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Abstract
This paper investigates a family of methods for de-
fending against adversarial attacks that owe part
of their success to creating a rugged loss land-
scape that adversaries find difficult to navigate.
A common, but not universal, way to achieve
this effect is via the use of stochastic neural net-
works. We show that this is a form of gradient
obfuscation, and propose a general extension to
gradient-based adversaries based on the Weier-
strass transform, which smooths the surface of the
loss function and provides more reliable gradient
estimates. We further show that the same princi-
ple can strengthen gradient-free adversaries. We
demonstrate the efficacy of our loss-smoothing
method against both stochastic and non-stochastic
adversarial defences that exhibit robustness due
to this type of obfuscation. Furthermore, we pro-
vide analysis of how it interacts with Expectation
over Transformation; a popular gradient-sampling
method currently used to attack stochastic de-
fences.

1. Introduction
The discovery of adversarial examples in deep learn-
ing (Szegedy et al., 2014), together with its growing com-
mercial and societal importance, has led to adversarial de-
fence emerging as an important field of machine learning
research, with the purpose of creating models that are ro-
bust against adversarial perturbations. There is an interplay
between adversarial attack and defence research, where
stronger defences are developed, and often subsequently
broken by more innovative attacks (Kurakin et al., 2018).
An example of this dynamic is the discovery that many de-
fences against gradient-based adversaries relied on masking
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the gradient signal from the attacker (Athalye et al., 2018a).
However, as shown by (Athalye et al., 2018a), such obfusca-
tion gives a false sense of security and is easy to circumvent.
They successfully attack stochastic defences by repeatedly
sampling the gradient of the loss function w.r.t. the input
and averaging the samples to obtain more reliable gradient
estimates. They name this technique Expectation over Trans-
formation (EoT) (Athalye et al., 2018b). It has since been
standardised that new stochastic defences (Eustratiadis et al.,
2021; He et al., 2019; Jeddi et al., 2020; Yu et al., 2021)
apply EoT during evaluation, to ensure that their apparent
robustness does not rely on stochastic gradients.

In this paper, we reveal a form of gradient obfuscation that,
to the best of our knowledge, is not yet known. So far, it
is understood that stochastic neural networks (SNNs) de-
fend effectively against adversarial attacks because having
stochastic weights reduces overfitting, with similar effect to
training the original neural network with Lipschitz regulari-
sation (Liu et al., 2018), a property with strong theoretical
links to adversarial robustness (Hein & Andriushchenko,
2017). We show that there is an additional reason for their
robust performance. Stochastic defences, even when aver-
aging multiple gradient samples with EoT, tend to create a
rough loss landscape that white-box adversaries find diffi-
cult to navigate. A second, and perhaps more interesting
finding, is that this property is not exclusive to stochastic
defences; there exist non-stochastic adversarial defences
that have the same effect (Alfarra et al., 2021).

We show that the aforementioned property can be attacked
by an adversary. Specifically, we propose a stochastic exten-
sion to gradient-based attacks that approximates performing
the Weierstrass Transform (WT) (Bilodeau, 1962; Weier-
strass, 1885) on the loss function in order to smooth it before
computing its gradient. Interestingly, we find that the same
method can be applied in a gradient-free setting to effec-
tively circumvent the same type of obfuscation.

We experimentally support our insights by applying our
extension to Projected Gradient Descent (PGD) (Madry
et al., 2018) and recent FGSM variants (Lin et al., 2020;
Wang & He, 2021) as well as Zeroth Order Optimiza-
tion (ZOO) (Chen et al., 2017), in the gradient-based and
gradient-free settings respectively. We demonstrate the ef-
ficacy of our loss-smoothing method against both stochas-
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tic (Eustratiadis et al., 2021; He et al., 2019; Jeddi et al.,
2020; Yu et al., 2021) and non-stochastic defences (Alfarra
et al., 2021) that create a rough loss surface, and damage
their robust performance by as much as 20%. Finally, we
analyse how the WT interacts with EoT when attacking
stochastic defences. We show that these two methods serve
different purposes and are complementary. However, unlike
an attack that applies EoT, a WT-based attack is effective
against both stochastic and non-stochastic defences.

2. Background and Related Work
2.1. Dealing with Obfuscated Gradients

In their paper, (Athalye et al., 2018a) demonstrate that many
existing defences create a false impression of robustness to
gradient-based adversaries by masking the gradient of the
loss function from the attacker. They identify three types of
gradient obfuscation: shattered, stochastic, and vanishing
gradients; and show that gradient-obfuscating defences are
easy to circumvent and not reliable.

Stochastic gradients, that are largely relevant to our work,
stem from defences where either the weights or the activa-
tions of SNNs are sampled from a distribution (Liu et al.,
2018; 2019). As a result, the gradient of their loss is also
a distribution. To deal with stochastic gradients, (Athalye
et al., 2018a) applied EoT (Athalye et al., 2018b), a method
that repeatedly samples the target model’s gradient w.r.t. the
input, and computes the average of these samples to obtain
the “true” gradient. Following (Athalye et al., 2018a), it has
become a requirement for stochastic defence research (Eu-
stratiadis et al., 2021; He et al., 2019; Lee et al., 2021) to
incorporate a series of checks that ensure new stochastic
defence methods do not owe their success to gradient obfus-
cation.

Expectation over Transformation We now highlight
a few technical details about EoT. Let hθ be a SNN with
parameters θ, and x an input image belonging to class c ∈ C.
The stochastic weights or activations of hθ cause hθ(x) to
be randomised; as a result,∇xL(hθ(x), c) is a distribution
of gradients. EoT is, in essence, a Monte-Carlo sampling
method that estimates the true gradient ω of the loss function
by averaging n gradient samples as

ω =
1

n

n∑
i=0

∇xL(hi
θ(x), c) . (1)

It is important to emphasise that the WT and EoT serve
different purposes. Unlike our proposed method, detailed
in Section 3, EoT has no “spatial awareness” of the loss’
landscape, i.e., while applying EoT results in a better esti-
mation of the gradient at x, it is uninformative regarding the
gradient at x+ δ. In this paper, we demonstrate that the WT

and EoT are complementary, and maximally effective when
used in combination.

2.2. Defences with a Noisy Loss Landscape

We consider both stochastic and non-stochastic defences
that we have found to create a rough loss surface that is
difficult for gradient-based adversaries to navigate. In the
case of stochastic defences, we only consider related work
that have applied EoT in their model evaluation.

Parametric Noise Injection (PNI) (He et al., 2019) is a de-
fence that equips convolutional neural network layers with
additive noise drawn from an isotropic normal distribution.
Learn2Perturb (L2P) (Jeddi et al., 2020) extends PNI to a
richer noise model. Instead of learning a scalar intensity
parameter α, a noise injection module is learned that deter-
mines the strength of parameter-wise Gaussian noise injec-
tion at each layer. Similarly to L2P, the Simple and Effective
SNN (SE-SNN) (Yu et al., 2021), learns a parameter-wise
noise distribution motivated by the variational information
bottleneck (Alemi et al., 2017), and noise is only applied
to the penultimate neural network layer. Finally, Weight-
Covariance Alignment (WCA) (Eustratiadis et al., 2021)
extends the noise models above to include a full covariance
(anisotropic) Gaussian noise model, thus generating cor-
related perturbations across channels. All the mentioned
approaches (Eustratiadis et al., 2021; He et al., 2019; Jeddi
et al., 2020; Yu et al., 2021) include some noise-promoting
regulariser to prevent the noise from shrinking to zero dur-
ing training, with WCA’s covariance alignment regulariser
being derived from an adversarial generalisation bound in
contrast to the prior models’ heuristics.

An obfuscated loss landscape is not an exclusive characteris-
tic of SNNs. Anti-Adversaries (AA) (Alfarra et al., 2021) is
a recent training-free adversarial defence that could be cate-
gorised as a “black-box” defence. It improves adversarial
robustness by prepending a layer that induces discontinuity
to the loss landscape.

Our observation is that all these methods defend against
white-box adversarial attacks largely through inducing
rough loss landscapes that gradient-based adversaries strug-
gle to ascend. Slices through the loss landscapes of the
aforementioned defences are shown in Fig. 1 and we pro-
vide further details about this figure in Appendix C.

3. Method
3.1. The Weierstrass Transform

The Weierstrass Transform (WT) (Bilodeau, 1962; Weier-
strass, 1885) of a function f is defined as the convolution of
f with a Gaussian kernel function k in order to obtain g, a
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(a) RN-18 (no defence). (b) PNI (He et al., 2019) (c) L2P (Jeddi et al., 2020)

(d) SE-SNN (Yu et al., 2021) (e) WCA (Eustratiadis et al., 2021) (f) AA (Alfarra et al., 2021)

Figure 1. Loss landscapes of each of the adversarial defences considered in this paper. All defences use a ResNet-18 backbone and the loss
surfaces are constructed on a correctly-classified test image from CIFAR-10. Sub-figure 1a shows the smooth surface of an undefended
ResNet-18 for comparison. The X axis is the gradient w.r.t. the clean input image, and the Y axis is chosen to be orthogonal to X. The Z
axis is the value of the loss function for each perturbation within the ϵ-ball of the input image, where ϵ = 8

255
.

smoothed version of f . Formally,

g(x) =

∫ +∞

−∞
k(x− y) f(y) · dy, k(x) =

1√
4π

e
−x2

4 .

(2)
The conventional Weierstrass Transform (Weierstrass, 1885)
is defined for functions of scalar variables and uses a Gaus-
sian with a variance of

√
2. Because we are applying it to

neural networks that are functions of many variables, and
which may need to be smoothed to different extents, we
relax these two conditions by using a multivariate Gaussian
with a tuneable isotropic covariance matrix.

3.2. Using the Weierstrass Transform to Attack

Let L(hθ(x), c) be the classification loss function where
x is an input image belonging to a class c ∈ C, and hθ a
function approximator with parameters θ. We can use Eq. 2
to define the smoothed loss function L̃ as

L̃(hθ(x), c) =

∫
Rd

k(x− y) L(hθ(y), c) · dy , (3)

where d is the dimensionality of x. This can also be inter-
preted as an expectation

L̃(hθ(x), c) = Eη[L(hθ(x+ η), c)], η ∼ N (0, σ2I) .
(4)

The dimensionality of the integral in Eq. 3 corresponds to
the number of input pixels; so computing it directly is com-
putationally infeasible. However, it is possible to compute
a stochastic unbiased estimate of L̃ by using Monte-Carlo
sampling,

L̂(hθ(x), c) =
1

m

m∑
i=1

L(hθ(Xi), c) , (5)

where m is the number of perturbations sampled around x
and

Xi = x+ ηi, ηi ∼ N (0, σ2I) . (6)

The error introduced by this approximation of the WT is
bounded (with high confidence), as shown in the following
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Algorithm 1 WT-PGD
Data: x, c
Model: hθ

Input: k, m, n, α, ϵ, σ
Output: x̃
x̃←− x+ z, z ∼ U(−ϵ, ϵ) for k iterations do

X̃ ←− sample m points around x̃ [Eq. 6] if defence is
stochastic then

ω ← 1
mn

∑m
i=0

∑n
j=0∇xL(hj

θ(X̃i), c) [Eq. 9]
else

ω ← 1
m

∑m
i=0∇xL(hθ(X̃i), c) [Eq. 8]

end
x̃←− x̃+ α ϵ sign(ω) project x̃ to ℓp-ball

end

Theorem. It can be seen that the quality of the approxima-
tion improves as the number of samples, m, is increased.

Theorem 3.1. For a k-Lipschitz network, hθ, applied to
a fixed instance (x, c), and a loss function, L, that is L-
Lipschitz on the co-domain of hθ, we have with probability
at least 1− δ that

|L̂(hθ(x), c)−L̃(hθ(x), c)| ≤ kLσ

√
4dln(1/δ)

m
+
2kLln(1/δ)

3m
,

(7)
where we assume that x is contained within the unit ball in
d-dimensional Euclidean space.

The proof of Theorem 1 is provided in Appendix A.

3.3. A Stochastic WT Extension of Gradient-Based
Attacks

Conceptually, any gradient-based adversary can be extended
with the WT to smooth noisy loss landscapes and estimate
the gradient of the loss more reliably. Algorithm 1 describes
WT-PGD, our proposed method that is an extension of PGD.
In addition to the standard hyperparameters of PGD, i.e., the
number of iterations k, step size α, and attack strength ϵ, we
add m as the number of images sampled around x, and the
standard deviation σ of the zero-mean normal distribution
from which the images are sampled.

The main idea is that, given enough samples in close proxim-
ity to x, we can compute the true slope of the loss function
as the average slope of the surface where these samples lie.
Therefore, within the context of WT-PGD, we define the
true gradient ω as

ω =
1

m

m∑
i=0

∇xL(hθ(X̃i), c) , (8)

where X̃ denotes the set of images sampled around the
perturbed image x̃, following Eq. 6.

Figure 2. Illustration of the intuition behind our WT attack. This
loss surface is a top-down view of PNI (He et al., 2019) from
Fig. 1c. The loss landscape around x (dark orange point) is noisy
and the adversary cannot find a reliable direction to follow. It
therefore samples m images around x (yellow points) and follows
the average gradient obtained at each of those points. Best viewed
in color.

Fig. 2 illustrates the concept of this attack. While the gradi-
ent at a particular image x and samples nearby are individ-
ually noisy (random small yellow arrows), their aggregate
direction (large orange arrow) ascends the loss surface.

Generalisation Properties Note that the WT only affects
the gradient computation part of a gradient-based attack. In
this paper we choose to illustrate the WT extension on PGD
as a proof of concept, due to its convenient mathematical
formulation as well as its efficacy as an attack. However,
Eq. 8 can effectively replace the gradient computation step
in any gradient-based adversary (Goodfellow et al., 2015;
Lin et al., 2020; Wang & He, 2021).

3.3.1. INTEGRATION WITH EOT

When we use Eq. 5 and 6 to smooth the loss landscape
of a stochastic defence, the gradient w.r.t. the input x,
∇xL(hθ(X̃), c), remains stochastic (Athalye et al., 2018a).
It is therefore sensible to apply EoT (Athalye et al., 2018b)
on the sampled X̃ , and average over the output distribution
of hθ. Incorporating Eq. 1 into Eq. 8 we get

ω =
1

mn

m∑
i=0

n∑
j=0

∇xL(hj
θ(X̃i), c) . (9)
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Table 1. Robust accuracy % of WT-PGD on CIFAR. All defences use a RN-18 backbone.

CIFAR-10 CIFAR-100

Method PGD10 WT-PGD10 PGD100 WT-PGD100 PGD10 WT-PGD10 PGD100 WT-PGD100

PNI 49.4 34.8 (-14.6) 31.4 13.7 (-17.7) 22.2 17.9 ( -4.3) 10.1 9.4 ( -0.7)

L2P 56.1 47.2 ( -8.9) 20.5 18.2 ( -2.3) 26.1 11.5 (-14.6) 18.4 10.3 ( -8.1)

SE-SNN 39.8 21.3 (-18.5) 13.9 12.5 ( -1.4) 18.6 8.0 (-10.6) 15.9 5.9 (-10.0)

WCA 61.7 53.3 ( -8.4) 58.6 37.6 (-21.0) 41.7 27.4 (-14.3) 39.0 10.8 (-28.2)

AA 63.2 43.9 (-19.3) 43.6 25.9 (-17.7) 47.9 29.6 (-18.3) 43.6 21.2 (-22.4)

Table 2. Robust accuracy % of WT-PGD on CIFAR-100 and Imagenette (full-resolution). All defences use a WRN-34-10 backbone.

CIFAR-100 Imagenette

Method PGD10 WT-PGD10 PGD100 WT-PGD100 PGD10 WT-PGD10 PGD100 WT-PGD100

PNI 51.6 32.5 (-19.1) 48.4 31.3 (-17.1) 51.8 39.6 (-12.2) 42.3 24.3 (-18.0)

L2P 45.3 32.4 (-12.9) 40.0 29.5 (-10.5) 63.4 46.9 (-16.5) 42.4 23.2 (-19.2)

SE-SNN 44.6 34.9 ( -9.7) 46.0 31.0 (-15.0) 47.2 22.9 (-24.3) 41.1 21.7 (-19.4)

WCA 63.6 54.5 ( -9.1) 56.7 44.5 (-12.2) 67.5 51.0 (-16.5) 50.3 35.6 (-14.7)

AA 76.1 59.2 (-16.9) 62.4 54.0 ( -8.4) 69.3 44.8 (-24.5) 57.1 39.4 (-17.7)

Table 3. Robust accuracy % of SI-NI-FGSM (F1, (Lin et al., 2020)) and VMI-FGSM (F2, (Wang & He, 2021)) attacks and their respective
WT extensions on CIFAR (RN-18 backbone) and Imagenette (WRN-34-10 backbone). Names are shortened for better readability.

CIFAR-10 CIFAR-100 Imagenette

Method (F1) WT-(F1) F2 WT-(F2) (F1) WT-(F1) F2 WT-(F2) (F1) WT-(F1) F2 WT-(F2)

PNI 48.2 35.5 (-12.7) 38.3 27.4 (-10.9) 24.9 13.0 (-11.9) 25.7 18.6 ( -7.1) 47.4 37.2 (-10.2) 42.5 33.2 ( -9.3)

L2P 56.1 44.9 (-11.2) 31.7 19.2 (-12.5) 27.2 18.5 ( -8.7) 30.1 21.0 ( -9.1) 59.6 46.1 (-13.5) 42.4 30.5 (-11.9)

SE-SNN 40.5 31.6 ( -8.9) 38.1 22.8 (-15.3) 25.3 12.2 (-13.1) 28.9 15.0 (-13.9) 44.8 33.9 (-10.9) 40.7 38.4 ( -2.3)

WCA 58.5 54.0 ( -4.5) 55.7 34.8 (-20.9) 45.8 30.4 (-15.4) 44.0 33.2 (-10.8) 64.0 59.0 ( -5.0) 51.6 42.3 ( -9.3)

AA 61.8 53.6 ( -8.2) 58.0 41.4 (-16.6) 46.7 31.8 (-14.9) 41.1 23.3 (-17.8) 66.5 49.3 (-17.2) 56.9 43.0 (-13.9)

Table 4. Ablation: Effect of the WT and EoT individually against stochastic defences. The scores are the robust accuracy % on CIFAR-10.

(Attack: WT-PGD10) WT1 + EoT1 WT1 + EoT16 WT16 + EoT1 WT16 + EoT16

PNI 50.6 49.1 48.7 34.8
L2P 58.9 54.4 55.0 47.2
SE-SNN 46.6 39.5 39.7 21.3
WCA 72.0 58.4 61.1 53.3

A thorough empirical analysis of how the WT interacts with
EoT is presented in Section 4.3, along with an ablation study
for each individual component.

3.4. A Stochastic WT Extension of Gradient-Free
Attacks

Although we primarily focus on the WT as an extension
of gradient-based attacks, its potential impact when ap-
plied to gradient-free attacks cannot be ignored. In this

Appendix A.1 we demonstrate WT’s generality by integrat-
ing it with ZOO (Chen et al., 2017), a black-box adversary
that uses gradient approximation instead of surrogate mod-
els (Chen et al., 2017; Papernot et al., 2016; 2017), assuming
access only to the per-class posterior h(x).
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Table 5. Robust accuracy % of gradient-free WT-ZOO on CIFAR-
10 (RN-18 backbone) and Imagenette (WRN-34-10 backbone).

CIFAR-10 Imagenette

Method ZOO WT-ZOO ZOO WT-ZOO

PNI 62.1 54.3 ( -7.8) 59.2 41.0 (-18.2)

L2P 63.7 56.1 ( -7.6) 65.8 54.3 (-11.5)

SE-SNN 59.4 44.3 (-15.1) 49.8 37.6 (-12.2)

WCA 70.9 64.8 ( -6.1) 72.3 61.9 (-10.4)

AA 74.1 66.5 ( -7.6) 77.9 60.6 (-17.3)

4. Experiments
4.1. Experimental Setup

In our experiments we consider four stochastic defences
(PNI (He et al., 2019), L2P (Jeddi et al., 2020), SE-SNN (Yu
et al., 2021) and WCA (Eustratiadis et al., 2021)) and one
non-stochastic (AA (Alfarra et al., 2021)). For fair compar-
ison these defences use the same backbone architecture,
ResNet-18 (RN-18) and Wide ResNet-34-10 (WRN-34-
10) (He et al., 2016; Zagoruyko & Komodakis, 2016) in the
corresponding experiments. We evaluate their performance
against the gradient-based WT-PGD10 and WT-PGD100,
and the gradient-free WT-ZOO. The hyperparameter setting
for our experiments is outlined in Appendix B.

4.2. Quantitative Evaluation

In Tables 1 and 2 we report the accuracy of our selection
of adversarial defences when under our WT-PGD attack
against the baselines. It is evident that WT-PGD outper-
forms PGD consistently across defences, benchmarks, for
different attack strength and network depth. In particular,
we can see that: (i) Every defence considered suffers sub-
stantially. (ii) Weaker defences are broken near completely,
with L2P and SE-SNN failing on CIFAR-10; and PNI, L2P
and SE-SNN failing on CIFAR-100. (iii) The stronger WCA
and AA defences tend to suffer large hits, especially under
WT-PGD100. (iv) Our attack is particularly strong with
high-resolution Imagenette images (average ≈ 450× pix-
els), with most defenses suffering over 15% performance
reduction.

To show the generality of our method, we apply the WT
extension to the more sophisticated and recently proposed
gradient-based adversaries NI-FGSM (Lin et al., 2020) and
VMI-FGSM (Wang & He, 2021) that use Nesterov’s accel-
eration and variance tuning to improve attack strength and
transferability. Table 3 shows results consistent with our pre-
vious evaluation, and proves that our loss-smoothing method
can effectively strengthen recent, more sophisticated attacks.
Finally, in Table 5 we present our evaluation of WT-ZOO. It
is evident that even though (i) the performance reduction is
on average slightly lower than the gradient-based setting and

(ii) WT-ZOO imposes an additional query-efficiency cost,
WT-ZOO is still successful in attacking these obfuscating
defences.

These empirical results support our claim that rugged loss
surfaces can be attacked, and equipping adversaries with
the capability to smooth the loss surface makes them signifi-
cantly stronger against this type of gradient obfuscation.

4.3. Interaction between WT and EoT

In this Section we analyse how the WT interacts with EoT
when attacking stochastic defences. An ablation study is
presented in Table 4, where we evaluate the two methods
individually and in combination when attacking PNI, L2P,
SE-SNN and WCA. We start by setting the baseline to regu-
lar PGD; which is equivalent to WT-PGD with 1 WT sample
(x itself) and 1 iteration of EoT. We then vary each of the
two components by setting the number of WT samples and
EoT iterations to 16, to keep consistent with our evaluation
in Section 4.2. The last column of Table 4 is the same as the
second column of Table 1.

Our ablation study shows that, while each method increases
attack strength, neither is significantly better than the other
in terms of individual performance. We conclude the WT
and EoT are most effective when used in combination, to
deal with the noisy loss landscape and the stochastic gradi-
ents respectively. Further analysis on the ablation study is
provided in Appendix D.

5. Conclusions
We reveal a new form of gradient obfuscation that can be a
property of stochastic, as well as non-stochastic adversarial
defences. This gradient obfuscation occurs when a defence
creates a noisy loss landscape to mislead gradient-based
adversaries. This does not constitute an adequate defence,
and can be circumvented by smoothing the surface of the
loss function before following the gradient w.r.t. the input.
We propose a smoothing method with which gradient-based,
as well as gradient-free adversaries can be extended, util-
ising a Monte-Carlo variant of the Weierstrass transform.
As demonstrated by our proposed algorithms, WT-PGD
and WT-ZOO, this extension enables strong, successful at-
tacks. We further illustrate the smoothing capabilities of
our adversary beyond the quantitative evaluation presented
in Section 4.2, by plotting the loss surfaces of the defences
before and after WT smoothing (Fig. 1 and 4). We hope
that highlighting this novel type of attack against this class
of adversarial defences will inspire future research to avoid
relying on this weak defence strategy for robustness.

The source code for WT-PGD, WT-ZOO, and our diagnostic
tool for visualising a loss landscape is available on GitHub:
https://github.com/peustr/wt-pgd.

https://github.com/peustr/wt-pgd
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A. Proof of Theorem 1
Proof. The proof is based on using a Bernstein inequality. Let Z1, ..., Zm be independent random variables taking positive
values in [a, b], and let S = 1

m

∑m
i Zi. From (Lafferty et al., 2010), Bernstein’s inequality tells that

P (|S − E[S]| > t) ≤ 2exp

(
−mt2

2Var[S] + 2
3rt

)
, (10)

where r = b− a. By setting δ = P (|S − E[S]| > t) this can be rearranged to show that, with probability at least 1− δ,

|S − E[S]| ≤
√

2Var[S]ln(1/δ)
m

+
2rln(1/δ)

3m
. (11)

The result follows from using Zi = L(hθ(Xi), c) and upper bounding Var[S] and r. Because hθ is k-Lipschitz and L is
L-Lipschitz on the co-domain of hθ, we can say that L(hθ(·), ·) is kL-Lipschitz. From this Lipschitz property, we know
that b ≤ a+ kL, and therefore r ≤ kL.

Denote by X ′
i and S′ random variables that follow the same distribution as Xi and S, respectively. The bound for the

variance arises from

Var[S] (12)

= ES [(ES′ [S′]− S)2] (13)

≤ EXiEX′
i

[( 1

m

m∑
i=1

(L(hθ(X
′
i), c)− L(hθ(Xi), c))

)2]
(14)

≤ EXiEX′
i

[
∥X ′

i −Xi∥22k2L2
]

(15)

= 2k2L2dσ2, (16)

where the first inequality is due to Jensen’s inequality, and the second is from the Lipschitz property of the model. The final
equality arises because X ′ −X ∼ N (0, 2σ2I), and the expected value of the squared Euclidean norm of a sample from a
Gaussian distribution is the trace of the covariance matrix.

A.1. A Stochastic WT Extension of Gradient-Free Attacks

Given an input image x and a pixel coordinate ρ, ZOO iteratively constructs a perturbation δ on xρ as

δ(x, c) =

{
−αĝρ(x, c) ĥρ ≤ 0

−α ĝρ(x,c)

ĥρ(x,c)
otherwise

, (17)

Algorithm 2 WT-ZOO (Newton’s Coordinate Descent)
Data: xd, c
Model: h
Input: k, m, n, α, ϵ, σ
Output: x̃
for k iterations do

Randomly pick coordinates ρ⃗ ∈ {1, . . . , d} X̃ ←− sample m points around x̃ [Eq. 6] if defence is stochastic then
δ∗ ← 1

mn

∑m
i=0

∑n
j=0 δj(Xi, c) [Eq. 20]

else
δ∗ ← 1

m

∑m
i=0 δ(Xi, c) [Eq. 19]

end
x̃←− x̃+ δ∗ project x̃ to ℓp-ball

end
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where α denotes the learning rate. ĝi and ĥi are the first- and second-order approximate gradients of a hinge-like loss
function

f(x, c0) = max{log h(x)c0 −max
c ̸=c0

log h(x)c,−κ} , (18)

where κ ≥ 0. Algorithm 2 details WT-ZOO. Note that the principle behind the WT extension remains the same as in the
white-box setting. Adapting Eq. 8 and 9 with ZOO’s gradient approximation (Eq. 17) we respectively get

δ∗ =
1

m

m∑
i=0

δ(Xi, c) , (19)

and for stochastic defences

δ∗ =
1

mn

m∑
i=0

n∑
j=0

δj(Xi, c) . (20)

As ZOO estimates gradients with finite difference it is susceptible to being mislead by a rough loss surface (Fig. 1).
Smoothing the loss estimates at each point improves the quality of approximate gradient estimation for the ZOO attacker.

B. Experimental Setup: Hyperparameters
For WT-PGD, we set an attack strength of ϵ = 8/255 and a step size of α = 0.01, as is standard practice. For WT-ZOO
we set k = 100 and α = 0.01. The number of WT samples and EoT iterations in our main experiments are both set to
m = n = 16. We justify this hyperparameter choice in the analysis of Appendix D. Finally, selecting an appropriate
value for σ is important. If the value of σ is too high, then the WT samples will be too far from x, lying on points too
dissimilar to x to provide an informative gradient signal. If the value of σ is too low, the sampled points will be too close
to x, and there will be no smoothing effect. We found that σ = 0.05 is a suitable value for normalized images, and use it
across all experiments. In terms of benchmark datasets, we consider CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and
Imagenette (Howard, 2019) with full-resolution images. We deem this selection of datasets suitable because they offer a
diversity in complexity, number of classes, and image resolution.

It should be mentioned that in the case of AA we do not apply EoT, as it is not a stochastic defence and therefore does
not produce stochastic gradients. In addition, all stochastic models evaluated in this paper are retrained, following the
instructions in the original published material, when available. As a result, the accuracy scores may not exactly reflect the
scores from the original papers.

C. Visualising the Loss Landscapes
In this Section, we describe a diagnostic method that we use to visually identify whether an adversarial defence produces a
noisy loss landscape, and to generate the visualisations in Fig. 1 and 4.

Given an unperturbed input image x that the target model hθ classifies correctly as class c, we compute the gradient of
the loss w.r.t. x as g1 = ∇xL(hθ(x, c)). We then arbitrarily choose a dimension g2, such that g1 ⊥ g2. Finally, we create
evenly-spaced query images (and potential adversarial examples) x̃i in the ϵ-ball of x as

x̃i = x+ ϵ1 sign(g1) + ϵ2 sign(g2) , (21)

where ϵ1, ϵ2 ∈ [− 8
255 ,

8
255 ], and project their calculated loss values L(hθ(x̃i, c)) to the g1 and g2 axes.

Fig. 1 shows the above 2D slice through the loss landscapes of PNI, L2P, SE-SNN, WCA, and AA defences. In Fig. 4 we
show the corresponding smoothed loss landscapes, when under attack by WT-PGD, side-by-side for easier means of visual
comparison. Further, Appendix E includes the loss surfaces of the highest scoring non-stochastic adversarial defences listed
in RobustBench (Croce et al., 2021), to give the reader a frame of reference of how non-rugged loss landscapes should look
like in state-of-the-art defences.

In the case of AA, recall that when an input x is queried, it returns (L(hθ(x+γ), c),∇xL(hθ(x+γ), c)), where γ is chosen
anti-adversarially, with respect to the current prediction hθ(x). This has the effect of sharpening the loss landscape w.r.t.
x (compare Fig. 1f and Fig. 1a), making correctly classified queries become less adversarial. This also has the effect of
making adversarial (incorrectly classified) queries become more adversarial. Any successful attack on a vanilla ResNet will
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(a) PNI (He et al., 2019) (b) L2P (Jeddi et al., 2020) (c) SE-SNN (Yu et al., 2021) (d) WCA (Eustratiadis et al.,
2021)

Figure 3. Analysis of the interaction between WT and EoT on stochastic defences. WT and EoT are complementary. Neither can achieve
peak performance alone, and best performance requires combining them (lighter color = lower accuracy).

also be successful against AA, but the gradient information of unsuccessful queries is obfuscated to make successful attacks
harder to find. By stochastically smoothing this sharpened loss landscape (recall Fig. 2), our WT attack reveals some of the
previously hidden true gradients (see smoothed Fig. 4j and 4k compared to the sharper Fig. 1f).

D. Ablation Study: Selection of m and n

We also conduct an experiment using a grid of EoT and WT samples from {1, 2, 4, 8, 16, 32}. Fig. 3 presents an overhead
plot of the resulting network accuracy as a function of number of samples for each of EoT and WT. Darker colors indicate
higher accuracy, starting from the point (1, 1), i.e., 1 iteration of EoT and 1 WT sample (the input image itself). We see that:
(i) After (16, 16) the performance of the attack quickly saturates across all defences. This justifies our use of m = n = 16
samples in the main experiment. (ii) Even at the limit of 32 samples, neither attack method on its own performs as well as
their combination. This shows that simply increasing the number of EoT samples can not replicate the effect of WT (and
vice-versa).

E. Strong Defences with Smooth Loss Landscapes
In the main paper, we see the effect of our attack on gradient-obfuscating adversarial defences that construct a noisy loss
landscape to confuse the adversary. To further support future adversarial defence research, in this Section we want to inform
the reader about how the loss landscapes of non-obfuscating defences should look like.

To that end, we choose the 9 highest-scoring adversarial defences from the ℓ∞ CIFAR-10 leaderboard of the widely used
RobustBench (Croce et al., 2021) and visualise their loss landscapes in Fig. 5. The visualisation method is the same that
produced Fig. 1 of the main paper; except that none of the defences are stochastic and therefore EoT is not used to obtain
better gradient estimates.
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(a) PNI (He et al., 2019) (b) L2P (Jeddi et al., 2020) (c) SE-SNN (Yu et al., 2021)

(d) PNI + WT-PGD (e) L2P + WT-PGD (f) SE-SNN + WT-PGD

(g) WCA (Eustratiadis et al., 2021) (h) AA (Alfarra et al., 2021)

(i) WCA + WT-PGD (j) AA + WT-PGD (k) AA + WT-PGD (top-down)

Figure 4. Loss landscapes of PNI, L2P, SE-SNN, WCA, and AA when under attack by WT-PGD. For AA, we show the surface plot and a
2D contour plot (top-down view) for better interpretability. The WT has smoothed the landscapes compared to those shown in Fig. 1.
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(a) Rebuffi et al. (Rebuffi et al., 2021) (b) Gowal et al. (Gowal et al., 2020) (c) Rade et al. (Rade & Moosavi-Dezfooli,
2021)

(d) Sridhar et al. (Sridhar et al., 2021) (e) Wu et al. (Wu et al., 2020) (f) Zhang et al. (Zhang et al., 2021)

(g) Carmon et al. (Carmon et al., 2019) (h) Wang et al. (Wang et al., 2020) (i) Hendrycks et al. (Hendrycks et al., 2019)

Figure 5. Landscapes of non-obfuscating adversarial defences that score competitively on RobustBench (Croce et al., 2021).


