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Abstract

Minimax optimization has served as the backbone
of many machine learning (ML) problems. Al-
though the convergence behavior of optimization
algorithms has been extensively studied in the
minimax settings, their generalization guarantees
in stochastic minimax optimization problems, i.e.,
how the solution trained on empirical data per-
forms on unseen testing data, have been relatively
underexplored. A fundamental question remains
elusive: What is a good metric to study general-
ization of minimax learners? In this paper, we
aim to answer this question by first showing that
primal risk, a universal metric to study general-
ization in minimization problems, which has also
been adopted recently to study generalization in
minimax ones, fails in simple examples. We thus
propose a new metric to study generalization of
minimax learners: the primal gap, defined as the
difference between the primal risk and its mini-
mum over all models, to circumvent the issues.
Next, we derive generalization error bounds for
the primal gap in nonconvex-concave settings. As
byproducts of our analysis, we also solve two
open questions: establishing generalization er-
ror bounds for primal risk and primal-dual risk,
another existing metric that is only well-defined
when the global saddle-point exists, in the strong
sense, i.e., without strong concavity or assum-
ing that the maximization and expectation can be
interchanged, while either of these assumptions
was needed in the literature. Finally, we lever-
age this new metric to compare the generalization
behavior of two popular algorithms — gradient
descent-ascent (GDA) and gradient descent-max
(GDMax) in stochastic minimax optimization.
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1. Introduction

Stochastic minimax optimization, a classical and fundamen-
tal problem in operations research and game theory, involves
solving the following problem:

min max . p [ f(w, 6; 2)].

More recently, such minimax formulations have received
increasing attention in machine learning, with significant
applications in generative adversarial networks (GANs)
(Goodfellow et al.,2014)), adversarial learning (Madry et al.|
2017), and reinforcement learning (Chen and Wang| [2016;
Dai et al., [2018). Most existing works have focused on
the optimization aspect of the problem, i.e., studying the
rates of convergence, robustness, and optimality of algo-
rithms for solving an empirical version of the problem
where it approximates the expectation by an average over
a sampled dataset, in various minimax settings including
convex-concave (Nemirovski et al.l [2009; Monteiro and
Svaiter,|2010), nonconvex-concave (Lin et al.,|2020; Rafique
et al., |2018)), and certain special nonconvex-nonconcave
(Nouiehed et al.| 2019} Yang et al., 2020) problems.

However, the optimization aspect is not sufficient to achieve
the success of stochastic minimax optimization in machine
learning. In particular, as in classical supervised learning,
which is usually studied as a minimization problem (Hastie
et al.| [2009), the out-of-sample generalization performance
is a key metric for evaluating the learned models. The study
of generalization guarantees in minimax optimization (and
related machine learning problems) has not received signifi-
cant attention until recently (Arora et al.,2017; [Feizi et al.|
20205 Yin et al., 2019; |[Lei et al., 2021} [Farnia and Ozdaglar}
2021} Zhang et al) 2021b). Specifically, existing works
along this line have investigated two types of generalization
guarantees: uniform convergence generalization bounds,
and algorithm-dependent generalization bounds. The for-
mer is more general and irrespective of the optimization
algorithms being used, while the latter is usually finer and
really explains what happens in practice, when optimization
algorithms play an indispensable role. In fact, the former
might not be able to explain generalization performance
in deep learning, e.g., these bounds can increase with the
training dataset size and easily become vacuous in practice
(Nagarajan and Kolter}, 2019), making the latter a more fa-
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vorable metric for understanding the success of minimax
optimization in machine learning.

Algorithm-dependent generalization for minimax optimiza-
tion has been studied recently in (Farnia and Ozdaglar, 2021}
Lei et al., 2021} Xing et al.; 2021} Yang et al., 2022)). These
papers build on the algorithmic stability framework devel-
oped in (Bousquet and Elisseeff], 2002), which are further
investigated in (Hardt et al.}2016)). In particular, these works
have studied primal risk and/or (variants of) primal-dual
risk under different convexity and smoothness assumptions
of the objective. Primal risk (see formal definition in §2) is a
natural extension of the definition of risk from minimization
problems. Primal-dual risk, on the other hand, is defined
similarly but based on the duality gap of the solution. It is
know that it is well-defined and can be optimized to zero
only when the global saddle-point exists (i.e., min and max
can be interchanged). Based on these metrics, (Farnia and
Ozdaglar, 2021} [Lei et al.,|2021)) compare the performance
of specific algorithms, e.g., gradient descent-ascent (GDA)
and gradient descent-max (GDMax). We provide a more
thorough literature review in Section

Although these metrics are natural extensions of general-
ization metrics from the minimization setting, they might
not be the most suitable ones for studying generalization
in stochastic minimax optimization, especially in the non-
convex settings that is pervasive in machine/deep learning
applications, where the global saddle-point might not exist.
In particular, we are interested in the following fundamental
question:

What is a good metric to study generalization of minimax
learnerd]?

In this paper, we make an initial attempt to answering this
question, by identifying the inadequacies of the existing
metric, and proposing a new metric, the primal gap that
overcomes these inadequacies. We then provide generaliza-
tion error bounds for the newly proposed metric, and discuss
how it captures information not included in the other exist-
ing metrics. We summarize our contributions as follows.

Contributions. First, we introduce an example through
which we identify the inadequacies of primal risk, a well-
studied metric for generalization in stochastic minimax
optimization, in capturing the generalization behavior of
nonconvex-concave minimax problems. Second, to address
the issue, we propose a new metric — the primal gap, which
provably avoids the issue in the example, and derive its
generalization error bounds. Next, we leverage this new
metric to compare the generalization behavior of GDA and
GDMax, two popular algorithms for minimax optimization
and GAN training, and answer the question of when does

"Hereafter, we use learner and learning algorithm interchange-
ably.

GDA generalize better than GDMax? Moreover, we also
address two open questions in the literature: establishing
generalization error bounds for primal risk and primal-dual
risk without strong concavity or assuming that the max-
imization and expectation can be interchanged, while at
least one of these assumptions was needed in the literature
(Farnia and Ozdaglar, 2021} [Lei et al 2021} [Xing et al.|
2021; Yang et al., |2022). Finally, under certain assump-
tions of the max learner, our results also generalize to the
nonconvex-nonconcave setting.

2. Preliminaries
2.1. Problem formulation

In this paper, we consider the following (stochastic) mini-
max problem:

ﬁl%%ae)(EZszf(w,ﬂ;z). ()

We make the following assumption on the sets W and ©
throughout the paper.

Assumption 1. W and © are convex, closed sets, and
we further assume that W is compact with ||w|] <
MW),Yw € W. Here M(W) is a constant dependent
on the set W.

Let r(w,0) = E.p. f(w,0; z). For a training dataset S =
{z1,"+,2zn} with n ii.d. variables drawn from P,, we
define rg(w,0) = L 3" | f(w,6;2;). Next, we define the
following quantity:

Definition 1 (Primal risk (empirical/population)). Primal
population risk is given b

= Ez~ 70; )
r(w) = max E..p, f(w,0;2)

and the primal empirical risk is given by:

/€O N

rg(w) = max 1 Z f(w, 0;z;).
i=1

Throughout this paper, we use (wg, fg) to denote a solu-
tion of the minimax problem: min,cyw maxgece rs(w,6).
Notice that (wg, 8s) need not be a global saddle-point of
rg. Furthermore, we use (w*, 6*) to denote a solution of
min,ecw maxgeo r(w, ). Once again, notice that (w*, 6*)
may not be a saddle point of 7.

The goal in Problem (1)) is to minimize the primal population
risk r(w). Note that this function can be decomposed as

r(w) = rs(w) + (r(w) = rs(w)). 2

“Note that we slightly abuse the notation here by allowing - and
rg to have inputs that can be both w and (w, 8). The distinction
will be clear from context.
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In practice, we only have access to rg(w, #), and our goal
is to design algorithms for minimizing r(w) using dataset
S. Suppose A is a learning algorithm initialized at (w, §) =
(0,0). We define (w, 0%) to be the output of Algorithm A
using dataset S.

From Equation (@), it is clear if we ensure 75(w3 ) as well

as r(w§) — rg(w§) are small, this would guarantee that
r(w%) is small, which is the goal of Problem (I). Note
that we can always ensure that s (w% ) is small by using a
good optimization Algorithm A (if the problem is tractable).
The main goal in the study of generalization is therefore
to estimate the generalization error of the primal risk, as
defined below.

Definition 2. The generalization error for the primal risk is
defined as:
(oen(A) = EsEalr(wg) — rs(wg)). 3)

gen

Here the expectations are taken over the randomness in the

dataset S, as well as any randomness used in the Algorithm
A.

This metric has been used to study generalization in stochas-
tic minimization problems, i.e., when the maximization set
O is a singleton, as well as several recent works in stochastic
minimax optimization (see (Hardt et al.| 2016} |Farnia and
Ozdaglar, |2021; |Lei et al., 2021)).

We are interested in the question of when the solution to the
empirical problem w has good generalization behavior,
i.e., when E[r(w$) — miny,ew 7(w)] is small — w is an
approximate minimizer of the primal population risk r. In
the Section[C| we briefly describe why the generalization
error of the primal risk ¢/, (4) is a good measure to study

the generalization behavior in minimization problems.

Next, we highlight some results in the literature which dis-
cusses generalization error bounds of the primal risk. These
results depend on the concept of algorithmic stability we
use later.

2.2. Stability of algorithms

Stability analysis is a powerful tool to analyze the general-
ization behavior of algorithms (see (Bousquet and Elisseeff],
2002)). In this section, we will review some definitions
and theoretical results about stability bounds existing in the
current literature. More specifically, in this paper, we adopt
the following definition of stability:

Definition 3 (e-stable Algorithm). Suppose that A is a ran-
domized algorithm for solving the stochastic minimax prob-
lem. We define (w,04) as the output of Algorithm A using
dataset S. We say S and S’ are neighboring dataset if they
defer only in one sample. An Algorithm A is defined to be
e-stable if Eal|w8 — w|| < eand E4||04 — 04/|| < € for
any neighboring datasets S and S'.

(Hardt et al.,[2016) gives the following basic result for the
generalization error of rg(w).

Theorem 1 ((Hardt et al., [2016))). Consider the (stochas-
tic) minimization problem defined in@ Suppose g(+; z) is
L-Lipschitz continuous, i.e., ¥z, it holds that ||g(wy; z) —
g(wa; 2)|| < L||wy — wal|, Vwi,ws € W. Then, for an e-
stable Algorithm A, we have |EsE z[r(w§) — rg(wg)]| <
Le.

Section [D| discusses when Primal Risk be used as a good
metric, for example when the expectation and maximization
can be interchanged. Unfortunately, this is not the case for
many minimax problems. If they are not interchangeable,
it is unclear how to estimate the generalization error bound
of the primal risk. In fact, whether primal risk is still a
good metric for studying generalization behavior in such
problems remains elusive.

In the next section, we will see how to estimate generaliza-
tion error bound of primal risk for nonconvex-concave and
even nonconvex-nonconcave problems. To the best of our
knowledge, this is the first result which provides general-
ization error bounds for the primal risk without assuming
the interchangeability or strong concavity of the inner maxi-
mization problems (see e.g., (Lei et al.,[2021))). Furthermore,
we will see that even in some simple minimax problems,
the generalization error bound of the primal risk can fail
to capture the generalization behavior of minimax learners.
We then propose a new metric and use its generalization
error to properly characterize the generalization behavior of
minimax learners.

3. Primal Gap: A New Metric to Study
Generalization

The key idea behind the success of ;n(A) as a way to char-

acterize to study generalization for minimization learners
is that E[rg(w)] = r(w) for any w, which is no longer the
case in the minimax case. In fact, we first show via example
that a good bound for the generalization error of primal risk
does not imply good generalization behavior for minimax
learners.

3.1. Primal risk can fail for minimax learners

We provide an example where the generalization error of the
primal risk is small, but the final solution to the empirical
problem has poor generalization behavior. In this example,
the minimizer of rg(w) is suboptimal for r(w) with high
probability, and Es|[r(wg) — r(w*)] is large.

Example 1 (Analytical example). Lety ~ N(0,1/y/n) be
a Gaussian random variable in R. Define the truncated
Gaussian variable z ~ P, as follows: z = y if |y| <

Aogn/v/n and z = Xogn/y/nif y > Alogn/+/n. Let
f(w,0;2) = 2w? — (5256% — 20 + 1) w, wherew € W =

2n?



What is a Good Metric to Study Generalization of Minimax Learners?

[0,1], @ € © = [—An, An] with a sufficiently large \ > 0,
and z; ~ P, be i.i.d truncated Gaussian variables. Then,
we have rg(w,0) = Sw? — (LGQ _ iz 1) w,

2n2 n
and
r(w,0) = L2 (192 + 1) w 4
’ 2 2n?2 '
Note that this leads to the primal population risk function:
r(w) = tw? —w.

It is not hard to see that we always have rs(w) > r(w).
Note that this means ¢/, (A) < 0, and thus we have a small
generalization error for primal risk. However, we can prove

that for large enough )\,
Eg[r(wg) — r(w*)] > 0.02. )

This means that wgs has a constant error compared to w*
in terms of the population risk, despite that its general-
ization error is small. This phenomenon is due to that
mingew rs(w) — mingew r(w) > ¢ for some ¢ > 0, and
hence minimizing rg(w) is very different from minimizing
r(w).

This example shows that the generalization error of primal
risk is not a good measure to study generalization in mini-
max learners. The main drawback is that min,, 7 (w) and
min,, 7(w) can be very different. We now introduce an-
other more practical example, from GAN training, to further
illustrate this point.

Example 2 (GAN-training example). Suppose that we have
a real distribution P, in R% which can be represented as
G*(y) with y € RF drawn from a standard Gaussian distri-
bution Py and a mapping G* : RF — R For an arbitrary
generator G, we define Pg to be the distribution of the ran-
dom variable G(y) with y ~ Py. So our goal is to find a
generator G such that P = P,. GAN is a popular tool for
solving this problem. Consider a GAN with generator G,
parametrized by w and discriminator D parametrized by 6.
The goal of GAN training is to find a pair of a generator G
and a discriminator D that solves the minimax problem:

rnén max {Esup, ¢(D(x)) + Ezpg[0(1 — D(x))]}

= nLiJn mng{EINPTMDe(ﬁC)) + Eynpy[9(1 — Do(Guw(y)))]}

where ¢ : R — R is concave, monotonically increasing
and ¢(u) = —oo for u < 0. To connect to the minimax
formulation in (1), we note that z = (z,y), and P, =
P, x P,. Also, we denote

r(w,0) = Evnp, ¢(Do()) + Eynpy [$(1 — Do(Gu(y)))]

to be the population risk. We now give the empirical
version of this problem. Let Sy = {x1, - ,z,} and
Sy = {y1, - ,Yn}. Let S = S1USs and rg(w,d) =

L0, ¢(Do(wi) + (1 — Do(Gun(yi))).  We assume
that Pg,, has the same support set as P.. Moreover, we
assume that |w — w*|| < 0.5 and G, (y) is 1-Lipschitz
w.r.t. w for any y. Here w* denotes the parameter for
which Gy« = G*. Then, combining Theorem B.1 in (Arora
et al.||2017) and the Lipschitz continuity of G, (y) as well
as [Jw — w*|| < 0.5, we have that the distance between the
sets Sy and {G,(y1), G (y2), - -+, G (yn) } will be larger
than 0.6 with probability greater than 1 — O(n? /e). Now,
if n is only of polynomial size of d, the optimal discrimina-
tor for disjoint datasets outputs 1 on one dataset, and 0 on
the other. On the other hand, when w = w*, the optimal
discriminator for the population problem outputs 1/2 for
any sample it receives. Combining these two results, we
have:

Eslmin rs(w) - min r(w)] > (1-6) (26(1) — 26(1/2))

which is bounded away from 0.

Note that in this example, we also have Eg[min,, rs(w) —
min,, 7(w)] > 0, implying that using ¢, (A) might not be
a good way to characterize the generalization behavior in
GAN training. To address this issue, we next define a new
metric, the primal gap, and use its generalization error to

study the generalization of minimax learners.

3.2. Primal gap to the rescue

The population and empirical versions of the primal gap are
defined as follows:

Definition 4 (Primal gap (empirical/population)). The pop-
ulation primal gap is defined as

A(w) = r(w) — wmelvr%/ r(w),

and the empirical primal gap is defined as

Ag(w) =rg(w) — gélVIIl/ rg(w).

Notice that these two primal gaps can always take 0 at
wg € argming,ew rg(w) and w* € arg ming,ew r(w)
respectively even if the saddle point of problem (2)) does not
exist. Next, we define the expected generalization error of
this primal gap as follows:

Definition 5. The generalization error for the primal gap is
defined as

Caen (4) = EsEa[A(wE) — As(w)].

gen

Remark 1. For Example |3| since the maximization and
expectation can be interchanged, the minimax problem is
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equivalent to a minimization problem. Then we have
Eg [mul)n rsg(w)] = Eg [Inul)n m;xx E..p.(s) f(w,0;2)]
= Es[min E. .p.s) lmax f(w, 6 2)]
=Es [n}gn E.p,(s)[fmax(w; 2)]]

< ES[EzNPz(S) [fmax(w; Z)H

for any w. Therefore, we have Eg[min, rg(w)] <
min,, (w). Consequently, we have ¢}, > ;ﬁ, which

means that good generalization bounds for the primal risk
implies good generalization bounds for the primal gap.
Therefore, if the maximization and expectation are inter-
changeable, primal risk is sufficient to study the generaliza-
tion behavior because the generalization error of the primal
risk is an upper bound of the generalization error of the
primal gap in this case.

Now we provide bounds on ;;2 (A) for stable algorithms
A, and show that in Example ;%(A) cannot be small
(unlike ¢£, (A)).

gen

3.3. Relationship between generalization and stability

We provide bounds for the generalization error of the pri-
mal gap (Definition [3) for e-stable Algorithm A. We will
focus on the nonconvex-concave case where the following
assumptions are made throughout the rest of the paper.

Assumption 2. The function f in Problem (1)) is nonconvex-
concave, i.e., f(w,;z) is a concave function for all w € W
and for all z.

Next we define the notion of capacity, which will play a key

role in the bounds we derive for ;%(A).

Definition 6 (Capacity). Forany w € W and any constraint
set ©, we define

O(w) = arg Igleaé(r(w, 0)

We define the capacities C), and C as:
Cp(©) = max dist(0, ©(w))
C.(0) = max max dist(0, ©s(w)),

where dist(p, S) denotes the distance between a point p to
a set S in Euclidean space, i.e.,

dist(p,S) := ;gfg lp — qll2-

For the specific constraint set in Problem (1), we succinctly
denote the capacities as Cy, and C., respectively.

The norm of the model parameter (its distance to 0) is usu-
ally viewed as the metric for the complexity of the model.

= 0).
Os(w) argreneagrs(w,)

In fact, the norm of the optimal solution determines the
Rademacher complexity of the function class in statistical
learning theory (Vapnik| [1999). Moreover, in deep learn-
ing, minimum-norm solution of overparameterized neural
networks is well-known to enjoy better generalization per-
formance (Zhang et al.l 2021a). Hence, we view the capacity
constant C, and C), as natural metrics to capture the model
complexity for the best response of the max learner, i.e., the
power of the maximizer, when using the empirical data set
and population data respectively.

Now, we are ready to discuss the relationship between the
stability bound and the generalization error of algorithms
in nonconvex-concave minimax problems. All proofs have
been deferred to the appendix. We make the following
assumptions throughout the paper:

Assumption 3. The gradient of f is {-Lipschitz-continuous
forall z, i.e., for all z

IV f(w1,01;2) — V f(wz, 0 2) ||

< E(le — w2|| + ||91 — GQH), Ywi,we € W, V1,05 € ©.

Moreover, fixing w € W, the partial gradient Vg f (w, -; 2)
is Lyg-Lipschitz continuous with respect to 0 for all z, i.e.,
Vo f(w,b1;2) = Vof(w,0a;2)| < Loal|6h — 2], Vw €
W, Vb,,6, € O.

Assumption 4. For any ©1 C O, we assume that | is
L(©1)-Lipschitz-continuous with respect tow € W, 6 € 0
forall, i, || f (w1, 01; 2)— f (wn, 0 )| < L(O1)([[ur—
’lU2|| + H91 — 02”), Ywi,wy € VV, Val,eg € 04,
and the gradient V f(w,0; z) is uniformly bounded as
IVuw,of(w,0;2)| < L(01) forall z and w € W,0 € O;.
Moreover, f(w*,-;z) is Lj-Lipschitz continuous with re-
spect to § where w* € arg min,,cw r(w). We also define
L := L(B(0,2C, +1)N©) and L, := L(B(0,r) N O),
where B(v, 1) denotes the lo-ball with radius r centered at
.

Note that we can decompose the generalization error of the
primal gap as follows:
gon(A) = EsEa[A(w§) — As(wg)]

gen

= EsEalr(w§) — rs(ws)] + Es [min rs(w) — min r(w)]

= Cgen(A) + Bs [ min rg(w) — min r(w)].

Next, we provide a bound on the generalization error for
the primal risk ¢}’,, (A). To the best of our knowledge, this
is the first bound for fen(A) in the nonconvex-concave
(without strong concavity) setting.

Lemma 1. The generalization error of the primal risk of
an e-stable Algorithm A for a minimax problem with con-
cave maximization problem can be bounded by ¢, (A) <

gen
ALLC? - \/e + eL.
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Since we already have the generalization error for the primal
risk Es Ea[r(wg) —rg(wd)] from Lemma we only need
to estimate

EsEy [1%1511/1“5(11)) ~ Iin r(w)]

= ES[J,%iVI‘I, rs(w) — 7Erélvril/ r(w)].  (6)

The following theorem gives the generalization bound of
the primal gap using the upper bound from Lemma (1| and
bounding the Primal Min Error in Equation (6).

Theorem 2. Suppose Algorithm A is e-stable. The general-
ization error bound of the primal gap is given by

PC(A) < \JALLCE - /e + €L+ AL;C. [v/n.

The first term in the bound above is from the generalization
bound of the primal risk, as shown in Lemma[I} Note that
the bound in Lemma T|only involves C),, as the key in the
analysis is to upper-bound the population risk 7 (w3 ), which
requires bounding the power of the maximizer using the
population capacity C;,. This reflects the intuition that the
power of the maximizer should affect the generalization be-
havior of minimax learners, and the stronger the maximizer
is, the harder for the learner to generalize. On the other
hand, the bound in Theorem@] additionally involve C., the
empirical capacity. Technically, C. (instead of C},) appears
since we need to bound min,, rg(w) (defined on the em-
pirical dataset) in the Primal Min Error term in (6). The
appearance of C. reflects the intuition that the difference
between the maximizers of the empirical and population
risks should make a difference in characterizing the gen-
eralization of minimax learners. This intuition cannot be
captured by the generalization error of the primal risk, as in
Lemma([I] Note that in the minimization case, the Primal
Min Error can be upper-bounded directly by zero, and such
a distinction disappears, making primal risk a valid metric.

3.4. Revisiting Example ]

Recall Example[T]in Section[3.1] In this example, we have
that the primal risk has a small generalization error, but
the solution wg does not generalize well. In particular, as
shown in the appendix (Proposition [3), we have

E i — mi > 0.005.
S[gélvrtlf rg(w) min r(w)] > 0.005 (7

On the other hand, it is easy to compute that L; =
Mogn/y/n and C., = An. Therefore, by Theorem
we have an upper bound for the Primal Min Error (see
Equation (6)): Es[mingew rs(w) — mingew r(w)] <
4L;C./+/n = 4logn, which is tight up to a log factor
according to (7). Therefore, the primal gap has a constant

generalization error which is consistent with the observation
that the solution to the empirical problem does not have
good generalization behavior.

Due to space limitations, we relegate the analysis for the
nonconvex-nonconcave setting to Appendix, Section [G] and
the comparison of GDA and GDMax to the Appendix, Sec-
tion

4. Conclusions

In this paper, we first demonstrate the shortcomings of one
popular metric, the primal risk, in terms of characterizing
the generalization behavior of minimax learners. We then
propose a new metric, the primal gap, whose generaliza-
tion error overcomes these shortcomings and captures the
generalization behavior of algorithms that solve stochastic
minimax problems. Finally, we use this newly proposed
metric to study the generalization behavior of two different
algorithms — GDA and GDMax, and study cases where GDA
has a better generalization behavior than GDMax. Future
directions include further investigation of the proposed new
metric, the primal gap, and deriving its (tighter) general-
ization error bounds in other structured stochastic minimax
optimization problems in machine learning.



What is a Good Metric to Study Generalization of Minimax Learners?

References

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and
Yi Zhang. Generalization and equilibrium in generative
adversarial nets (GANSs). In International Conference on
Machine Learning, pages 224-232. PMLR, 2017.

Idan Attias, Aryeh Kontorovich, and Yishay Mansour. Im-
proved generalization bounds for robust learning. In
Algorithmic Learning Theory, pages 162—183. PMLR,
2019.

Yu Bai, Tengyu Ma, and Andrej Risteski. Approximabil-
ity of discriminators implies diversity in GANs. arXiv
preprint arXiv:1806.10586, 2018.

Olivier Bousquet and André Elisseeff. Stability and gen-
eralization. Journal of Machine Learning Research, 2:

499-526, 2002.

Yichen Chen and Mengdi Wang. Stochastic primal-dual
methods and sample complexity of reinforcement learn-
ing. arXiv preprint arXiv:1612.02516, 2016.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen
Liu, Jianshu Chen, and Le Song. SBEED: Convergent re-
inforcement learning with nonlinear function approxima-

tion. In International Conference on Machine Learning,
pages 1125-1134. PMLR, 2018.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis,
and Haoyang Zeng. Training gans with optimism. arXiv
preprint arXiv:1711.00141, 2017.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai. Gradient descent finds global minima of deep neu-
ral networks. In International conference on machine
learning, pages 1675-1685. PMLR, 2019.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to
least-squares problems with uncertain data. SIAM Journal
on matrix analysis and applications, 18(4):1035-1064,
1997.

Alireza Fallah, Asuman Ozdaglar, and Sarath Pattathil. An
optimal multistage stochastic gradient method for mini-
max problems. In 2020 59th IEEE Conference on Deci-
sion and Control (CDC), pages 3573-3579. IEEE, 2020.

Farzan Farnia and Asuman Ozdaglar. Train simultaneously,
generalize better: Stability of gradient-based minimax
learners. In International Conference on Machine Learn-
ing, pages 3174-3185. PMLR, 2021.

Farzan Farnia, Jesse M Zhang, and David Tse. Generaliz-
able adversarial training via spectral normalization. arXiv
preprint arXiv:1811.07457, 2018.

Soheil Feizi, Farzan Farnia, Tony Ginart, and David Tse.
Understanding GANSs in the LQG setting: Formulation,
generalization and stability. /[EEE Journal on Selected
Areas in Information Theory, 1(1):304-311, 2020.

Noah Golowich, Sarath Pattathil, and Constantinos
Daskalakis. Tight last-iterate convergence rates for no-
regret learning in multi-player games. Advances in neural
information processing systems, 33:20766-20778, 2020a.

Noah Golowich, Sarath Pattathil, Constantinos Daskalakis,
and Asuman Ozdaglar. Last iterate is slower than av-
eraged iterate in smooth convex-concave saddle point
problems. In Conference on Learning Theory, pages
1758-1784. PMLR, 2020b.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Ad-

vances in Neural Information Processing Systems, 27,
2014.

Benjamin Grimmer, Haihao Lu, Pratik Worah, and Vahab
Mirrokni. The landscape of the proximal point method
for nonconvex-nonconcave minimax optimization. arXiv
preprint arXiv:2006.08667, 2020.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train
faster, generalize better: Stability of stochastic gradient
descent. In 33rd International Conference on Machine
Learning, ICML 2016, pages 1868—1877. International
Machine Learning Society (IMLS), 2016.

Trevor Hastie, Robert Tibshirani, and Jerome H Friedman.
The elements of statistical learning: Data mining, infer-
ence, and prediction, volume 2. Springer, 2009.

Yu-Guan Hsieh, Franck Tutzeler, Jérome Malick, and Panay-
otis Mertikopoulos. On the convergence of single-call
stochastic extra-gradient methods. Advances in Neural
Information Processing Systems, 32, 2019.

Minhui Huang, Kaiyi Ji, Shigian Ma, and Lifeng Lai. Ef-
ficiently escaping saddle points in bilevel optimization.
arXiv preprint arXiv:2202.03684, 2022.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What
is local optimality in nonconvex-nonconcave minimax
optimization? In International Conference on Machine
Learning, pages 4880—4889. PMLR, 2020.

Weiwei Kong, Jefferson G Melo, and Renato DC Monteiro.
Complexity of a quadratic penalty accelerated inexact
proximal point method for solving linearly constrained
nonconvex composite programs. SIAM Journal on Opti-
mization, 29(4):2566-2593, 2019.



What is a Good Metric to Study Generalization of Minimax Learners?

Galina M Korpelevich. The extragradient method for finding
saddle points and other problems. Matecon, 12:747-756,
1976.

Yunwen Lei, Zhenhuan Yang, Tianbao Yang, and Yim-
ing Ying. Stability and generalization of stochastic gra-
dient methods for minimax problems. arXiv preprint
arXiv:2105.03793, 2021.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient de-
scent ascent for nonconvex-concave minimax problems.
In International Conference on Machine Learning, pages
6083-6093. PMLR, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. stat, 1050:9,
2017.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil.
A unified analysis of extra-gradient and optimistic gradi-
ent methods for saddle point problems: Proximal point
approach. In International Conference on Artificial Intel-
ligence and Statistics, pages 1497-1507. PMLR, 2020a.

Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil.
Convergence rate of o(1/k) for optimistic gradient and
extragradient methods in smooth convex-concave saddle
point problems. SIAM Journal on Optimization, 30(4):
3230-3251, 2020b.

Renato DC Monteiro and Benar Fux Svaiter. On the com-
plexity of the hybrid proximal extragradient method for
the iterates and the ergodic mean. SIAM Journal on Opti-
mization, 20(6):2755-2787, 2010.

Vaishnavh Nagarajan and J Zico Kolter. Uniform conver-
gence may be unable to explain generalization in deep
learning. Advances in Neural Information Processing
Systems, 32, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and
Alexander Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on
Optimization, 19(4):1574-1609, 2009.

Y Nesterov. Introductory Lectures on Convex Optimization:
A Basic Course, volume 87. Springer Science & Business
Media, 2013.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D
Lee, and Meisam Razaviyayn. Solving a class of non-
convex min-max games using iterative first order methods.
Advances in Neural Information Processing Systems, 32,
2019.

Dmitrii M Ostrovskii, Babak Barazandeh, and Meisam
Razaviyayn. Nonconvex-nonconcave min-max optimiza-
tion with a small maximization domain. arXiv preprint
arXiv:2110.03950, 2021a.

Dmitrii M Ostrovskii, Andrew Lowy, and Meisam Raza-
viyayn. Efficient search of first-order nash equilibria in
nonconvex-concave smooth min-max problems. SIAM
Journal on Optimization, 31(4):2508-2538, 2021b.

Leonid Denisovich Popov. A modification of the arrow-
hurwicz method for search of saddle points. Mathemati-
cal notes of the Academy of Sciences of the USSR, 28(5):
845-848, 1980.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao
Yang. Weakly-convex concave min-max optimization:
Provable algorithms and applications in machine learning.
arXiv preprint arXiv:1810.02060, 2018.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Ku-
nal Talwar, and Aleksander Madry. Adversarially robust
generalization requires more data. Advances in Neural
Information Processing Systems, 31, 2018.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and
Karthik Sridharan. Learnability, stability and uniform
convergence. The Journal of Machine Learning Research,
11:2635-2670, 2010.

Vladimir N Vapnik. An overview of statistical learning
theory. IEEE transactions on neural networks, 10(5):
988-999, 1999.

Roman Vershynin. Introduction to the non-asymptotic anal-
ysis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Colin Wei and Tengyu Ma. Improved sample complexi-
ties for deep neural networks and robust classification
via an all-layer margin. In International Conference on
Learning Representations, 2019.

Bingzhe Wu, Shiwan Zhao, Chaochao Chen, Haoyang Xu,
Li Wang, Xiaolu Zhang, Guangyu Sun, and Jun Zhou.
Generalization in generative adversarial networks: A
novel perspective from privacy protection. Advances
in Neural Information Processing Systems, 32, 2019.

Yue Xing, Qifan Song, and Guang Cheng. On the algorith-
mic stability of adversarial training. Advances in Neural
Information Processing Systems, 34, 2021.

Junchi Yang, Negar Kiyavash, and Niao He. Global conver-
gence and variance reduction for a class of nonconvex-
nonconcave minimax problems. Advances in Neural In-
formation Processing Systems, 33:1153-1165, 2020.



What is a Good Metric to Study Generalization of Minimax Learners?

Junchi Yang, Antonio Orvieto, Aurelien Lucchi, and Niao
He. Faster single-loop algorithms for minimax op-
timization without strong concavity. arXiv preprint
arXiv:2112.05604, 2021.

Zhenhuan Yang, Shu Hu, Yunwen Lei, Kush R Varshney,
Siwei Lyu, and Yiming Ying. Differentially private SGDA
for minimax problems. arXiv preprint arXiv:2201.09046,
2022.

Dong Yin, Ramchandran Kannan, and Peter Bartlett.
Rademacher complexity for adversarially robust general-
ization. In International Conference on Machine Learn-
ing, pages 7085-7094. PMLR, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
(still) requires rethinking generalization. Communica-
tions of the ACM, 64(3):107-115, 2021a.

Jiawei Zhang, Peijun Xiao, Ruoyu Sun, and Zhiquan Luo. A
single-loop smoothed gradient descent-ascent algorithm
for nonconvex-concave min-max problems. Advances in
Neural Information Processing Systems, 33:7377-7389,
2020.

Junyu Zhang, Mingyi Hong, Mengdi Wang, and Shuzhong
Zhang. Generalization bounds for stochastic saddle point
problems. In International Conference on Artificial Intel-
ligence and Statistics, pages 568-576. PMLR, 2021b.

Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, and
Xiaodong He. On the discrimination-generalization trade-
off in GANs. arXiv preprint arXiv:1711.02771, 2017.

Siqi Zhang, Junchi Yang, Cristébal Guzmdn, Negar
Kiyavash, and Niao He. The complexity of nonconvex-
strongly-concave minimax optimization. In Uncertainty
in Artificial Intelligence, pages 482-492. PMLR, 2021c.



What is a Good Metric to Study Generalization of Minimax Learners?

A. Related work

Algorithms for minimax optimization. There is a vast literature on algorithms for minimax optimization. The most
popular algorithms include the Extragradient (EG), the Optimistic Gradient Descent Ascent (OGDA) and the Gradient
Descent Ascent and their variants. The EG algorithms introduced in (Korpelevich, |1976), has been analyzed in several
papers including (Monteiro and Svaiter, 2010; Mokhtari et al., [2020a3b; (Golowich et al., 2020b) for (strongly)convex-
(strongly)concave problems. Another popular algorithm is OGDA introduced in (Popov, |1980) and has been analyzed in
several recent works including (Daskalakis et al., 2017} [Hsieh et al.,[2019; |Golowich et al.| |2020a)). Once again, all these
works focus on the (strongly)convex-(strongly)concave setting. Stochastic versions of these algorithms in similar settings
have also been analyzed in several papers including (Nemirovski et al., [2009; Hsieh et al., [2019; [Fallah et al., [2020). A
few papers including (Lin et al.| 2020; Zhang et al., 2020; [Huang et al., 2022} |[Zhang et al., 202 1c; Ostrovskii et al., [2021b;
Kong et al.,|2019; |Zhang et al.,|2020) analyze gradient based algorithms in the nonconvex-(strongly)concave cases. Some
papers including (Rafique et al., 2018}; [Yang et al.,[2021}; |Ostrovskii et al., [2021a} |Grimmer et al.| 2020) analyze special
cases of nonconvex-nonconcave (like nonconvex-PL) for algorithms like GDA and its variants. However, in this paper, we
are interested in the generalization performance of these algorithms. We summarize below the most related literature that
studies the generalization behavior in minimax optimization problems.

Algorithm-independent generalization. Specific to the machine learning problems of GAN and adversarial training,
there have been several papers studying the uniform convergence generalization bounds. (Arora et al.,[2017) establish a
uniform convergence generalization bound which depends on the number of discriminator parameters. (Wu et al., [2019)
connect the stability-based theory to differential privacy ((Shalev-Shwartz et al.,[2010)) in GANs and numerically study
the generalization behavior in GANSs. (Zhang et al. [2017} Bai et al.| 2018) analyze the Rademacher complexity of the
players to show the uniform convergence bounds for GANs. In the simpler Gaussian setting, (Feizi et al., [2020) and
(Schmidt et al.l|2018) derive bounds for GANs and adversarial training, respectively. The uniform convergence bounds for
adversarial training have also been studied under several statistical learning frameworks, e.g., PAC-Bayes (Farnia et al.}
2018), Rademacher complexity (Yin et al.l 2019), margin-based (We1 and Ma, |2019), and VC analysis (Attias et al., 2019).
Recently, (Zhang et al.,[2021b)) investigate the generalization of empirical saddle point (ESP) solution in strongly-convex-
concave problems using a stability-based approach. Note that these results are not specific to the optimization algorithms
being used.

Algorithm-dependent generalization. Algorithm specific generalization bounds for minimax optimization have attracted
increasing attention. Based on the algorithmic stability framework in (Bousquet and Elisseeff], 2002), (Farnia and Ozdaglar,
2021) have established generalization bounds of standard gradient descent-ascent and proximal point algorithms under
the convex-concave setting, and those of stochastic GDA and GDMax under the nonconvex-strongly concave setting.
Concurrently, (Lei et al.||2021) derive high-probability generalization bounds for both convex-concave and weakly convex-
weakly concave settings, with possibly nonsmooth objectives, also through the lens of algorithmic stability. Both works
hinged on the metrics of primal risk and primal-dual risk. As shown in the present work, the former is not necessarily
suitable to characterize the generalization behavior of minimax optimization, while the latter is known to be appropriate
only when the saddle point exists, which is usually not the case in the nonconvex settings that are common in machine
learning. Following this line of work, (Xing et al.| 2021) provide generalization bounds specifically for adversarial training,
which is essentially the primal risk, also using the algorithmic stability framework. Recently, (Yang et al., [2022) study the
generalization of stochastic GDA under differential privacy constraints.

B. Existing Related Results

From (Farnia and Ozdaglar, [2021), we have the following theorem showing the connection between stability and generaliza-
tion for minimax problems.

Theorem 3 ((Farnia and Ozdaglar, 2021)). Consider an Algorithm A which is e-stable. We have the following two claims:
1. If the maximization and the expectation can be swapped when computing r(w), then
EsEal(gen(4)] < e
2. If f(-,-; 2) is nonconvex-strongly-concave and f is p-strongly-concave with respect to 0, then

EsEal¢h, (A)] < LVK? + 1e.

gen
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Reference Assumption Metric Rate
(Farnia and Ozdaglar,72021) NC-u-SC PR IVE2 + le
(Lei et al., 2021) NC-u-SC PR L(1+ k)e
(Lei et al., 2021) 1-SC-SC PD V2L(1 4 k)e
This work (Theorem NC-C PG \/ 4LLC2 - e + €L + 4L;C. //n
This work (Lemmall] NC-C PR VALCE /e + L
This work (Theorem[7) cC PD (\/a£ecz + \Janucy)?) ve+2¢L

Table 1. Generalization bounds for e-stable algorithms. PR stands for Primal Risk, PD stands for the primal-dual risk and PG stands for
the primal gap. NC--SC stands for nonconvex-p strongly concave. p-SC-SC stands for p strongly convex-p strongly concave. NC-C
stands for nonconvex-concave. C-C convex-concave. L is the Lipschitz constant of the function f. « stands for the condition number
L/ . The constants in the in the theorems have been defined in the appropriate sections. Note that there are other results in (Farnia and
Ozdaglar| [2021} |Lei et al.| [2021)) for cases where the expectation and max operator can be interchanged. This case is almost identical to
the minimization problem and we thus do not include it in the table.

Remark 2. In (Lei et al., |2021), the authors proved a generalization bound in a weak sense, i.e., they consider the weak
duality gap:
A gy _ s Ay _ A gy A
(reneaé( EsEar(wg,0) min EsEar(w,03)) (Igleaé( EsEsrs(wg, ) in EsEars(w,0g)).
However, notice that the expectation is inside the min and max operators. It does not deal with the coupling of the

maximization and expectation.

Remark 3. According to TheoremEl the generalization bound for ;n scales with the condition number kg, and therefore

cannot give useful bounds in the absence of strong concavity (when kg — ).

Remark 4. The generalization bounds for ;;n of algorithms for problems in terms of stability without strong concavity is

still open to the best of our knowledge. As mentioned in (ILei et al.||2021), finding generalization bounds without the strong
concavity assumption is an interesting open problem.

P o e e .
C. (;cn(A) for minimization problems

Consider a stochastic optimization problem of the form

uI}%ig‘l/ E. .p. [g(w;2)]. (8)

We define the (minimization) primal risk (population and empirical version respectively) as: r(w) = E,p,g(w; z),

and rg(w) = £ 3" | g(w; z). The generalization error (7" (A) for the (minimization) primal risk is the same as in
Definition [2] using the (minimization) primal risk.

Assume that the generalization error of the primal risk for an Algorithm A is small, say ¢ é)é;”i” (A) < e. This implies that
(from Deﬁnition: E[r(wf)] < E[rs(w%)] + €. Note that the expectation is with respect to S and A. Now, in order to
show that wé has good generalization behavior, we first see that:
E[r(wg) — mi <E & — mi . 9
(r(wf) — min r(w)] < Brs(w)] + ¢ — min r(w) ©)
However, note that for minimization problems, since E[rg] = r, we have thaﬂ mingew r(w) > E[ming,ew rs(w)], which
gives us:

Elr(wg) — min r(w)] < E[rs(wg)] + € = E[min rg(w)] = Elrs(wg) — min rs(w)] + € =e.

Therefore, for minimization problems, if the generalization error for primal risk is small, the solution to the empirical risk
minimization problem has good generalization behavior.

*Here we use the fact that E, [min, f(z, 2)] < min, E.[f(z, 2)].
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D. When is primal risk a valid metric for minimax learners?

According to the above discussions for minimization problems, we know that the primal risk is a valid metric to study
generalization behavior in these problems, and furthermore, the generalization error bound of the primal risk can be estimated
in terms of algorithmic stability. However, Theorem [I]cannot be directly extended to analyze the generalization behavior of
minimax learners because we have an additional maximization step before taking expectation.

A natural question emerges: Under what conditions does primal risk serve as a valid metric to study generalization behavior
of minimax problems. One sufficient condition is when the maximization step and expectation can be interchanged, i.e.,
when

max F, ., w,0;2) = E,p, [max f(w,0; z

9e6 szf( 77) ZPZ[GEGf( 77)]

for any distribution P,. Letting fiax(w; 2) = maxgeco f(w, 0; z), we further have

r(w) = renea(%( E.op. f(w,0;2) = E..p, [Ieneaé( f(w,0;2)] = E.op. fmax(w; 2).

Therefore, the minimax problem in (I is equivalent to the (stochastic) minimization problem with loss function fiax(w; 2).
Moreover, letting P(S) be the uniform distribution over the dataset S = {z1,- - , z,, }, we have

1 n
= E.. 79; E.. 76; = - max \W; %5 ).
rs(w) max Lz~ p(s) [f(w, 0;2)] P(S) [fgleaéi f(w,0;2)] n ; Jmax(w; ;)
Therefore, rs(w) is just the empirical primal risk corresponding to the minimization problem with loss function f,ax (w; 2).
Hence, Theorem [I] can be directly used to minimax problems where the maximization and expectation can be interchanged.

Theorem 4. Suppose that f(w,0;z) is L-Lipschitz continuous with respect to w, i.e., |f(wy,0;2) — f(we,0;2)] <

L||wy — ws|| for any wy,ws € W,0 € © and z. If an Algorithm A is e-stable, we have

ESEA[r(wg) - rg(wgl)] < Le.

Proof. From the previous analysis along with Theorem it suffices to show that f,.x(+; ) is L-Lipschitz continuous. In
fact, we have

Jmax (W15 2) = fmax(we; 2) = f(w1,0(w1); 2) — f(wa, O(wz); 2)
f(wi,0(wn); 2) — f(wa, O(w1); 2) < Lijwy — ws,

IN

where 0(w) € arg maxgeco f(w,0; ), the first inequality is because of the definition of §(w) and the second inequality is
because of the Lipschitz continuity of f with respect to w. Using the same argument, we can prove

fmax(w2;z) - fmax(wﬁz) S Ele - w2||

Therefore, we prove the L-Lipschitz continuity of f,ax(+; 2) and hence finish the proof. O

By the above discussion, we know that if maximization and expectation can be interchanged, the minimax problem can be
reduced to a minimization problem and hence the primal risk is a valid metric for studying the generalization behavior of
minimax learners and the generalization error can be estimated using the same method as for minimization problems. In
practice, the adversarial-training problems can be such an example of minimax problems.

Example 3 (Adversarial-training). We consider the adversarial training problem (Madry et al.l 2017). Suppose we have
loss function g(w; z) for a supervised learning problem. Here z denotes the training sample and w denotes the model
parameter. Due to the noise in the data or due to an adversarial attack, for any sample z, we consider an uncertainty set
B(z,€) around it. The goal is to train a model that is robust to the data with possible perturbation in the uncertainty
set. Let 0, be some adversarial sample from the set B(z, eq) and let 0 be an infinite dimensional vector (functional) with
the component 0, corresponding to the sample z. Define the function tg(v) to be the indicator function of the set B, i.e.,
tp(v) =0ifv € Band 1g(v) = 0o otherwise. The goal of adversarial training is to solve the following minimax problem:

min max E..p f(w,0;z), (10)
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where f(w,0;2) = g(w;0.) + L(z,e)(0-). For any distribution P, over z’s, we have
s o, f(0,0:2) = max B, [g0030.) & (e (02)] = o max ((w36.) + 11 (02)]
= EZNPZ [mgxx f(wa 03 Z)L

where the second and the third equalities use the fact that 0., does not contribute to f(w,0; z) if z # z'. Therefore, the
expectation and maximization can be interchanged in adversarial training problems. This implies that the results of Theorem
M can be applied and therefore primal risk is a valid metric to study the generalization behavior in such problems.

E. Analysis of Example ]

In this section, we analyze the toy example given in Example|[T]

Proposition 1. For the risk function and data distribution given in Example[l} we have
Eglr(w) —rg(w)] <0

foranyw e W.

Proof. For a fixed w, 7(w) = w?/2 — w. On the other hand,

rs(w) = maxr(w,0) an

> rg(w,0) (12)

= r(w). (13)

Therefore, we have the desired result. O]

Next, we prove that | Y .- | z;| will stay in the interval [0.5, A] with high probability.

Lemma 2. For large enough \ > 2, we have

o

Proof. Lety; ~ N(0,1/y/n),i = 1,--- ,nbe niid. variables. Then ) . ; y; ~ N(0,1). According to the table of
Normal distribution, we have Pr(| Y7, v;| € [0.5,A]) > 0.41. By the definition of z;, we have

n

>

i=1

n

>

i=1

€ [0.5,>\]> > 0.4, Pr(

€ [2, A]) > 0.01.

Pr(| Yzl € [0.5,7) = Pr(| Y _wil € [05, A, |yi| < 3logn/v/n) +Pr(§f€1%f]<(\yil) > 3logn/v/n).

i=1 i=1

For the first term, we have

Pr(] Zyz\ € (0.5, ], ly;| < 3logn/v/n)

i=1

> Pr(| Yo wil € (05, X)) ~ Pr(max(|us]) > 3logn/ V)
i=1

> 041 =Y Pr(ly;| > 3logn//n)

=1
> 041 — ne 918" > 041 — 1/pM L

Taking A sufficiently large yields the desired result, where the first inequality is because of the union bound and the second
inequality is due to the tail bound of Normal distribution. Therefore, Pr(| - z;| € [0.5, A]) > 0.4 for sufficiently large
n. The second statement follows similarly, noting from the table of Normal distribution that Pr(| Y"1, y;| € [0.5, \]) >
0.046.
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Proposition 2. For sufficiently large \ > 0, we have

E — mi > 0.001.
s[r(ws) i r(w)] > 0.00

Proof. If | Y"1, ;| € [0.5, \], we have

n

ws =max(0,1 — (3 z)?/2) < 0.9.
i=1

In this case, we have

r(wg) — wnélvr%/ r(w) > 0.005, (14)
by direct calculation. Therefore, we have
Eslr(ws) — 11}[}%1‘/1‘1/ r(w)] (15)
> P i: zi| € [0.5, ]) - 0.05 + Px(| i 2 ¢ [0.5,A]) - 0 (16)
> 002 - a7
where the first inequality is because of and the fact that r(wg) — min,ew r(w) > 0 for any S. O

Proposition 3. For sufficiently large \ > 0, we have:

Es[mi — mi > 0.005
s{min rs(w) — min 7(w)] 2

for Examplel[l]

Proof. If | 37 | z;| > X > 2, we have wg = 0 and hence rg(ws) = 0. If | Y"1 | 2| < A, we have

n

rg(wg) —r(w*) > rg(ws) — r(wg) = wS(Z 2)%/2 > 0.
i=1

Therefore, min,ew rs(w) > ming,ew r(w) for any S. By Lemma we can prove that Pr(| Y1 | z;| € [2,A]) > 0.01
for sufficiently large A. Notice that for | > | z;| € [2, A], rs(wg) — mingew r(w) = 1/2. Therefore, we have

i — 1mi > ; . > 0. .
ES[&IVIII/TS(M) UIJ%I‘I/‘I/T(w)] > Pr(| ;zﬂ €1[2,A])-1/2 > 0.005

This completes the proof. O

F. Proofs in Section
F.1. Proof of Lemma/[l]
In this subsection, we assume that A is an e-stable algorithm. For any w € W, let Og(w) = arg maxyceo 7s(w, d) and
O(w) = argmaxgee 7(w, 0) be the solution sets of the problems. Let 6(w) be any element in ©(w). Then
EaEs[r(wg) —rs(w§)] = EaEs[r(wg,0(w§)) —rs(w§,0s(wg))]
< EaEslr(wg,0(wg)) — rs(wg,0(w§))],

where the inequality is because 75(wg, 05 (w3 )) > rs(w§, 0) for any 0. Let f be u-strongly concave with respect to 6. We
denote the condition number by kg = £gg /1.

In the strongly concave case, ©(w) has a unique element §(w), which is kg-Lipschitz continuous with respect to w (see
(Lin et al.| [2020)).
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Then, defining f(w,z) = f(w,H(w); z), the minimax problem reduces to the usual minimization problem on the function
f- The stability and the Lipschitz continuity of §(w) with respect to w yield the generalization bound of L+/x? + 1e. This
is the result shown in Theorem 1 of (Farnia and Ozdaglar, 2021)).

However, if the maximization problem is not strongly concave, we lose the Lipschitz continuity and the uniqueness. To
overcome this difficulty, we define an approximate maximizer §(w) to 7(w, §). Concretely speaking, we define §(w) to be
the point after s steps of gradient ascent for the function r(w, -) with a stepsize 1/yy and being initialized at 0. Then we
have the following lemma:

Lemma 3. For any w € W, we havd]

L |0(w) = ()| < gz [lw — '),
2. r(w) — r(w,0(w)) < Eggcg/s.
Proof. To prove the first part, let 0y = 6(, = 0. Define 6,, 0 recursively as follows:

Or41 = 0y + Vor(w, 6;)/Llog

and
01 = 0; + Vor(w',0;) /oo

We prove ||0; — 01| < tﬁ”w — w'|| by induction. For ¢t = 0, 6y — 6 = 0. Assume the induction hypothesis
[[0:—1 — 01|l < (t— 1)%”10 — w’|| holds. We have

16 = 01l = 11 + Vior(w, 0:—1)/log) — (6i_1 + Vor(w,0;_;)/loe)
+ (Vor(w,8;_1) — Ver(w',0,_1)) /Lol
< (-1 + Vor(w, 0:-1) /og) — (01— + Var(w,0;_1)/Coo)||
+[(Vor(w, 0,_1) — Vor(w',0,_1))/ Lol
<101 = Op_y || + Llw — || /g

14 4
<(t=1) 5w —=w'|+ —[lw— ||
Loo Los

L
=t—I|w — ',
-

where the first inequality follows from the triangle inequality, the second inequality follows from non-expansiveness of
gradient ascent for concave functions and the ¢-Lipschitz continuity of Vr, and the third inequality follows from the
induction hypothesis.

Therefore, letting t = s completes the proof of the first part. The second part of this lemma is just the convergence result for
gradient ascent on smooth concave functions (see e.g., (Nesterov, 2013)). ]

Consider a virtual algorithm A: for any S, the algorithm returns w = wg‘ and § = 0 (w?).

/ 2
Lemma 4. The stability of this virtual algorithm is € (sﬁ) + 1.

Proof. 1t is direct from the first part of Lemma 3] O

Then we have the generalization bound of rg(w, 0):

Lemma 5. We have
2
ESEA[T(w?,O_(wﬁ)) - Ts(w?,é(wg))] <eL (s) + 1.

*For point 2, it holds when s > 0. For s = 0, we have the bound r(w) — 7(w, f(w)) < £eeC:. We do not separate this degenerate
case for ease of presentation.
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Proof. For any z, by Assumption[d] we have

2
15w 0852) - f(ud 085 < ety (s ) 41
The result follows directly from the standard stability theory in (Hardt et al.,|[2016). [

Now we are ready to derive the generalization error bound of the Primal Risk for an Algorithm A with e-stability. First, we
have

EsEalr(wg) — rs(w§)] < EsEalr(wg) — rs(w§, 0(wg))]
< EsEA[(r(wg, 0(wg) + 59903/5) —rs(w§,0(wg))]
= EsEalr(w§,0(wg)) — rs(wg,0(wg))] + LoeCy /s

2
<o) (-5 414 b2/
Loo P

E‘%Cz + el

l
<eLs— +
E@e S

where the first inequality is because 75(w§) = maxy rg(w§, 0), the second inequality is because of the second part of

Lemma [3| and the last inequality is because of Lemma |5} Optimizing OVGIE] s, the generalization error is bounded by
P (A) <, [ALLC? - \/€ + eL. This completes the proof. O

gen

F.2. Proof of Theorem

Recall that the empirical primal gap is defined as

Ag(w) =rg(w) — wmeleilf rs(w)
and the population primal gap is given by
A(w) =r(w) — wnéll/rll/ r(w).
Suppose we are given an e-stable Algorithm A. We then want to derive the generalization error

Caon (4) = EsBa[A(wE) — As(w)].

gen

Since we already have the generalization error for the primal risk EsE4[r(wg) — rs(w§)] in Theorem we only need to
estimate

ESEA[gélVIIl/ rg(w) — min r(w)] = Es [5}%151[/ rg(w) — i r(w)]

to get a generalization error bound on the primal gap.

Lemma 6. Ler w* € argmin,,cw r(w). Suppose that f(w*,-; z) is L}, Lipschitz continuous with respect to 0. Then we
have

Es[quvrll/ rg(w) — JJI(IC_IVI[l/ r(w)] < 4L;Ce/\/n.

Proof. We use similar techniques as in the proof of Lemmal/[T]

Step 1. We define an approximate maximizer 65 of the function rg(w*,-). 0 is attained by performing s steps of gradient
ascent to rg(w*, ) with stepsize 1/¢p9 and being initialized at 0.

Similar to Lemma 3] we have the following lemma:

SHere we assume that the optimal s is a real number greater than 0. Constraining s to be an integer and also incorporating 0 does not
change the result and we ignore this case here. See also FootnoteE}
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Lemma 7. We have the following properties:

1. ||0s — O/ < 2sLj/(nlgy).

2. rg(w*) — Ts(w*, és) < &9903/8.

Proof. The proof is similar to the proof of Lemma To prove the first part, let 0o = 9~6 = 0. Define 6,, 52 recursively as
follows:

ét+1 = ét + Vors(w™, ét)/eeﬁ
and
2_,'_1 = 9,’5 + V@’I”S/(w*, 9,’5)/699.

We prove [|0; — 6| < L/ (ngp) by induction. For t = 0, 6y — 6}y = 0. Assume the induction hypothesis [|6;_1 — 0}_,| <
(t — 1)L}/ (nlgg) holds. We have

16 — 611 = [|(Bs—1 + Vers(w*,0:-1)/log) — (6;_, + Vors(w*,0;_)/loo)
+ (Vors(w*,0;_,) = Vors: (w*,0;_,))/ oo
< |[(0i—1 + Vors(w*,0,-1)/too) — (0;_1 + Vors(w*,0,_)/leo)||
+[(Vors(w*, 0;_1) = Vors: (w*,6;_1))/Looll
<61 — 61 || + Lllw — w'[|/ oo
oLy 2L}

<(t—1)—=
_( >n€99+n€99

2L

= t 5
n£99

where the first inequality follows from the triangle inequality, the second inequality follows from non-expansiveness of
gradient ascent for concave functions and the Lj-Lipschitz continuity of f(w*, -; z), and the third inequality follows from
the induction hypothesis.

Therefore, letting t = s completes the proof of the first part. The second part of this lemma is just the convergence result for
gradient ascent on smooth concave functions (see e.g., (Nesterov, 2013)). O

We then define the virtual algorithm A given by wé = w* and Gé = fg. Since the output argument w of Ais always w*,
the stability of A only depends on 6. Then the stability bound of this virtual algorithm is given in the following lemma:

Lemma 8. The stability of Algorithm A is given by €sa(A) = 25(L})?/(nlop).

Then by the standard stability theory in (Hardt et al., 2016)), we have
|EsEalrs(w®,fs) — r(w*,0s)]| < 2s(Lj)?/(nloe). (18)

Step 2. We have

Es[min rs(w) — min r(w)] £ Eslrs(ws) — r(w”,0")]

2 Bglrs(w®) - r(w*,6")]

< Eslrs(w*,8s) — r(w",6%)] + £ C2/s
(iSV) Es[rs(w*,0s) — r(w*,05)] + LgaC? /s,
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where (i) follows from the definition of w*, 8*, (ii) follows since wg minimizes rg(w), (iii) follows from Lemma and (iv)
follows from the optimality of 6* given w*. Then by (I8), we have

Es[min rs(w) — min r(w)] < Esfrs(w®, 0s) — r(w*,05)] + LoeC2 /s (19)

< 25(L2)2/(n€99) -1-590062/8 (20)

< ALyCe/v/n (21)

which completes the proof. O
The final statement of the theorem follows from Lemma[6land Lemmal[l ]

G. Nonconvex-nonconcave case

In this section, we extend our results to the nonconvex-nonconcave setting. We will show that under certain assumptions on
the inner maximization problem, we can derive generalization error bounds for the primal risk and primal gap in terms of
algorithmic stability.

‘We make the following assumptions on the inner maximization problem:

Assumption 5. For any v > 0, there exists an algorithm which outputs 6}, (w), for the inner maximization problem
maxgeo r(w, 0), satisfying the following conditions:

1. r(w) — r(w,0h(w)) <.
2. |05 (w) — 605(w)]] < %Hw — w'|| with some constant A, > 0 for all w,w' € W.

Assumption 6. For any v > 0, there exists an algorithm which outputs 0},(S), for the inner maximization problem
maxgco rs(w*, 0), satisfying the following conditions:

1. rg(w*) —rg(w*,05(5)) <.

2. For any neighboring dataset S, S’, we have ||07,(S) — 6(5")| < 7’:—; with some constant A, > 0.

The following lemma gives sufficient conditions for these two assumptions to hold.

Lemma 9. Consider constants D, > vy and D), > .

1. Suppose that gradient ascent with diminishing stepsizes c [t for the problem maxgce 7(w, 0) has convergence rate
r(w) — r(w,0°) < D,/s. Then we define 0 (w) by performing s = D, /7 steps of gradient ascent. Then, 0 (w)
satisfies Assumption 3]

2. Suppose that gradient ascent with constant stepsize cq for the problem maxgceo r(w, 0) has convergence rate r(w) —
r(w,0%) < Dypn® for some constant 0 < n < 1. Then we define 0 (w) by s = log(D,,/7)/log(1/n) steps of gradient
ascent. Then, 0 (w) satisfies Assumption

3. Suppose that gradient ascent with diminishing stepsizes c /t for the problem maxgco rs(w, 0) has convergence rate
rs(w) —rs(w,8°) < D,/s. Then we define 07 (S) by performing s = D, /v steps of gradient ascent. Then, 67 (S)
satisfies Assumption |6}

4. Suppose that gradient ascent with constant stepsize cy for the problem maxgeco rs(w, ) has convergence rate
rg(w) — rs(w, 0%) < Den® for some constant 0 < n < 1. Then we define 6] (w) by s = log(D./v)/log(1/n) steps
of gradient ascent. Then, 07 (S) satisfies Assumption|6]

Remark 5. Note that for some practical nonconvex optimization problems in machine learning, gradient descent indeed
converges to the global minima at a reasonably fast rate, e.g., in training deep overparametrized neural networks (Du
et al.| |2019), robust least squares problems (El Ghaoui and Lebret,|1997), phase retrieval and matrix completion (?). Our
Assumptions 5| and [6] can be viewed as an abstract summary of some benign properties of gradient descent for certain
nonconvex optimization problems.
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Furthermore, we assume that f(-, -; z) is L-LipschitzF_’-] continuous in W x ©. This, along with Assumptionsand@ allows
us to derive the generalization error bounds of the primal risk and primal gap in terms of algorithmic stability.

Lemma 10. Suppose that Assumption[3| holds. If a minimax learning Algorithm A is an e-stable algorithm, we have
Cgen( ) < Le + /LAp\/e.

Similarly, we can derive the generalization bound for the primal gap given the above assumptions.
Theorem 5. Suppose Assumptions S and|[6|hold. Then we have

PCA) < ¢l (A) + VI V.

The proof of this theorem is similar to the proof of Lemma[I0]and Theorem [2]and hence omitted.

G.1. Proof of Lemmal9]

We only prove the first part of this lemma and the others can be proved similarly. Let s = [D,, /] + 1, where [r] denotes the
largest integer no more than 7. To prove the first part, let 8y = 6, = 0. Define 6, 0} recursively as follows:

9t+1 = 9,5 + Covg’r(w, Gt)/t

and

i1 = 0; + coVer(w',6;) /1.
We prove ||0; — 0}]| < t;5~ ~|lw — w'|| by induction. For¢ = 0, 6p — 6y = 0. Assume the induction hypothesis
10e—1 = 04 _yll < (t = 1), lw — w]l. We have

10 — 411 = [[(0r—1 + coVor(w, 0:—1)/t) — (041 + coVor(w,0;,_1)/t) (22)
+co(Vor(w,0;_,) — Vor(w',0,_,))/t| (23)

< |[(Os—1 + coVor(w,0;-1)/t) — (0;_1 + coVer(w,0;_1)/t)| (24)

+ col|(Vor(w,0;,_1) = Vor(w',0,_1)) /¢ (25)

< (1 + coloo/D0er — 01—y | + colllew — w1 6)

Here the first inequality follows from the triangle inequality, the second inequality follows from the ¢99 —Lipschitz continuity
of Vgr and ¢-Lipschitz continuity of Vr. Therefore, we have

16 = O < (1 + colos /)11 — 041 || + colllw — w'|| /£.

Let §; = ||0; — 6;]|. Then by the above recursion, we have
t
O+ £/Lgglw — w'|| < H (1 + coloo/i)l||lw —w'||/Loe-

Using the inequalities e > 1 + a and Ele 1/i <logt, we have
t
5 < —Jlw —w'||.
Loy

Letting ¢t = s yields
st
07 (w) — 07 (w)|| < —|lw— .
165 (w) = 65wl < 7=l |

Since D), > v, we have
s < [Dp/v]+1<2Dy/y.
Hence,

— S 2Dp€/€99.
06

Setting A, = 2D,€/{yg yields the desired result.

SNote that this is different from the L defined for the nonconvex-concave case. Here L captures the Lipschitz constant over the whole
constraint set. In the nonconvex-concave case, L = L(B(0,2C, + 1)).
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Algorithm 1 GDA
Input: initial iterate (w%, 6%) = (0, 0), stepsizes o, B:, projection operators Py and Po;
1: fort=0,...,7T—1do
2 whth = Py (wh — aVirs(w,6))
3: QtSJrl =P (ets + Btvm“s(w, 6‘))
4: end for

Algorithm 2 GDMax

Input: initial iterate (w%, 0%) = (0, 0), stepsizes o, projection operators Py and Pog;
1: fort=0,..., 7 —1do
2wt = Py (wh — ayVirs(w, )

30 05! = argmax rg(wh, 0)
9co

4: end for

G.2. Proof of Lemma [0l

This is similar to the proof of Lemma We first define the virtual algorithm A which outputs (w3, o) (w%)). By Assumption
it can be easily seen that A is (1 + A, /7)e-stable. Then by Theorem we have

EsEalr(wg, 0y (wg)) — rs(ws, 0] (w§))] < L(L+ Ap/7)e.

This gives us:

EsBEalr(wg) —rs(wg)] EsEalr(w§, 0 (w§)) — rs(wg, 6] (wg))] +7

Le + Laye/v + 7.

Taking v = /LA,+/€, we have
gen( < Le + V L\ f

H. Comparison of GDA and GDMax

In Section[3.3] we provide generalization bounds for the primal gap for any e-stable algorithm. In this section, we focus on
two algorithms in particular - GDA and GDMax. These two algorithms are described in Algorithms[T]and 2]in Appendix [I|

We note that though analyzing the optimization properties of GDA/stochastic GDA for solving the empirical minimax
problem is an important topic, our focus in this paper is on studying the generalization behavior of these algorithms. We
assume that the empirical version of the stochastic minimax problem can be solved by GDA and GDMax, i.e., we assume
that GDA and GDMax satisfy the following assumption:

Assumption 7. Let A be a minimax learner, such as GDA or GDMax. Then we assume that A has the following convergence
rate: Elrs(w?) — mingew rs(w)] < (@a(M(W)) + ¢pa(C.))/1ba(t), where M (W) is the maximum of the norms of w,
and ¢ A(s), Y a(8) are nonnegative, increasing functions that tend to infinity as s — oo.

For simplicity, throughout this section, we assume that || f(w, 8; z)|| < 1 for all w, §, and z. The next theorem provides a
bound for the population primal gap A(w%) := (w4 ) — min,ew 7(w). Note that the goal of any algorithm is to make

this gap as small as possible.

For an Algorithm A and subsets Wy C W, 0, C ©, we define A(Wy, ) as the algorithm which restricts A to solve (T))
under constraint sets W, and 0. Specifically, A(W, ©) is just A.

Theorem 6. Let wA & HA " be the t-th iterate generated by Algorithm A using dataset S. Assume that {HA t} COy= @A

Sort < T with probablllty 1 — & (due to the randomness in S) and B(0,C,) C ©3'. Here B(v,r) denotes the ly-ball wzth
radius r centered at v. Let Ay = A(W, ©y). Then after T iterations ofAlgorithm A, the population primal gap can be
bounded as:

Bslr(wg™) — min r(w)] < (¢a,(M(W)) + da,(Ce(©4))) /14, (T) + ALy Ce(04) /v/n + ¢l (Ao) +6,
N—_——

weWw

II I
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where Ap) = EsEx [r(w?O’T) —rg (w?O’T)] is the generalization error of the primal risk of Algorithm A,.

gs’n (
Remark 6. Theorem|[6]builds a closer connection between generalization behavior and the dynamics of the minimax learner
A. It shows that suitable restriction to the max learner can lead to better minimax learner, in terms of generalization. We

make this clear in the comparison of GDA and GDMax by analyzing the three terms in Theorem|[6]

H.1. Analyzing the term [

First, we study the generalization error bound of the primal risk, i.e., gen
using Lemma[I] Therefore, it suffices to estimate the stability of GDA. We do this in the following lemma:

in Theorem @ For GDA, we can estimate (., gen D

Lemma 11. Let ¢y = max{ay, 8o}, If we use diminishing stepsizes oy = o/t and By = o/t for GDA for T iterations,
we have the stability bound ¢“P4 < 2Legpa Tt/ (nk).

Now, since we have a bound for gen (A) for e-stable Algorithm A in Lemma | we can substitute the stability bound for
GDA from Lemma in this expression to get a bound on gen(GDA) for GDA. We do this in the next proposition. We
can bound ( gen(AO) for GDA by substituting the stability bound in Lemma.mto Lemmal (letting € = €GP4),
Proposition 4. Let co = max{cv, Bo} and assume that f(-,; z) is Legpa-Lipschitz-continuous inside the set W x o5h4,
For GDA with diminishing stepsizes «/t, 5o/t run for T iterations (denoted by GD A ), the generalization error of the
primal risk can be bounded by:

sn(GDAr) < (Logpa)®?\[8C2/61/Te! /n + 2L8coa T/ (nl).

However, for GDMax, we can not compute a uniform stability bound that vanishes as n goes to infinity. In fact, we can
show from the following simple example that gen(GDMax) can be a constant that is independent of n, which means that
for the case where r(w, ) is nonconvex-concave, the generalization error of primal risk of GDMax can be undesirable.

Example 4 (Constant generalization error of primal risk for GDMax). Consider a dataset S with n elements. Define the
objective function: f(w,0;z) = (% —2) 0 — & where w € W = [-n\/n,n\/n], 0 € © = R and z is drawn from the

n2

uniform distribution over {—1/+/n,1/\/n}. We have

ratw) =2 (—zzz) |

and r(w) = . Therefore, min,,cyw r(w) = 0. From the definition of the function [ and the sets W and ©, we have
¢ =1/n? L (’)(l/f)

Note that one step of GDMax can attain the minimizer of rs(w) (since it is a one dimensional quadratic problem), i.e.,
ws =nY .,z and rs(wg) = 0. Furthermore, we have Egr(wg) = E[(Zf‘zz1 Zi)Q] 1/2 > 0. Thus, ¢;,,,(GDMax) =
El[r(ws) — rs(ws)] = 1/2 > 0 cannot be made small.

qen(

Therefore from Proposition ] and Example[d] we see that the bound for the expected population primal gap contains the
term gen which cannot be bounded for GDMax, whereas can be bounded for GDA which leads us to the conclusion that
GDA generalizes better than GDMax for such problems. However, it is possible to bound GDMax) in certain problems,

and in this case the other terms in Theorem [6]become crucial. We analyze them next.

gen(

H.2. Analyzing the term /]

As shown in Example [T} sometimes GDMax can have a good generalization bound for the primal risk. Therefore, we need
to analyze the other two terms in Theorem 6} i.e., (¢4 (M) + ¢4 (Ce(05))) /1A (T) and L;C.(O4')/+/n. For these two
terms, since Lj is fixed, the constant C, (0} ) is the key term which differentiates the performance of different algorithms.

By definition, the constant C\, (0§ 2*) for GDMax is nearly C, (See Definition|6). Therefore, the population primal gap
after T steps of GDMax is dominated by C. if C. is large. However, the set ©5P4 for GDA can be much smaller than ©,
which implies that C, (G)ED 4) can be much smaller than C. This phenomenon can be seen from Example l If we perform
one step of GDMax with primal stepsize 1, we can attain w! = wg. Then Eg[r(w) — mingew r(w)] > 0.005 from (@).
For GDA, we can see that w! = 1 after one step of GDA with stepsize 1. Therefore, GDA generalizes better than GDMax.
Generally, we have the following estimate of C,.(©§P4).
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Lemma 12. Let Ly = max, ||V f(wo, 00; 2)|. Let co = max{ao, fo}. If we use diminishing stepsizes oz = o/t and
Bt = Bo/t for GDA, then after T steps we have ||0t|| < T“*Lo/( fort € [T).

Therefore, if C. is much larger than C),, using GDA with C), < T' ol /¢ < C. is better than GDMax. We make this more
concrete in the context of GAN training next.

H.3. GAN training

We now study the specific case of GAN training to explore why GDA might generalize better than GDMax. This is
numerically verified in the literature, such as (Farnia and Ozdaglar, 2021). Specifically, we revisit Example[2} and consider
a special case: D is restricted to be a over-parametrized linear function with respect to 6. Define the descriminator
D(xz) = ®T (2)v + bg, where ®(z) = [®1 (), - , P (z)]” € R™ is the feature matrix and by € R. Also suppose that G
is parametrized by w and G* = G,,+. Then the GAN problem can be written as min,, ey maxgeco 7(w, 6), where

r(w,0) = Exnp, [$(v" @(2) + bo)] + By, [6(1 — 0T @(Gu(y)) — bo)].

Here 6 = (v, bg). Assume that |/0max (EINpr CI)(x)CI)T(a:)) < Omax/ /M, where opax(+) denotes the largest singular

value of a matrix and ax > 0 is a constant. Also assume that Fyp; ®(x)®T(z) is full rank. Also, we assume that
¢/ ()] < Ly for any X € [0, 1]. Therefore, we have E[[|[V f(w, 0; 2)[|*] & L35, Then it is reasonable to assume that
IV < O).

Lemma 13. Suppose ®(z) is sub-Gaussian and the matrix

Qs = [®(e) B(a2)-- Dan) B(Culyr)) - B(Culyn))]

is full column rank (m > n) with probability 1. Then with probability at least 1 — C6 with some constant C, we have
105 (w*)]| > Q(y/n), where 0s(w*) € arg maxgeeo rs(w*, 0).

Now, for § € arg maxgco r(w*, §’), it can be easily seen that v = 0, by = 1/2 in this case. Therefore, Cj, ~ 1/2. Finally,
combining the previous discussion on GDA in Lemma[I2] and using the fact that C. is large from Lemma[T3] we see from
Theorem [6]that GDA can generalize better than GDMax. More detailed discuss of the GAN-training example and Lemma
[[3] can be found in Section[ll

I. Proofs in Section
I.1. Proof of Theorem [
First, we have
Ao, T .
EgE s, [r(wg®" ) — min r(w)]

weWw

= EsBay[rs(ws"") — min rs(w)] + Es Eay[r(wg"") = rs(wg™")]

+ EsEa, [5)%1‘/1‘1/ rg(w) — uI;IéIVI}/ r(w)]. (27)

Furthermore, by Assumption[7]and Theorem[2] we have
EsEa,[r(wg™") = min r(w)] < (day(Mu) + 645(Ce(©0)))/ a0 (T) + ¢op(Ao) + LiCe(©0)/ V.

Next, notice that the output of Ay is equal to the output of A with probability at least 1 — § and ||r(w)]|| < 1. Therefore, we
have
A A
|Bs Balr(ws™)] — EsEa, [r(wg™")]| <6,

which gives the desired result. O
L.2. Proof of Lemma [T1]
Define 6, = ||(wh, 0%) — (wh,, 0%,)||. We have

01 < (1 + Cof/t)(st + QCoLegDA/nt.
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Figure 1. Comparison of the results on MNIST generated by GDA and GDMax.

Therefore,
— < t < cot
t+1 + n _(+Co/)(t+ n >_ In ; (28)
which completes the proof. O
1.3. Proof of Lemma [12]

For a fixed dataset S, let g; = Vrg(w?,0%) and d; = ||(w°,°) — (w?, 6?)|. Then we have g; < Lo + dif and dy41 <
di + coge/t. Substituting the first inequality into the second one, we have

div1 < di + code/t + Loco/t,
which gives us
dep1 + L/ < (14 col/t)(di + Lo/¥).
Multiplying this inequality from O to 7" — 1 yields
dp <T'Ly/t,

which completes the proof. O

1.4. Proof of Lemma [13]

Letu = [1,1,---,1,0,--- ,0]7 € R?". Then f5(w) satisfies Q%L0s(w) = u — boe, where e = [1,1,--- ,1]T € R*". It
can be easily seen that |u — boe|| > /n/2.

We can also show that 01y (Qs) < 20max * Omax(P), where P € R?™"*™ is full row-rank and independent rows.
Moreover, every row of P has covariance matrix I,/ \/m Then by random matrix theory (see (Vershynin, [2010)), we
have opmax(P) < O(vm//m — Cy/n/y/m +log(1/6)/v/m) = O(1) with probability 1 — C'§. Therefore, we have
bs(w) > Q(y/n). 0
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Figure 2. Comparison of the norm squares of discriminator weights.

L5. Experiments on GAN-training

In this section, we provide some numerical results to corroborate our theoretical findings.

1.5.1. SETUP

We train a GAN on MNIST data using two algorithms — GDA and GDMax. Since the stability is improved by using adaptive
methods like Adam, we use Adam-descent-ascent (ADA) and Adam-descent-max (ADMax) instead. ADA simultaneously
trains the generator and the discriminator, while ADMax trains the optimal discriminator for each generator step. We
simulate this by taking 10 steps of ascent for every descent step. Figure[T|plots the images generated by GANSs trained using
these two algorithms. Finally, in Figure|2| we plot the norms of the discriminator trained by these two algorithms.

1.5.2. RESULTS

Figure[T]plots the images generated by GAN's trained using GDA and GDMax (using Adam instead of the simple gradient
step). As predicted by the theory in Section[l, we can see that GDA produces better images than the corresponding GAN
trained using GDMax. Furthermore, the claim that C. >> C), can be seen from Figure[2] where we see that the norm of the
discriminator trained using GDMax is much larger than the norm of the discriminator trained using GDA. This follows
from the results in Section GDMax trains the discriminator to exactly distinguish between the empirical data generated
by the true and fake distributions. Therefore, when they are nearly the same, their empirical distributions would be close
as well. This would imply that the discriminator would need to have a very large slope (Lipschitz constant) to exactly
distinguish between the two empirical datasets, and this in turn leads to a large discriminator norm (which captures the
Lipschitz constant of the discriminator).

J. Generalization Error for Primal-Dual Risk

If the saddle-point exists, the primal-dual risk is often a good measure of generalization:

Definition 7. [Primal-dual risk] The population and empirical primal-dual (PD) risks are defined as:
APD — no_ : l
(w,0) = maxr(w,¢') — min r(w',9),

and

PD _ / : /
Ag” (w,0) = glé%(rs(w,@ ) — 15;161%/7"5(11} ,0).

A point (w, 0) is called a saddle-point of g (or 7) if AP (w,0) = 0 (or APP(w, ) = 0). Furthermore, if a saddle-
point (wg, 8g) exists for rg(-,-), we have wg = min,ew rs(w). Moreover, if wg € argmin,ew rs(w) and g €
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arg maxgeo rs(wg, ), then (wg, 0s) is a saddle point of rg(-, -).

Notice that if we can find an approximate saddle point (wg, fg) of 75(w,0), i.e., ALP(wg,0s) < € and guarantee that
APP(wg,05) — AEP(wg, 05) is small, we can guarantee that A(wg, 0s) is small and therefore (wg, 05) is an approximate
saddle point of (-, -). Hence if the saddle point exists for 7s(-, -), the generalization error of the primal-dual risk can be a
good measure for the generalization of the solution to the empirical problem. We define the expected generalization error for
the primal-dual risk as follows:

Definition 8. The generalization error for the primal-dual risk is defined as

gon (A) = EsEa[A"P(w§,05) — AGP (w, 65)].

gen

J.1. The generalization of the primal-dual risk for convex-concave problems

Similar to Definition [6] we define the W -capacity as follows:
Definition 9 (W-Capacity). Let

w (0) = J]rélvril/r(waa), and WS(e) = ’L{]Iél&l/ rs(w,a).

The W-capacities C¢’ and C})’ are defined as
C, = max dist (0, W*(6)
cY = max dist(0, Wg(9)). (29)

Next, we also define the following:
Definition 10. Ler [~ (0, w; 2) = — f(w, 0; 2). We first have

1
Tﬁ(a’w) = EZNPz [fi(oawaz)}r r§(07w) = 52f7(07w,21) (30)
i=1
Furthermore, we define:
r—(0) = max r(0,w) = f(géivr‘l/ r(w,0))
rg(0) = max rg (0, w) = _(Euréivlilf rs(w,0)). 31)

Now, we have the following bound for the generalization error of the primal-dual risk, (2 (A) for an e-stable Algorithm A:

gen
PD

gen (A) for convex-concave problem, i.e.,

Theorem 7. Suppose that Algorithm A is e-stable. The generalization error
when f(-,-; z) is convex-concave for all z, is bounded by:

PD(4) < (\/4L£cg + \/4Le(c;,v)2) Ve + 2L

Proof. Notice that
gen(A) = EsBA[ATP(wg, 05) — AGP (w§, 09)] (32)
= EsEalr(wg) —rs(wg)] + EsEalr™ (05) — 5 (05))- (33)
The two terms can be bounded by Lemma[I|respectively. By Lemma|[I} we have
EsEalr(wg) —rs(wd)] < 4LLC2\/€ + €L

and
EsEalr=(0§) — 75 (08)] < \/ALU(CY)? /e + €L.

Combining these two inequalities yields the desired result. O
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J.2. ¢[2(T) for the proximal point algorithm

In this section, we study the generalization behavior of the proximal point algorithm (PPA) ((See Equation (3) in (Farnia and;
Ozdaglar, |2021))). By (Farnia and Ozdaglar, [2021), the stability of T steps of PPA can be bounded as follows:

Lemma 14 ((Farnia and Ozdaglar, [2021)). The stability of T steps of PPA can be bounded by ¢ < O (T'/n).

Therefore, substituting the result of Lemma in Theorem we have the following bound for (g4, for T" steps of PPA:
Theorem 8. After T steps of PPA, the generalization error of the primal-dual risk can be bounded by:

Py <O (VTn+1T/n).

J.3. The population primal-dual risk of PPA

Finally, we give the population primal-dual risk after T" steps of PPA. By (Mokhtari et al., 2020b), we have the following
convergence result of PPA.

Lemma 15 ((Mokhtari et al., 2020b)). Let (w, 0%) be the iterates obtained after t iterations of proximal point algorithm
on the function rs(-,-) and wY = 1 22:1 wh, 0% =1 22:1 0% be the averaged iterates. Then we have

AGP(w§,05) < L(CZ + (C)*)/T.

Combining Lemma[T3]and Theorem|[8] we have the following result:

Theorem 9. Let (wl, 0%) be the iterates obtained after t iterations of proximal point algorithm on the function rs(-, ) and
wh :_% Z§=1 wfg, H_fg = % ZE:l 0% be the averaged iterates. Then, the expected population primal-dual risk at the point
(wh, 0%) can be bounded by:

Es[APP (wh, 04)] < O (1 JT +/T/n + T/n) .
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