem is
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not fundamental, and these verification techniques can be
made sound. We are not aware of any work discussing the
influence of numerical errors on randomized smoothing cer-
tificates (3). The recent work of (Lin et al., 2021) focuses on
randomized smoothing when using only integer arithmetics
in neural networks for embedded devices, so they will, by
definition, not have problems with floating-point errors. On
the other hand, it does not cover some modern architectures,
such as transformers. Furthermore, the way they approxi-
mate sampling from the discrete normal distribution is not
accurate; we discuss it more in Appendix E.

In this paper, we make the following contributions.

1. We perform a novel analysis of numerical errors in ran-
domized smoothing approaches when using floating-
point precision and identify qualitatively new prob-
lems.

2. Building on the observations, we present a simple ap-
proach for developing classifiers whose smoothed ver-
sion will provide fundamentally wrong certificates for
chosen points.

3. We propose a sound randomized smoothing procedure
for floating-point precision. The certification speed
is essentially equal, and the certified robust accuracy
matches the one claimed by the standard (unsound)
smoothing. The code will be publicly available.

Manuscript organization: We start with the definition
of randomized smoothing in Section 2, then we continue
with the discussion on floating-point arithmetics in Section 3.
Then, in Section 4 we exploit the properties of floating-point
arithmetics and present a simple classifier producing wrong
certificates, and we follow with the identification of the
implicit assumptions of randomized smoothing. In Section 5
we conclude the main result by proposing a method of sound
randomized smoothing in floating-point arithmetics and
provide an experimental comparison of the old unsound and
the new sound certificates.

2. Randomized smoothing
Throughout the paper, we consider the problem of binary
classification. Every phenomenon we discuss can be easily
transferred to the multiclass setting. We define certificates
with respect to a norm ball in the following.

Definition 2.1. A classifier F ∶ Rd → {0,1} is said to be
certifiably robust at point x ∈ Rd with radius r, w.r.t. norm
∥⋅∥ if the correct label at x is y ∈ {0,1}, and ∥x − x′∥ ≤
r Ô⇒ F (x′) = y.

One way to get a certificate is randomized smoothing which
we introduce following, e.g., (Cohen et al., 2019; Salman

et al., 2019). We start with a deterministic mapping F ∶
Rd → {0,1} and call it base classifier. Its smoothed version
is f̂(x) = Eϵ∼N (0,σ2Id)F (x + ϵ), and the resulting hard
classifier is F̂ (x) = Jf̂(x) > 0.5K. Using the Neyman-
Pearson lemma the following result has been shown:
Theorem 2.2 ((Cohen et al., 2019)). Suppose pA ∈ ( 12 ,1]
satisfies

Pϵ∈N (0,σ2I)(F (x + ϵ) = cA) ≥ pA.

Then F̂ (x + δ) = cA for all δ ∈ Rd with ∥δ∥2 < σΦ−1(pA).

We call in the following r(x) = σΦ−1(f̂(x)) the certified
ℓ2-radius of F̂ at x.

We emphasize that we require the smoothed classifier F to
be deterministic in the sense that its output for the same input
is always the same and that the output is dependent only
on the current input and not on the inputs it has observed
before. This requirement is commonly satisfied, and we list
it only for the sake of completeness. It is easy to construct a
mapping F violating this assumption and producing false
certificates. E.g., take F that returns 0 in the first 106 calls
and 1 afterward.

For the majority of classifiers, it is intractable to evaluate
f̂ exactly; therefore, random sampling is used to estimate
it. Thus, the certificate is only probabilistic. Following the
literature, 100 000 samples are used to estimate f̂(x), then
it is lower bounded by p for certifying class 1 (resp. upper
bounded for class 0) allowing failure probability, that is
when p > f̂(x) (resp. p < f̂(x)), to be 0.001. The value
p from f̂(x) can be computed using tail bounds or classi-
cal Clopper-Pearson confidence intervals for the binomial
distribution. The actual certification procedure is described
in Algorithm 1. However, to keep the example below as
simple as possible, in Listing 1, we computed p using a
simple Hoeffding bound. Although it produces a weaker
certificate, it is still sufficient for the demonstration. The
allowed failure probability corresponds to bad luck during
the noise sampling to estimate f̂ . It does not correspond to
a bad choice of model F , or to a possibility of unpleasant
data distribution.

3. Computer representation of floating-point
numbers

In this section, we discuss the properties of floating-point
addition (denoted as ⊕, analogically we have ⊖) that we will
later exploit to produce false certificates. The introduction of
(standard) floating point arithmetics, together with examples
and rationale for the upcoming observations, is deferred to
Appendix D.

The main observation is that floating-point addition to a
certain number (i.e., fa(x) = a ⊕ x) is not an injective
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mapping. Therefore, if the classifier observes input x′, it
may determine if it can be a smoothed version of x; that is, it
may determine if there exists a number a so that x + a = x′.
In (Reiser & Knuth, 1975), it is shown that if stable rounding
is used, then the identity

((x⊕ y)⊖ y)⊕ y = x⊕ y

holds apart from certain very1 rare cases, and the identity

(((x⊕ y)⊖ y)⊕ y)⊖ y = (x⊕ y)⊖ y

holds always. On the other hand, there is no evidence that
the equality (x⊕ y)⊖ y = x should hold. Indeed, consider
x to have a lower exponent than y. Then during the addi-
tion, x⊕ y, the low bits of the mantissa of x would be lost.
Similarly, if x ⊕ y has a different exponent than y, then a
loss of significance may occur during the second rounding.
Now, consider the case where x = a ⊖ y, then the identity
(x⊕ y)⊖ y = x would hold apart from the very rare cases.

Our idea is to make the classifier determine if the observed
value x could be a smoothed version of a. This can be
done precisely, but we only approximate this using the pre-
vious observation. The reason is that it is sufficient for the
demonstration, and the resulting function (introduced in
Equation (1) in the next section) will be simple, suggesting
that the phenomenon may occur in standard networks.

4. Construction of classifiers with false
certificates

We present an example of a function F ∶ R→ {0,1} which
is prone to giving incorrect certificates via randomized
smoothing; the whole "experimental setup" is captured in
Listing 1. The example is based on the observation that we
are able to determine if a floating-point number x could be a
result of floating-point addition a⊕n where a is known and
n is arbitrary. We construct a function Fa whose behavior
we analyzed in the previous section.

Fa(x) = J(x⊖ a)⊕ a = xK. (1)

We take Fa as a base classifier and consider the smoothed
classifier f̂a it induces with σ = 0.5. It holds that f̂a(a) ≈ 1,
therefore if we have enough samples, we may obtain a
very large certified radius. Specially, in the example con-
sidered in Listing 1 with 100 000 samples, we can cer-
tify2a l2-radius of 1.26 around 210/255, however 0 =
F̂210/255(0) /= F̂210/255(210/255) = 1, and the point 0 is
nowhere near the boundary of the certified ball. We em-
phasize that this construction does not rely on the fact that

1It occurs roughly once per 108 random trials.
2We can certify radius 1.9 with the bounds of Clopper-Pearson.

Fa(a + ϵ) = 1 for ϵ ∈ N (0, σ2) with very high probabil-
ity, it only serves as a striking example. Similarly, we get
0 = F̂210/255(0) /= F̂210/255(200/255) = 1, despite every
point 0,1/255, . . . ,255/255 would be class 1 according to
the certificate even with the simple Hoeffding tail bounds
instead of Clopper-Pearson intervals.

4.1. Consequences for real images

We stress that the simple construction generalizes to images.
Indeed, we could employ a function

Fa,i(x) = J(xi ⊖ a)⊕ a = xiK, (2)

which takes a vectorised version of an image as an input. Us-
ing such function in Listing 1 would certify that any image
with intensity 210/255 at position i is class 1 with robust
radius 1.26, while any image with intensity 0 at position i
would be classified as 0; a clear contradiction. We take one
step further. Consider a function

Ga(x) =mindi=1J(xi ⊖ ai)⊕ ai = xiK. (3)

It holds that Eϵ∼N (0,1)Ga(a + ϵ) ≈ 1; thus, certifying "ar-
bitrarily" high radius (to be specific, with 100 000 samples
it is 3.8115 in ℓ2 norm), and Eϵ∼N (0,1)Ga(a′ + ϵ) < 0.5 for
the vast majority of inputs a ≠ a′. We tried the following
experiment; For every image a in the CIFAR10 test set, we
created an image a′ by increasing the image intensity of
a by 1/255 at 512 random positions. Then it holds that
Eϵ∼N (0,1)Ga(a′ + ϵ) ≤ 0.2 for every CIFAR image a, even
though ∥a − a′∥2 < 0.09.

Following this line of examples, let us introduce the follow-
ing hard classifier:

HA(x) =maxa∈Amindi=1J(xi ⊖ ai)⊕ ai = xiK, (4)

where A is a set of images. Therefore, when A is the set
of CIFAR10 test set images, then we can certify the robust-
ness of the smoothed version of HA at every point of the
CIFAR10 test set for large radii, even though it is vulnerable
even to small random perturbations. We remark that HA

can be implemented with a standard network architecture
using only linear layers and ReLU non-linearities. To con-
clude the examples, we state the findings in the upcoming
theorem. Since we introduced the machinery only for binary
classification, we treat CIFAR10 as a binary classification
dataset.

Theorem 4.1. There is a classifier with certified robust accu-
racy 100% on the CIFAR10 test set X ∈ [0, 1

255
, . . . ,1]3072

(where we define class 0 to include classes 0,1,2,3,4 of CI-
FAR10 and class 1 contains the other classes) with ℓ2-robust
radius of 3 and failure probability 0.001 using randomized
smoothing certificates, while for every point x ∈X there is
an adversarial example x′ with ∥x − x′∥2 ≤ 1.
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Listing 1: example of an incorrect randomized smoothing certificate
import numpy as np
from s c i p y . s t a t s import norm

sigma = 0 . 5 ; num_samples = 100000; a l p h a = 0 .00 1
f = lambda x : ( x − 2 1 0 / 2 5 5 ) + 210/255 == x
n o i s e = np . random . randn ( num_samples )* sigma

p1 = f (0+ n o i s e ) . sum ( ) / num_samples # 0 . 4 6
p2 = f (210 /255+ n o i s e ) . sum ( ) / num_samples # 1 . 0
p = p2 −( − np . l o g ( a l p h a ) / num_samples / 2 ) * * 0 . 5
r = sigma * norm . ppf ( p ) # 1 . 2 6

Proof. We take X0 ⊆X to be the set of all images from X
with class 0 and X1 = X ∖X0. Then we construct a hard
classifier

M(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if HX1(x) = 1
or ( HX0(x) = 0 and x1 > 127

255
)),

0 otherwise,

where we use HA from (4). Experimentally we conclude
that for the smoothed classifier of M with σ = 1, randomized
smoothing certifies robust radius 3 in ℓ2 norm for every
point x of the test set. At the same time, the perturbation p =
(α, 1

255
, 1
255

, . . . ) ∈ R3072 for α ∈ {± 240
255
} yields HX1(x +

p) = HX2(x + p) = 0 for any x ∈ X . Thus, we can choose
α so that M(x) ≠M(x + p) and also ∥p∥2 ≤ 1.

A similar construction will likely serve as an example for
the ImageNet dataset.

4.2. Implicit assumptions of randomized smoothing

The obvious questions after this negative result are: i) what
is the key underlying problem in floating-point arithmetics?
ii) what are the implicit assumptions in randomized smooth-
ing?, and iii) how can we fix the problem?

The first assumption of randomized smoothing is that the
samples from a normal distribution are indeed i.i.d. samples.
This is not true for floating-point precision due to the round-
ing; Thus, the resulting distribution from which we observe
samples is uncontrolled, and for certification, we should not
rely on it. However, violation of this assumption is not the
cause of the example presented in Listing 1.

The intuition behind randomized smoothing is that the dis-
tributions D1 = N (x,σ2I) and D2 = N (x + ϵ, σ2I) have
non-trivial overlap for small values of ϵ. As a consequence,
the smoothed classifier f̂(x) = Eϵ∼N (0,σ2Id)F (x + ϵ) eval-
uated at x also carries information about its value at points

near x. However, the following observation will prove it
wrong in the floating-point arithmetics.

Roughly speaking, the supports of two high dimensional
normal distributions appear to be almost disjoint, although
in one dimension the overlap may be substantial. To support
this claim, We performed the following experiment; given
point a ∈ {0,1/255, . . .255/255} and σ > 0, find a point b
such that b ∈ {a⊖ 2/255, . . . , a⊕ 2/255} which minimizes
the probability that for an ϵ1 ∼ N (0, σ2) there exists a
number ϵ2 such that a ⊕ ϵ1 = b ⊕ ϵ2? For example, if a ≥
5/255 and σ = 1, then the minimized probability is less than
0.99, and for the majority of a ≥ 5/255 it is even smaller.
In order to see that the distributions are almost disjoint,
consider an image, say from a CIFAR dataset, a ∈ R3072

which has at least half of its channels with intensities greater
than 4/255. According to the previous observation, we
can find an image a′ such that ∥a − a′∥∞ = 2/255 and that
the probability that smoothed a at any (non black) position
could be a smoothed version of a′ is at most 0.99 (this can
be exploited by function Fa,i from Equation (2)). Therefore,
the probability that a smoothed version of the first image
could also be a smoothed version of the second image is
at most 0.993072/2 ≈ 2 × 10−7 (this can be exploited by
function Ga from Equation (3)). Thus, when we follow
the standard practise and use 105 samples to estimate f̂(a)
from base classifier F , the chances that at least one of the
samples belongs to the distribution from which we sample to
estimate f̂(a′) is at most in the orders 10−2. Consequently,
without any assumptions on the base classifier F , f̂(a)
carries almost no information about f̂(a′).

4.3. Potential revisions of randomized smoothing

The described experiment exploits the floating-point round-
ing. The errors are in the order of the least significant bits,
which are in the order of 10−8 for single-precision and 10−4

for half-precision. Since these numerical errors are not con-
trolled, we should assume that the model is adversarially
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attacked during smoothing, where the attacker’s budget is
the possible rounding error, denoted as B; therefore, the
smoothing (for certifying class 1) should be performed as:

f̂(x) = Eϵ∼N (0,σ2Id)minϵ2∈B F (x + ϵ + ϵ2).

To mitigate this problem, during estimating f̂(x), we should
certify F (x + ϵ). Although the attacker’s budget B is very
small for single accuracy and possibly noticeable for the
half accuracy, it is not clear how it should be certified, since
in randomized smoothing, there are no assumptions on F .

Consider F to be a thresholded classifier F (x) = Jf(x) >
0.5K, where f is a neural network, then we could certify that
f is constant in B-neighbourhood of the smoothed image.
For generic models, this can be done by either bounding
the Lipschitz constant of f (w.r.t. an ℓ∞-like norm), or
by propagating a convex relaxation (e.g., IBP) through the
network. For smoothing, there are usually used deep models.
E.g., (Salman et al., 2019) used ResNet110 and ResNet50
for certifying CIFAR10 and ImageNet respectively. The
bound on the global Lipschitz constant of a deep network
by bounding the operator norms of each layer is thus very
weak (≈ 1030 − 10130, depending on the model) and cannot
certify F (x+ ϵ) even under such a weak threat model as the
rounding errors in B.

A possible defense against this problem would be to round
the input on a significantly larger scale thanB before evaluat-
ing F . Let the rounding be performed by a mapping g, then
we would in fact smooth a classifier F ○ g. If we consider B
to be in the orders of 10−8 and we would round it to orders
10−2, then the probability that x+ϵ will be close to the bound-
ary of rounding, i.e., ∃ϵ2 ∈ B ∶ g(x+ϵ+ϵ2) ≠ g(x+ϵ) would
be on the order of 10−6, which is then the probability that
the attack within the threat model B could indeed change the
input of F at a single position. Consequently, the probabil-
ity that there is no ϵ2 ∈ B which would change the result of
rounding is very roughly ≈ (1−106)3072 ≈ 0.997 for CIFAR
and ≈ (1−106)150528 ≈ 0.86 for ImageNet. This means that
for approximatelly 86% of the smoothed ImageNet images
we can guarantee that F (x + ϵ + ϵ2) = F (x + ϵ) and for the
others, we could e.g., set minϵ2∈B F (x + ϵ + ϵ2) = 0. This
replacement of F by F ○ g during smoothing seem to solve
the problem for CIFAR and partially also for ImageNet for
single precision. For half precision, the problem will persist.

However, even if this adjustment solved the problem with
numerical errors satisfactorily during the addition of noise to
images, the certificate will still not be sound because we are
unlikely to control the normal distribution sampler’s perfor-
mance. Thus, although we do not see a striking example of
how to exploit the imperfections of normal distribution sam-
plers, a lack of a counterexample is not enough to confirm
the correctness of a certification method.

5. Sound randomized smoothing for
floating-point precision

In this section, we will derive a sound randomized smooth-
ing certification procedure for floating-point precision hav-
ing comparable accuracy to the one which the standard
unsound randomized smoothing claims. Our only assump-
tion is the access to i.i.d. samples of a fair coin toss, which
is equivalent to having access to samples from the uniform
distribution on integers 0, . . . ,2n − 1 for some n. Thus, we
assume to have access to uniform samples from numbers
representable by Long datatype, that is when n = 64. We
further consider classification tasks where the input is quan-
tized as it is true for images. Throughout the section, we
consider the input space to be {0,1, . . . ,255}d, although it
could also be {0, 1

255
, . . . ,1}. This assumption is only for

the convenience of presentation and is not necessary.

As discussed in the previous section, it is appealing to
quantize the smoothed images before feeding them into
the network. Thus, we prepend a mapping gk ∶ Rd →
{−k,−k+1, . . . , k+255}, for some positive integer k which
rounds the input to the nearest integer from its range before
the function to be smoothed F ; therefore, the smoothed
classifier (of F ○ gk) is defined as:

f̂(x) = Eϵ∼N (0,σ2Id) F (gk(x + ϵ)),

which we further equivalently rewrite as

f̂(x) = Et∼gk(x+ϵ), ϵ∼N (0,σ2Id) F (t).

Now, F is a deterministic function, regardless of possible
numerical errors occurring during evaluation of F (t); thus,
we only need to show how to obtain i.i.d. samples from the
discretized normal distribution N k

D(x,σ2) = gk(x + ϵ), ϵ ∼
N (0, σ2), from which we sample component-wise. The key
observation is that we do not need to obtain samples from
N (0, σ2) anymore. The resulting distribution from which
we want to sample now is discrete. Concretely, we have

Pt∼Nk
D
(x,σ2)Jt = aK =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
−k+ 1

2
−∞

1√
2πσ2

e−
(x−u)2

2σ2 du if a = −k,

∫
a+ 1

2

a− 1
2

1√
2πσ2

e−
(x−u)2

2σ2 du if −k < a < k + 255,

∫
∞
k+255− 1

2

1√
2πσ2

e−
(x−u)2

2σ2 du if a = k + 255.

The following proposition allows us to sample only from a
single distribution for all values of x.

Proposition 5.1. Let k be a positive integer
and x ∈ {0,1, . . . ,255}, then it holds that
N k

D(x,σ2) = max{−k,min{k + 255, t′ + x}},
t′ ∼ N k+255

D (0, σ2).
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Thus, it is enough to have a sampler from N k+255
D (0, σ2).

The value of k is chosen such that the vast majority of
samples fromN (x,σ2) falls into the interval [−k, k + 255].
The choice of k does not affect the correctness of certificates,
but may affect the accuracy. In the experiments we chose
k = 6σmax = 6 for inputs from [0,1]d, so it corresponds to
k = 6 ⋅ 255 in the notation of this section.

Let us denote the quantile function of N k
D(0, σ2) as Φ−1D,k,

then Φ−1D,k transforms i.i.d. samples from uniform distribu-
tion on the interval [0,1) =: U(0,1) to i.i.d. samples from
distribution N k

D(0, σ2).
To sample from N k

D(0, σ2), we first approximate the sam-
ples from U(0,1) by samples from the discrete uniform
distribution on {0, . . . ,2n − 1} which we will interpret as
uniform distribution on {0, 1

2n
, . . . , 2

n−1
2n
} =: U(0,1). Then

we only need to compute the 2k + 255 probabilities with
high enough accuracy that we can claim the correctness of
Φ−1D,k(u) for u ∈ {0, 1

2n
, . . . , 2

n−1
2n
}. This can be done by us-

ing symbolic mathematical libraries allowing computations
in arbitrary precision.

Since the distribution N k
D(0, σ2) is supported on 2k + 256

events, there will be 2k + 255 points x ∈ {0, 1
2n

, . . . , 2
n−1
2n
}

such that Φ−1D,k(x) ≠ Φ−1D,k (x + 1
2n
). Now, consider

the obvious mapping between samples from U(0,1) and
U(0,1) which rounds down a sample u from the con-
tinuous real interval [0,1) to the closest point v from
the set {0, 1

2n
, . . . , 2

n−1
2n
}. Then it holds for the probabil-

ity Φ−1D,k(u) ≠ Φ−1D,k(v) ≤ 255+2k
2n

≤ 212−n for a choice
k = 7.5 × 255. The probability that the produced sample
is not the actual i.i.d. sample is thus at most 212−n at one
position. Therefore, the probability that all the smoothed
images, considering ImageNet sized images with shape
3 × 224 × 224, out of 100 000 smoothed samples are indeed
the correct i.i.d. samples from discrete normal distribution
is at least 1 − 246−n > 0.999996 for n = 64, where we used
the facts that log2(3 ⋅ 224 ⋅ 224 ⋅ 100 000) ≤ 34, and that
(1 − 2a)2 = (1 − 2 ⋅ 2a + 22a) > (1 − 2a+1). Therefore,
the probability of receiving a sample that might not be the
actual i.i.d. sample is negligible. Still, we can check if
we receive such a potentially flawed sample x and in that
case, we would set F (x) = 0 when certifying class 1 (resp.
F (x) = 1 when certifying 0) for that particular sample. We
postpone an example of the sampling from N k

D(x,σ2I) to
Appendix B. We note that sampling is slightly more ex-
pensive since we need to threshold the observed uniform
samples, but this is only an implementation issue. On the
other hand, it is sufficient to sample i.i.d. noise for just one
image 100 000 times and reuse it for all the other images.
The certificates will be valid, only the case of failure for dif-
ferent images will not be independent, but it is not required.
As we sample just once for the whole data set, the time spent
for sampling is negligible. We wrap up the observations in

the following corollary:

Corollary 5.2. Let F ∶ Rd → {0,1} be a deterministic
function, and gk ∶ Rd → { −k

255
, −k+1

255
, . . . k+255

255
} maps input

to the closest point of its range, breaking ties arbitrarily.
Then the following two functions are identical:

f̂1(x) = Eϵ∼N (0,σ2Id) F (gk(x + ϵ)),
f̂(x) = Et∼Nk

D
(x,σ2Id) F (t).

Therefore, to certify f̂1 with base classifier F ○ gk using ran-
domized smoothing, we can estimate the value of f̂ and use
it for the certification. Furthermore we can get i.i.d. sam-
ples from t ∼ N k

D(x,σ2Id) with arbitrarily high precision
using exact arithmetics; thus, the certificate is sound.

Remark 5.3. The empirical performance of the sound and
unsound versions of randomized smoothing are essentially
equivalent in practice; see Table 1 and also Appendix A for
the evidence. However, it no longer incorrectly certifies the
example from Listing 1, where it only certifies a radius 0.6,
and the points are distant 0.82 from each other. Similarly,
the smoothed classifier of M from Theorem F does not con-
tain the universal adversarial perturbations in the certified
balls around the points. See Appendix F for more details.

To summarize: we showed how to replace sampling from
the normal distribution, where one cannot trace the numer-
ical errors, by sampling from the uniform distribution on
integers, where we can bound the failure probability in or-
der to obtain high probability estimates of the output of a
smoothed classifier with a prepended rounding mapping.
See Algorithms 1, 2 for the comparison of the standard
and the proposed certification procedure. We also provide
an empirical comparison of the methods in Table 1 and in
Appendix A.

6. Broader impact & Conclusions
In the paper, we described multiple simple ways how to
construct models that will be certifiably robust for points
of our choice using the standard randomized smoothing
certification procedure, although there will be adversarial
examples in their close neighborhood.

We also described how to obtain a sound randomized
smoothing procedure that resolves the problem, essentially
for free, with only a minor modification of the standard
certification procedure.
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Table 1: Certified radii for a model F smoothed with N (0, σ2I) on CIFAR10 test set. Evaluated on 500 images from the
test set highlighting the differences. The model is taken from (Salman et al., 2019), more details in Appendix A.

Sound smoothing of F ○ gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.878 0.848 0.778 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.836 0.808 0.746 0.600 0.466 0.000 0.000 0.000 0.000
σ = 0.5 0.708 0.672 0.618 0.502 0.410 0.338 0.248 0.174 0.000
σ = 1 0.512 0.492 0.448 0.380 0.316 0.278 0.230 0.182 0.112

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.880 0.848 0.778 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.836 0.808 0.746 0.602 0.468 0.000 0.000 0.000 0.000
σ = 0.5 0.706 0.672 0.618 0.502 0.408 0.338 0.248 0.174 0.000
σ = 1 0.516 0.492 0.448 0.378 0.316 0.278 0.230 0.182 0.110

A. Experiments
To run the experiments, we used the publicly available codebase of (Salman et al., 2019) which is distributed under MIT
licence. Our modifications will be publicly available under MIT licence. The experiments were run on a single Tesla V100
GPU. The models we evaluated were chosen arbitrarily from the models (Salman et al., 2019) provide in their repository.
Their identifications are:

pretrained_models/cifar10/finetune_cifar_from_imagenetPGD2steps/PGD_10steps_30epochs_multinoise/2-
multitrain/eps_64/cifar10/resnet110/noise_σ/checkpoint.pth.tar,

pretrained_models/cifar10/PGD_4steps/eps_255/cifar10/resnet110/noise_σ/checkpoint.pth.tar

pretrained_models/cifar10/PGD_4steps/eps_512/cifar10/resnet110/noise_σ/checkpoint.pth.tar

where σ ∈ {0.12,0.25,0.50,1.00} for tables 1, 2, 3 respectively. In Table 1, 100 000 samples are used, whereas for Tables 2,
3 we used only 10 000 samples to evaluate the smoothed classifier.

For Imagenet experiments, we used models:

pretrained_models/imagenet/replication/resnet50/noise_σ/checkpoint.pth.tar,

pretrained_models/imagenet/DNN_2steps/imagenet/eps_512/resnet50/noise_σ/checkpoint.pth.tar

where σ ∈ {0.25,0.50,1.00} for tables 4 and 5 respectively. Again, we used 10 000 samples to evaluate the smoothed
classifier.

A.1. Speed

We note that the speed is essentially equal for both of the methods, described in Algorithm 1 and 2 respectively, because
we compute the noise beforehand and then we can use the same set of n noises for every image, where n is the number
of samples used to evaluate a smoothed classifier. The time needed to generate the noise is in the order of minutes; thus,
negligible compared to the time needed to run the experiments.



Sound Randomized Smoothing in Floating-Point Arithmetics

Table 2: Certified radii for a model F smoothed with N (0, σ2I) on CIFAR10 test set. Evaluated on 500 images from the
test set highlighting the differences. The model is taken from (Salman et al., 2019).

Sound smoothing of F ○ gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.714 0.678 0.630 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.660 0.636 0.590 0.526 0.444 0.000 0.000 0.000 0.000
σ = 0.50 0.554 0.538 0.500 0.442 0.386 0.340 0.284 0.204 0.000
σ = 1 0.440 0.428 0.402 0.368 0.332 0.292 0.248 0.202 0.160

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.712 0.678 0.630 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.664 0.638 0.592 0.522 0.444 0.000 0.000 0.000 0.000
σ = 0.50 0.556 0.540 0.500 0.440 0.386 0.338 0.284 0.194 0.000
σ = 1 0.440 0.428 0.402 0.366 0.330 0.290 0.248 0.204 0.164

Table 3: Certified radii for a model F smoothed with N (0, σ2I) on CIFAR10 test set. Evaluated on 500 images from the
test set highlighting the differences. The model is taken from (Salman et al., 2019).

Sound smoothing of F ○ gk via Algorithm 2 for k = 6

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.560 0.544 0.522 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.534 0.514 0.492 0.450 0.408 0.000 0.000 0.000 0.000
σ = 0.50 0.466 0.458 0.440 0.414 0.378 0.342 0.306 0.258 0.000
σ = 1 0.370 0.364 0.342 0.320 0.298 0.276 0.252 0.226 0.166

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.12 0.558 0.544 0.522 0.000 0.000 0.000 0.000 0.000 0.000
σ = 0.25 0.534 0.514 0.492 0.450 0.410 0.000 0.000 0.000 0.000
σ = 0.50 0.464 0.458 0.440 0.414 0.380 0.340 0.308 0.264 0.000
σ = 1 0.372 0.364 0.344 0.318 0.298 0.274 0.250 0.222 0.168
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Table 4: Certified radii for a model F smoothed with N (0, σ2I) on Imagenet test set. Evaluated on 1000 images from the
test set highlighting the differences. The model is taken from (Salman et al., 2019).

Sound smoothing of F ○ gk via Algorithm 2 for k = 12

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.25 0.661 0.636 0.614 0.559 0.498 0.000 0.000 0.000 0.000
σ = 0.50 0.597 0.586 0.549 0.509 0.460 0.428 0.383 0.330 0.000
σ = 1 0.447 0.438 0.424 0.390 0.365 0.344 0.319 0.299 0.238

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.25 0.660 0.635 0.614 0.559 0.497 0.000 0.000 0.000 0.000
σ = 0.50 0.598 0.584 0.548 0.507 0.459 0.429 0.385 0.323 0.000
σ = 1 0.447 0.439 0.424 0.390 0.365 0.344 0.320 0.297 0.240

Table 5: Certified radii for a model F smoothed with N (0, σ2I) on Imagenet test set. Evaluated on 1000 images from the
test set highlighting the differences. The model is taken from (Salman et al., 2019).

Sound smoothing of F ○ gk via Algorithm 2 for k = 12

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.25 0.672 0.642 0.592 0.505 0.393 0.000 0.000 0.000 0.000
σ = 0.50 0.580 0.566 0.534 0.484 0.425 0.378 0.331 0.268 0.000
σ = 1 0.448 0.439 0.416 0.379 0.348 0.327 0.299 0.266 0.210

Standard smoothing of F via Algorithm 1

certified radius 0 0.1 0.25 0.5 0.75 1 1.25 1.5 2.0

σ = 0.25 0.672 0.641 0.593 0.503 0.389 0.000 0.000 0.000 0.000
σ = 0.50 0.581 0.564 0.534 0.486 0.423 0.377 0.337 0.270 0.000
σ = 1 0.449 0.440 0.418 0.380 0.349 0.324 0.299 0.268 0.211
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B. Example of sampling from N k
d (x,σ2I)

Example B.1. Let n = 8 and the quantization levels for image intensities be 0,1,2,3,4 (instead of the standard 0,1, . . . ,255).
We use σ2 = 16 (which corresponds to σ2 = 1 if we considered image intensities 0,1/4,2/4,3/4,4/4) and k = 2. Now it
holds that

N k
D(x,16) =max{−k,min{k + 4, t′ + x}}, t′ ∼ N k+4

D (0,16).
Following the Algorithm 2, we start with evaluating Pt∼N 6

D
(0,16)Jt ≤ iK for i = −6, . . .5. We note that since the final sample

will be min{−2,max{6, x + t}}, then we don’t need to evaluate PJt ≤ aK for a > 5.

• 21
28
< Pt∼ND(0,16)Jt ≤ −6K = 0.085 < 22

28

• 33
28
< Pt∼ND(0,16)Jt ≤ −5K = 0.130 < 34

28

• 48
28
< Pt∼ND(0,16)Jt ≤ −4K = 0.191 < 49

28

• 68
28
< Pt∼ND(0,16)Jt ≤ −3K = 0.266 < 69

28

• 90
28
< Pt∼ND(0,16)Jt ≤ −2K = 0.354 < 91

28

• 115
28
< Pt∼ND(0,16)Jt ≤ −1K = 0.450 < 116

28

• 140
28
< Pt∼ND(0,16)Jt ≤ 0K = 0.550 < 141

28

• 165
28
< Pt∼ND(0,16)Jt ≤ 1K = 0.648 < 166

28

• 187
28
< Pt∼ND(0,16)Jt ≤ 2K = 0.734 < 188

28

• 207
28
< Pt∼ND(0,16)Jt ≤ 3K = 0.809 < 208

28

• 222
28
< Pt∼ND(0,16)Jt ≤ 4K = 0.870 < 223

28

• 234
28
< Pt∼ND(0,16)Jt ≤ 5K = 0.915 < 235

28

This set of breaking-points is computed just once before the certification procedure. In the experiment of Table 1, we used
k = 6 (considering image intensities [0, . . .1], therefore computed 15 ⋅ 256 − 1 breaking points. We chose the mapping g to
quantize the images in the same way as they were originally quantized (with a continuation outside of the interval). This
was an arbitrary choice, if we chose twice as dense quantization, we would need to compute twice the number of breaking
points, but the mapping g would resemble more the identity mapping.

Continuing with the example; We show how to smooth the image at a single position. First, we obtain a sample from the
uniform distribution: s ∼ Unif{0,1, . . .28 − 1} and transform it to sample from (truncated) N 6

D(0,16).

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

-6 if s ≤ 21,
-5 if 23 ≤ s ≤ 33,
-4 if 177 ≤ s ≤ 48,
-3 if 50 ≤ s ≤ 68,
-2 if 70 ≤ s ≤ 90,
-1 if 92 ≤ s ≤ 115,
0 if 117 ≤ s ≤ 140,
1 if 142 ≤ s ≤ 165,
2 if 167 ≤ s ≤ 187,
3 if 189 ≤ s ≤ 207,
4 if 209 ≤ s ≤ 222,
5 if 224 ≤ s ≤ 234,
6 if 236 ≤ s,
Failure if s ∈ {22,34,49,69,91,116,141,166,188,208,223,235}
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Consequently, we evaluate the smoothed version of pixel x as x =max{−2,min{6, x + t}}. The Failure corresponds to the
fact that we are not able to produce the i.i.d. sample with this random sample. However, the probability that it occurs is
negligible for n = 64 as used in experiments.

We also note that it may happen that Pt∼ND(0,16)Jt ≤ kK would be actually equal to some quantized point for some k, say
Pt∼ND(0,16)Jt ≤ kK = a

28
. In that case (or in a case where the used precision is not enough to ensure that it is not the case),

we would consider observing both, s = a and s = a + 1 as a failure.

C. Proof of Proposition5.1
Let us inspect the probability of observing some a ∈ {−k + 1, . . . , k + 254}. In that case Pt∼Nk

D
(x,σ2)Jt = aK =

∫
a+0.5
a−0.5

1√
2πσ2

e−
(x−u)2

2σ2 du. For the other distribution it holds that t′ = a − x and Pt∼Nk
D
(0,σ2)Jt = a − xK =

∫
a−x+0.5
a−x−0.5

1√
2πσ2

e−
u2

2σ2 du and the change of the variable u → v − x concludes the proof of this case. The other two
cases are analogical.

D. Floating-point numbers
In this appendix, we introduce the floating-point representations and arithmetic according to standard IEEE-754 (iee, 2008).
For the sake of clarity, in this section, we use 8-bit floating-point number representation instead of the usual 16,32,64 bits,
respectively for half, single, and double precision.

Floating-point numbers are represented in memory using three different sequences of bits. The split will be 1/3/4 for our
8-bit example and is 1/8/23 for the standard single precision representation. We will represent the binary numbers as a
binary string of 8 numbers and start with an example translating binary floating-point representation to the standard decimal
one. A reader familiar with the limitations of floating-point arithmetics may consider jumping directly to Example D.3 as
this shows the essential problem of randomized smoothing in floating-point precision that we will exploit.
Example D.1. Consider the binary number 1110 1010. The first bit is the sign bit. The number is negative iff the bit is set to
1. In our example, the bit is 1; thus, the number is negative. The next 3 bits (110) determine the exponent. It is the integer
value of this encoding minus 3, thus, in our example, the exponent is 6 − 3 = 3. The subtraction of 3 is here to ensure that
we can represent exponents −3,−2, . . . ,4. The last sequence is called mantissa and encodes the number after the decimal
point. There is also an implicit (not written) 1 before it. This is a so-called normalized form. Thus, the encoded value of the
mantissa is 1.1010 in binary representation, which is 1 + 1 ⋅ 0.5 + 0 ⋅ 0.25 + 1 ⋅ 0.125 + 0 ⋅ 0.0625 = 1.625 in base 10.

The represented number is thus −1.625 ⋅ 23 = −13 in base 10.

We note that the introduced floating point representation in Section 3 is not able to represent 0 and the smallest representable
positive number is 0000 0000 which is 0.125 in base 10. To represent even smaller numbers, there are so-called subnormal
numbers. That is, whenever the exponent consists only of zeros, there is no implicit 1 in the mantissa, but the exponent is
higher by one. That is, the exponents represented by bits 000 and 001 both correspond to −2. If our 8 bit toy arithmetics also
used subnormal numbers, then 0000 0000 would be 0 and 000 0001 would be (0⋅1+0⋅0.5+0⋅0.25+0⋅0.125+1⋅0.0625)⋅2−2 =
0.015625. We note that there is a positive and a negative zero (and also inf).

Similarly, floating-point numbers whose exponents consist only of ones are special. If additionally the mantissa is all zeros,
then it represents inf and if the mantissa contains a non-zero bit, then it represents not-a-number (NaN) and the set bits
correspond to error messages.

D.1. Operations with floating-point numbers

To distinguish the mathematical operations (infinite precision) from the computer arithmetics ones, we will use ⊕,⊖ instead
of +,− to represent floating-point operations. When writing, e.g., 5⊕ 7 = 12, we mean that the floating-point representation
of 5 added to the floating-point representation of 7 results in a floating-point 12. We also note that a⊕ −b = a⊖ b.

The addition (or analogically subtraction) of two floating-point numbers is performed in three steps. First, the number with
the lower exponent is transformed to the higher exponent; then the addition is performed (we assume with infinite precision),
and then the result is rounded to fit into the floating-point representation. The standard allows for several rounding schemes,
but the common one is to round to the closest number breaking the ties by rounding to the number with mantissa ending
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with 0.

For the sake of completeness, we also mention the multiplication of floating-point numbers. The multiplication is done in
a way that exponents are added; the mantissas are multiplied and consequently normalized. We will not use (nontrivial)
floating-point multiplication in our constructions.

Let us show an example of the floating-point addition.
Example D.2. Consider the addition of binary numbers, 1110 1010, and 0101 0011. The first one we already decoded as
−1.1010 × 23 and the other one is 1.0011 × 22; both in base 2.

1110 1010⊕ 0101 0011 = −1.1010 × 23 + 1.0011 × 22 = −1.1010 × 23 + 0.10011 × 23,
= −1.00001 × 23 ≈ −1.0000 × 23 = 1110 0000.

In base 10, we would have −13 ⊕ 4.75 = −8 due to the loss of the least significant bits. This happened even though the
exponents were different by the smallest possible difference.Consider further 6.5⊕ 4.75 = 11; Here, the loss of precision
appeared even with equal exponents.

Unsurprisingly, it also holds that 6.5⊕ 4.5 = 11. Therefore, the addition to 6.5 is not injective and, as a consequence, it is
not surjective. Connecting this to randomized smoothing, we know that there are numbers which cannot be smoothed from
6.5 as the following example shows.
Example D.3. When observing 2.125, it could not arise as 6.5⊕a for any a. Indeed, 6.5⊕−4.5 = 2, while 6.5⊕−4.25 = 2.25.
The representations are: 6.5 ∼ 0101 1010, 2.125 ∼ 0100 0001, −4.25 ∼ 1101 0001 and −4.5 ∼ 1101 0010. Here −4.25 is
the smallest number bigger than −4.5. Note again that the exponents of 6.5 and 2.25 differ only by the smallest possible
difference.

Another consequence is that floating-point addition is not associative. That is, the following identity does not always hold
(a⊕ b)⊕ c = a⊕ (b⊕ c).
Example D.4. Consider the numbers a = 2.375 ∼ 0100 0011, b = 3.75 ∼ 0100 1110, and c = 3.25 ∼ 0100 1010.
Then a ⊕ b = 6 ∼ 0101 1000 and (a ⊕ b) ⊕ c = 9 ∼ 0110 0010. On the other hand, b ⊕ c = 7 ∼ 0101 1100 and
a⊕ (b⊕ c) = 9.5 ∼ 0110 0011; thus, the triple a, b, c serves as a counterexample for associativity of ⊕.

E. Integer-arithmetics-only certified robustness for quantized neural networks
Here we describe why the technique of (Lin et al., 2021) for sampling from the discrete normal distribution and the
consequent certification is not sufficient for our purposes.

The definition of the discrete normal distribution from (Lin et al., 2021) is as follows:

Px∈NH(µ,σ2)Jx = aK = Ze−
(a−µ)2

2σ2 ,

where Z is an appropriate normalization constant and the distribution is supported on the set of integers. For the certification,
similarly to the standard smoothing, first, the lower bound p on the probability of the correct class for the smoothed classifier
is estimated. Then, the robust radius is computed as σΦ−1NH

(p), where Φ−1NH
is the inverse CDF of discrete Gaussian. This

can be seen at the very bottom of the second column on page 4 in (Lin et al., 2021). Note, in Algorithm 1 of (Lin et al., 2021)
there is written only Φ−1, which according to the neighbouring discussions (and according to Thm 3.2 there) corresponds to
Φ−1NH

. This certified radius is clearly not exact, because the possible certified radii can only be σ multiples of the quantization
levels because the smoothing distribution is discrete. For σ = 1, the possible robust radii are 0,1,2, . . . , while the actual
robust radius may clearly be non-integral which makes sense even when considering quantized inputs; e.g., consider the
perturbation (1,1,0, . . . ) which has distance

√
2. Therefore, the smoothing as described in (Lin et al., 2021) is restricted to

certify only integer radii which is a significant restriction.

However, we were not able to verify the correctness of the method proposed in (Lin et al., 2021). In the proof of Theorem
3.1, there is: "Notice that that plbcA = P[X ∈ SA], where SA = {z ∶ ⟨z − x, δ⟩ ≤ σ ∥δ∥2Φ−1NH

(plbCA
)}". Where plbcA is the lower

bounded probability of the target class. However, since the smoothing distribution is discrete, the function Φ−1NH
is piecewise

constant, therefore there are probabilities p1 ≠ p2 with Φ−1NH
(p1) = Φ−1NH

(p2), thus they will both generate the same set SA,
but using the stated fact in the proof, it would yield p1 = P[X ∈ SA] = p2, which is absurd. Since the fact (plbcA = P[X ∈ SA],
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where SA = {z ∶ ⟨z − x, δ⟩ ≤ σ ∥δ∥2Φ−1NH
(plbCA

)}) is given without a proof, we are not able to determine if the obtained
certificates are indeed correct, but possibly weaker, or if they are only approximate.

F. Discussion on presented malicious examples
To reproduce the malicious examples from Section 4, it is important to carry every computation in the same precision. We
tested it for both, single and double-precision, it likely holds also for the half-precision. If some calculations are done in
single, and some in double precision, then the claimed results will probably not hold. Specially, if some calculation is
performed in the single precision (e.g., transforming images from {0,1, . . . ,255} to {0,1/255, . . . ,1}), casting it to double
precision afterwards is not sufficient because the low mantissa bits are already lost. Although the codes are very simple, we
enclose some of the snippets in the supplementary materials. Specially, the classifier M from Theorem is simplified in
a way that it considers only 1000 random images instead of 10000, and the smoothing is performed by 50 noise samples
instead of 100 000 which we hope is sufficient for the demonstration.

G. Algorithms
Here we compare the actual algorithms of the standard randomised smoothing 1, and of the proposed method 2. The differ-
ences in the methods of the same name are highlighted by colors. The algorithms assume input to be in {0,1/255, . . . ,1}.
We emphasize that our method is a simple extension of the standard randomized smoothing, where the two additional
procedures in Algorithm 2 can be evaluated just once before the certification; thus, they do not slow down the method,
neither it decreases the accuracy.

Algorithm 1 Randomized smoothing certification of (Cohen et al., 2019)

0: procedure SAMPLEUNDERNOISE(f, x, n, σ)
0: counts← [0,0]
0: for i← 1, n do
0: ϵ← N (0, σ2I)
0: x′ ← x + ϵ
0: if f(x′) > 0.5 then
0: counts[1]← counts[1] + 1
0: else
0: counts[0]← counts[0] + 1
0: return counts

0: procedure CERTIFY(f, σ, x, n0, n,α)
0: counts0← SAMPLEUNDERNOISE(f, x, n0, σ)
0: ĉA ← top index in counts0
0: counts← SAMPLEUNDERNOISE(f, x, n, σ)
0: pA ← LOWERCONFBOUND(counts[ĉA], n,1 − α)
0: if p > 1

2
then

0: return prediction ĉA and radius σΦ−1(p)
0: else
0: return ABSTAIN

=0
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Algorithm 2 Sound randomized smoothing certification of F ○ gk
0: procedure PRECOMPUTE ARRAY OF BREAKING POINTS(k, σ2){This function is evaluated only once}
0: arr← [0, . . . ,0] {Array of 2 ⋅ 255 ⋅ k + 256 zeros}
0: for i = −255k,255k + 254 do
0: arr[255k + i]← ⌈264 ∫

(i+0.5)/255
−∞

1√
2πσ2

e−
x2

2σ2 dx⌉
0: arr[2 ⋅ 255 ⋅ k + 255]← 264

0: return arr

0: procedure N k
D(0, σ2I , idx){This function is evaluated only on the first call with given arguments and the result is

memorized. The relevant arguments are k, σ, idx.}
0: arr← Precomputed array of breaking points for N k

D(0, σ2)
0: ϵ← [0, . . . ,0] {Array of d zeros}
0: for i← 1, d do
0: t←U(0,264−1)
0: for j ← −255k,255(k + 1) do
0: if arr[j + 255k] = t then
0: return Failure
0: else if arr[j + k] > t then
0: ϵi ← j/255
0: Break
0: return ϵ

0: procedure SAMPLEUNDERNOISE(f, x, n, σ, k)
0: counts← [0,0]
0: for i← 1, n do
0: ϵ← N k+1

D (0, σ2, i)
0: if ϵ ≠ Failure then
0: x′ ←min{−k,max{k + 1, x + ϵ}}
0: if f(x′) > 0.5 then
0: counts[1]← counts[1] + 1
0: else
0: counts[0]← counts[0] + 1
0: return counts

0: procedure CERTIFY(f, σ, x, n0, n,α, k)
0: counts0← SAMPLEUNDERNOISE(f, x, n0, σ, k)
0: ĉA ← top index in counts0
0: counts← SAMPLEUNDERNOISE(f, x, n, σ, k)
0: pA ← LOWERCONFBOUND(counts[ĉA], n,1 − α)
0: if p > 1

2
then

0: return prediction ĉA and radius σΦ−1(p)
0: else
0: return ABSTAIN

=0


