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Abstract
The application of machine learning in safety-
critical systems requires a reliable assessment of
uncertainty. However, deep neural networks are
known to produce highly overconfident predic-
tions on out-of-distribution (OOD) data. Even if
trained to be non-confident on OOD data one can
still adversarially manipulate OOD data so that
the classifier again assigns high confidence to the
manipulated samples. We show that two previ-
ously published defenses can be broken by better
adapted attacks, highlighting the importance of
robustness guarantees around OOD data. Since
the existing method for this task is hard to train
and significantly limits accuracy, we construct a
classifier that can simultaneously achieve prov-
ability and high clean accuracy. Moreover, by
architectural construction our method provably
avoids the asymptotic overconfidence problem of
standard neural networks.

1. Introduction
Deep neural networks have achieved state-of-the-art per-
formance in many application domains. However, the
widespread usage of deep neural networks in safety-
critical applications, e.g. in healthcare, autonomous driv-
ing/aviation, manufacturing, raises concerns as deep neural
networks have problematic deficiencies. Among these de-
ficiencies, overconfident predictions on non-task related
inputs (Nguyen et al., 2015; Hendrycks & Gimpel, 2017)
have recently attracted a lot of interest. ReLU networks
have even been shown to provably be overconfident far
away from the training data (Hein et al., 2019). However,
reliable confidences of the classifier on the classification
task (in-distribution) (Guo et al., 2017) as well as on the
out-distribution (Hendrycks & Gimpel, 2017; Hein et al.,
2019) are important to be able to detect when the deep neu-
ral network is working outside of its specification, which
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can then be used to either involve a human operator or to
fall back into a “safe state”. Thus, solving this problem is
of high importance for trustworthy ML systems. Crucially,
a detection method needs to generalize to novel test out-
distributions that are not available during training, since one
does not know which unknown inputs can be expected.

Many approaches have been proposed for OOD detection,
(Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al.,
2018a;b; Hendrycks et al., 2019; Ren et al., 2019; Hein et al.,
2019; Meinke & Hein, 2020; Chen et al., 2020; Papadopou-
los et al., 2021; Macêdo & Ludermir, 2021; Macêdo et al.,
2021). In this paper we focus on confidence based OOD de-
tection, that is the probability of the predicted class is used
to decide to reject or accept the sample. One of the currently
best performing methods enforces low confidence during
training (“outlier exposure” (OE)) on a large and diverse set
of out-distribution images (Hendrycks et al., 2019) which
leads to strong separation of in- and out-distribution based
on the confidence of the classifier.

A remaining robustness problem of standard OOD detection
methods is that they are vulnerable to adversarial perturba-
tions, i.e. small modifications of OOD inputs can lead to
large confidence of the classifier on the manipulated samples
(Nguyen et al., 2015; Hein et al., 2019; Sehwag et al., 2019).
Of course, an OOD input, which by definition is semanti-
cally far away from the in-distribution, should not be able to
be moved into a region that is considered in-distribution by
the detection model if the movement is imperceptibly small.
On the other hand, a slightly perturbed in-distribution input
can still be considered in-distribution for some perturbations
(e.g. if the perturbation resembles standard camera noise),
but for other perturbations it might be highly atypical and
therefore should arguably rather be seen as OOD. Thus, like
previous methods, we do not consider adversarially manip-
ulated in-distribution samples and focus on ensuring that
OOD samples remain OOD under adversarial attacks.

While different methods for adversarially robust OOD de-
tection have been proposed (Hein et al., 2019; Sehwag et al.,
2019; Meinke & Hein, 2020; Chen et al., 2020; Bitterwolf
et al., 2020) there is little work on provably adversarially
robust OOD detection (Meinke & Hein, 2020; Bitterwolf
et al., 2020; Kopetzki et al., 2020; Berrada et al., 2021). For
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the standard empirical evaluation of adversarial robustness,
for each input one runs an array of different attacks that
conform to the assumed threat model and records the out-
put for the worst found perturbation. This means that there
is no guarantee that a more malign perturbation does not
exist, as only a lower bound on the adversarial robustness
is established. Provable adversarial robustness on OOD
data, which we provide in this paper, yields a mathemati-
cally deduced upper bound on the worst-case confidence
around each OOD sample. Thus, for our guaranteed upper
bounds on the confidence of an OOD sample, it is certain
that no applicable manipulation raises the confidence above
the certified value.

In this paper we propose ProoD which merges a certified
binary discriminator for in-versus out-distribution with a
classifier for the in-distribution task in a principled fashion
into a joint classifier. This combines the advantages of CCU
(Meinke & Hein, 2020) and GOOD (Bitterwolf et al., 2020)
without suffering from their downsides. In particular, ProoD
simultaneously achieves the following: 1) Guaranteed adver-
sarially robust OOD detection via certified upper bounds on
the confidence in l∞-balls around OOD samples. 2) Addi-
tionally, it provably prevents the asymptotic overconfidence
of deep neural networks. and 3) It can be used with arbitrary
architectures and has no loss in prediction performance and
standard OOD detection performance. Thus, we get prov-
able guarantees for adversarially robust OOD detection, fix
the asymptotic overconfidence (almost) for free as we have
(almost) no loss in prediction and standard OOD detection
performance.

2. Provably Robust Detection of
Out-of-distribution Data

We consider feedforward classification networks, f : Rd →
RK , with K classes. We get a probability distribution over
the classes via p̂(y|x) = efy(x)∑K

k efk(x) for y = 1, . . . ,K. De-

fine the confidence as Conf(f(x)) = maxy=1,...,K p̂(y|x)
and assume that piece-wise linear non-linearities are used.

2.1. Joint Model for OOD Detection and Classification

In our joint model we assume that there exists an in- and out-
distribution where the out-distribution samples are unrelated
to the in-distribution task. Thus, we can formally write the
conditional distribution on the input as

p̂(y|x) = p̂(y|x, i)p̂(i|x) + p̂(y|x, o)p̂(o|x), (1)

where p̂(i|x) is the conditional distribution that sample x
belongs to the in-distribution and p̂(y|x, i) is the conditional
distribution for the in-distribution. We assume that OOD
samples are unrelated and thus maximally un-informative
to the in-distribution task, i.e. we fix p̂(y|x, o) = 1

K , so that

the classifier can be written as

p̂(y|x) = p̂(y|x, i)p̂(i|x) + 1

K
(1− p̂(i|x)). (2)

We train the binary classifier p̂(i|x) in a certified robust
fashion wrt. an l∞-threat model so that even adversarially
manipulated OOD samples are detected. In order to avoid
confusion with the multi-class classifier, we will refer to
p̂(i|x) as a binary discriminator. In an l∞-ball of radius ϵ
around x ∈ Rd and for all y we get the upper bound on the
confidence of the final classifier in Eq. (2):

max
∥x′−x∥∞≤ϵ

p̂(y|x′) ≤ max
∥x′−x∥∞≤ϵ

p̂(i|x′) +
1

K

(
1− p̂(i|x′)

)
=

K−1

K
max

∥x′−x∥∞≤ϵ
p̂(i|x′) +

1

K
, (3)

where we have used that p(y|x, i) ≤ 1∀x, y, so we can defer
the certification “work” to the binary discriminator. Using a
particular constraint on the weights of the binary discrim-
inator, we get similar asymptotic properties as in (Meinke
& Hein, 2020) but additionally get certified adversarial ro-
bustness for close out-distribution samples as in (Bitterwolf
et al., 2020). In contrast to (Bitterwolf et al., 2020) this
comes without loss in test accuracy or non-adversarial OOD
detection performance as in our model the neural network
used for the in-distribution classification task p̂(y|x, i) is
independent of the binary discriminator. Thus, we have
the advantage that the classifier can use arbitrary deep neu-
ral networks and is not constrained to certifiable networks.
We call our approach Provable out-of-Distribution detec-
tor (ProoD) and visualize its components in Figure 1. The
intuitive idea why ProoD can achieve adversarially robust
OOD detection without loss in clean OOD detection can
be explained with the behavior of the predicted probability
distribution provided in Equation (2).

• For clean OOD: the classifier p̂(y|x, i) (trained similar
to Outlier Exposure) already enforces low confidence
on out-of-distribution points and thus irrespective of
the values p̂(i|x), the resulting output of p̂(y|x) will
be close to uniform as well and thus ProoD performs
similar to Outlier Exposure.

• For adversarial OOD: the classifier confidence
maxy p̂(y|x, i) is potentially corrupted but now the
binary discriminator p̂(i|x) kicks in and ensures that
the resulting prediction p̂(y|x) is close to uniform.

This explains why the combination of certified discriminator
and classifier works much better than the individual parts
and the use of this “redundancy” is the key idea of ProoD.

Certifiably Robust Binary Discrimination of In- versus
Out-Distribution The first goal is to get a certifiably ad-
versarially robust OOD detector p̂(i|x). We train this binary
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Figure 1: ProoD’s Architecture: Combining the output of a classifier and a certified discriminator, see Eq. (1), we achieve
high confidence on the in-distribution sample of a dog (R.ImgNet).The certified discriminator, see Eq. (3), yields an upper
bound on the confidence in a ℓ∞-neighborhood of the shown OOD sample not belonging to any classes of R.ImgNet. ProoD
achieves provable guarantees on adversarial OOD detection without loss in accuracy or clean OOD detection.

discriminator independent of the overall classifier as the
training schedules for certified robustness are incompati-
ble with the standard training schedules of normal classi-
fiers. For this binary classification problem we use a logistic
model p̂(i|x) = 1

1+e−g(x) , where g : Rd → R are logits of
a neural network (we denote the weights and biases of g by
Wg and bg in order to discriminate it from the classifier f
introduced in the next paragraph). Let (xr, yr)

N
r=1 be our in-

distribution training data (we use the class encoding +1 for
the in-distribution and −1 for out-distribution) and (zs)

M
s=1

be our training out-distribution data. Then the optimization
problem for the binary classification problem becomes:

min
g

W
(Lg)
g <0

1

N

N∑
r=1

log
(
1 + e−g(xr)

)
+

1

M

M∑
s=1

log
(
1 + eḡ(zs)

)
,

(4)
where we minimize over the parameters of the neural net-
work g under the constraint that the weights of the out-
put layer W (Lg)

g are componentwise negative and ḡ(z) ≥
maxu∈Bp(z,ϵ) g(u) is an upper bound on the output of g
around OOD samples for a given lp-threat model Bp(z, ϵ) =
{u ∈ [0, 1]d | ∥u− z∥p ≤ ϵ}. In this paper we always use
an l∞-threat model. This upper bound could, in principle,
be computed using any certification technique but we will
use interval bound propagation (IBP) since it is simple, fast
and has been shown to produce SOTA results (Gowal et al.,
2018). This is not standard adversarial training for a bi-
nary classification problem as here we have an asymmetric
situation: we want to be (certifiably) robust to adversarial
manipulation on the out-distribution data but not on the
in-distribution and thus the upper bound is only used for out-
distribution samples. The negativity of the output layer’s
weights W

(Lg)
g is enforced by using the parameterization

(W
(Lg)
g )j = −ehj componentwise and optimizing over hj .

In Section 3 we show how the negativity of W (Lg)
g allows

us to control the asymptotic behavior of the joint classifier.

While in (Bitterwolf et al., 2020) they also used IBP to upper
bound the confidence of the classifier this resulted in a bound
that took into account all O(K2) logit differences between
all classes. In contrast, our loss in Eq. (4) is significantly
simpler as we just have a binary classification problem and
therefore only need a single bound. Thus, our approach
easily scales to tasks with a large number of classes and
training the binary discriminator with IBP is significantly
more stable than the approach in (Bitterwolf et al., 2020).

(Semi)-Joint Training of the final Classifier Given the
certifiably robust model p̂(i|x) for the binary classification
task between in- and out-distribution, we need to deter-
mine the final predictive distribution p̂(y|x) in Eq. (1). On
top of the provable OOD performance that we get from
Eq. (3), we also want to achieve SOTA performance on
unperturbed OOD data. In principle we could indepen-
dently train a model for the predictive in-distribution task
p̂(y|x, i), e.g. using outlier exposure (OE) (Hendrycks et al.,
2019) or any other state-of-the-art OOD detection method
and simply combine it with our p̂(i|x). While this does
lead to models with high OOD performance that also have
guarantees, it completely ignores the interaction between
p̂(i|x) and p̂(y|x, i) during training. Instead we propose to
train p̂(y|x, i) by optimizing our final predictive distribution
p̂(y|x). In order to retain the guarantees of p̂(i|x) we only
train the parameters of the neural network f : Rd → RK

and need to keep p̂(i|x) resp. g fixed. Since g stays fixed we
call this semi-joint training. We use OE (Hendrycks et al.,
2019) for training p̂(y|x) with the cross-entropy loss and
use the softmax-function in order to obtain the predictive
distribution p̂f (y|x, i) = efy(x)∑

k efk(x) from f :

min
f

− 1

N

N∑
r=1

log
(
p̂(yr|xr)

)
− 1

M

M∑
s=1

1

K

K∑
l=1

log
(
p̂(l|zs)

)
,

(5)
where the first term is the standard cross-entropy loss on
the in-distribution but now for our joint model for p̂(y|x)



Provably Adversarially Robust Detection of Out-of-distribution Data (Almost) For Free

and the second term enforces uniform confidence on out-
distribution samples. In App. B we show that semi-joint
training leads to stronger guarantees than separate training.

The loss in Eq. (4) implicitly weighs the in-distribution and
worst-case out-distribution equally, which amounts to the
assumption p(i) = 1

2 = p(o). This highly conservative
choice simplifies training the binary discriminator but may
not reflect the expected frequency of OOD samples at test
time and in effect means that p̂(i|x) tends to be quite low.
This typically yields good guaranteed AUCs but can have
a negative impact on the standard out-distribution perfor-
mance. In order to better explore the trade-off of guaranteed
and standard OOD detection, we repeat the above semi-joint
training with different shifts of the offset parameter in the
output layer

b′ = b(Lg)
g +∆, (6)

where ∆ ≥ 0 leads to increasing p̂(i|x). This shift has a
direct interpretation in terms of the probabilities p(i) and
p(o), which we explore in App. C.

3. Guarantees on Asymptotic Confidence
In this section we show that, on top of providing the previ-
ously described local guarantees, our specific construction
provably avoids the issue of asymptotic overconfidence that
was pointed out in (Hein et al., 2019). Note that the re-
sulting guarantee (as stated in Theorem 1) is different from
and in addition to the robustness guarantees discussed in the
previous section (see Eq. (3)). The previous section dealt
with providing confidence upper bounds on neighborhoods
around OOD samples whereas this section deals with ensur-
ing that a classifier’s confidence decreases asymptotically
as one moves away from all training data.

We note that a ReLU neural network using only ReLU
or leaky ReLU as activation functions, potential max-or
average pooling and skip connection yields a piece-wise
affine function (Arora et al., 2018), i.e. there exists a finite
set of polytopes Qr ⊂ Rd with r = 1, . . . , R such that
∪R
r=1Qr = Rd and f restricted to each of the polytopes is an

affine function. Since there are only finitely many polytopes
some of them have to extend to infinity and on these ones
the neural network is essentially an affine classifier. This
fact has been used in (Hein et al., 2019) to show that ReLU
networks are almost always asymptotically overconfident in
the sense that if one moves to infinity the confidence of the
classifier approaches 1 (instead of converging to 1/K as in
these regions the classifier has never seen any data).

The following theorem now shows that, opposite to standard
ReLU networks, our proposed joint classifier gets provably
less confident in its decisions as one moves away from the
training data which is a desired property of any reasonable
classifier.

Theorem 1. Let x ∈ Rd with x ̸= 0 and let g : Rd → R be
the ReLU-network of the binary discriminator (with last acti-
vation being a non-leaky ReLU) and denote by {Qr}Rr=1 the
finite set of polytopes such that g is affine on these polytopes
which exists by Lemma 1. Denote by Qt the polytope such
that βx ∈ Qt for all β ≥ α and let x(L−1)(z) = Uz + d
with U ∈ RnL−1×d and d ∈ RnL−1 be the output of the
pre-logit layer of g for z ∈ Qt. If Ux ̸= 0, then

lim
β→∞

p̂(y|βx) = 1

K
.

The proof is in App. D. In App. A we see that the condition
Ux ̸= 0 is not restrictive, as this property holds in all cases
where we checked it for our joint classifier. The negativ-
ity condition on the weights W (Lg)

g of the output layer of
the in-vs. out-distribution discriminator g is crucial for the
proof. This condition may seem restrictive, but we did not
encounter any negative influence of this constraint on test ac-
curacy, guaranteed or standard OOD detection performance.
Thus, the asymptotic guarantees come essentially for free.

4. Experiments
4.1. Training of ProoD

We provide experiments on CIFAR10 (and CIFAR100 in
App. (Krizhevsky & Hinton, 2009) and Restricted Imagenet
(R.ImgNet) (Tsipras et al., 2018). The latter consists of
images from the ILSVRC2012 subset of ImageNet (Deng
et al., 2009; Russakovsky et al., 2015) belonging to 9 types
of animals.

Training the Binary Discriminator We train the binary
discriminator between in-and out-distribution using the loss
in Eq. (4) with the bounds over an l∞-ball of radius ϵ = 0.01
for the out-distribution following (Bitterwolf et al., 2020).
We use relatively shallow CNNs with only 5 layers plus
pooling layers, see App. E. For the training out-distribution,
we could follow previous work and use 80M Tiny Im-
ages (Torralba et al., 2008) for CIFAR10 and CIFAR100.
However, there have been concerns over the use of this
dataset (Birhane & Prabhu, 2021) because of offensive class
labels. Although we do not use any of the class labels,
we choose to use OpenImages (Kuznetsova et al., 2020) as
training OOD instead. In order to ensure a fair comparison
with prior work we also present results that were obtained
using 80M Tiny Images in App. G. For R.ImgNet we use the
ILSVRC2012 train images that do not belong to R.ImgNet
as training out-distribution (NotR.ImgNet).

Semi-Joint Training For the classifier we use a ResNet18
architecture on CIFAR and a ResNet50 on R.ImgNet. Note
that the architecture of our binary discriminator is over an
order of magnitude smaller than the one in (Bitterwolf et al.,
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2020) (11MB instead of 135MB) and thus the memory over-
head for the binary discriminator is less than a third of that of
the classifier. All schedules, hardware and hyperparameters
are described in App. E. As discussed in Section 2.1 when
training the binary discriminator one implicitly assumes that
in- and (worst-case) out-distribution samples are equally
likely. It seems very unlikely that one would be presented
with such a large number of OOD samples in practice but
as discussed in Section 2.1, we can adjust the weight of the
losses after training the discriminator (but before training
the classifier) by shifting the bias b(Lg)

g in the output layer of
the binary discriminator. This hyperparameter gets chosen
such that clean OOD detection performance on the training
out-distribution does not degrade (see App. E).

4.2. Evaluation

Setup For OOD evaluation for CIFAR10/100 we use the
test sets from CIFAR100/10, SVHN (Netzer et al., 2011),
the classroom category of downscaled LSUN (Yu et al.,
2015) (LSUN_CR) as well as smooth noise as suggested in
(Hein et al., 2019) and described in App. E. For R.ImgNet
we use Flowers (Nilsback & Zisserman, 2008), FGVC Air-
craft (Maji et al., 2013), Stanford Cars (Krause et al., 2013)
and smooth noise as test out-distributions. Since the compu-
tation of adversarial AUCs (next paragraph) requires com-
putationally expensive adversarial attacks, we restrict the
evaluation on the out-distribution to a fixed subset of 1000
images (300 in the case of LSUN_CR) for the CIFAR ex-
periments and 400 for the R.ImgNet models. We still use
the entire test set for the in-distribution.

Guaranteed and Adversarial AUC We use the confi-
dence of the classifier as the feature to discriminate between
in- and out-distribution samples. While in standard OOD
detection one uses the area under the receiver-operator char-
acteristic (AUC) to measure discrimination of in- from out-
distribution, several prior works also study the worst-case
AUC (WCAUC) (Meinke & Hein, 2020; Augustin et al.,
2020; Bitterwolf et al., 2020; Chen et al., 2020; Berrada
et al., 2021), which is defined as the minimal AUC one can
achieve if each out-distribution sample can be perturbed
to reach maximal confidence within a certain threat model,
which in our case is an l∞-ball of radius ϵ. Formally, the
AUC and WAUC of a feature h : Rd → R are defined as:

AUCh(p1, p2) = E
x∼p1
z∼p2

[
1h(x)>h(z)

]
, (7)

WCAUCh(p1, p2) = E
x∼p1
z∼p2

[
1h(x)> max

∥z′−z∥∞≤ϵ
h(z′)

]
, (8)

where p1, p2 are in-resp. out-distribution and the indicator
function 1 returns 1 if the expression in its argument is true
and 0 otherwise. Note that an alternative formulation of a

worst-case AUC as the worst-case across all samples from
the out-distribution would turn out to be uninteresting, since
it would necessarily be close to zero even if only a single
sample gets assigned high-confidence, so we do not consider
this notion here.

For all but one of our baselines, the OOD detecting feature h
is the confidence of the classifier. Since the exact evaluation
of the WCAUC is computationally infeasible, we compute
an upper bound and a lower bound on the WCAUC by
finding h(z) ≤ max

∥z′−z∥∞≤ϵ
h(z′) ≤ h̄(z). We find the upper

bound on the WCAUC - the adversarial AUC (AAUC) -
by maximizing the confidence using an adversarial attack
inside the l∞-ball (i.e. finding an h). We compute a lower
bound on the WCAUC - the guaranteed AUC (GAUC) -
by computing upper bounds on the confidence inside the
l∞-ball (i.e. h̄) via IBP. For non-provable methods, no non-
trivial upper bound h̄ < ∞ is available so their GAUCs
are always 0. Note that our threat model is different from
adversarial robustness on the in-distribution which neither
our method nor the baselines pursue. Using an ensemble of
strong attacks is absolutely crucial for reliably evaluating the
models (see details of attacks in App. E). In App. G we show
that the prior baseline (Chen et al., 2020) overestimated
their adversarial OOD robustness by sometimes over 90%
because their attack was not adaptive to their defense.

Baselines We compare to a normally trained baseline
(Plain) and outlier exposure (OE), both trained using the
same architecture and hyperparameters as the classifier in
ProoD. For both ATOM and ACET we found the models’
OOD detection to be much less adversarially robust than
claimed in (Chen et al., 2020) (see App. G) so we retrained
their models using the same architecture, threat model and
training out-distribution with their original code (for CI-
FAR10). Running these adversarial training procedures on
ImageNet resolution is infeasibly expensive. For GOOD
we also retrain using OpenImages as training OOD dataset
with the code from (Bitterwolf et al., 2020) (comparisons
with their pre-trained models can be found in App. G). We
also evaluate the OOD-performance of the provable binary
discriminator (ProoD-Disc) that we trained for ProoD. Note
that this is not a classifier and so it is included simply for
reference. All results are shown in Table 1.

Results ProoD achieves non-trivial GAUCs on all datasets.
As was also observed in (Bitterwolf et al., 2020), this
shows that the IBP guarantees not only generalize to un-
seen samples but even to unseen distributions. In App. K
we show that they even generalize to the larger threat model
ϵ = 8/255. In general, the gap between our GAUCs and
AAUCs is extremely small. This shows that the seemingly
simple IBP bounds can be remarkably tight, as has been ob-
served in other works (Gowal et al., 2018; Jovanović et al.,
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Table 1: OOD performance: For all models we report accuracy on the test set of the in-distribution and AUCs, guaranteed
AUCs (GAUC), adversarial AUCs (AAUC) for different test out-distributions. The radius of the l∞-ball for the adversarial
manipulations of the OOD data is ϵ = 0.01 for all datasets. The bias shift ∆ that was used for ProoD is shown for each
in-distribution. The AAUCs and GAUCs for ProoD tend to be very close, indicating remarkably tight certification bounds.

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.7 93.8 0.0 0.3 93.1 0.0 0.5 98.0 0.0 0.7
OE 94.91 91.1 0.0 0.9 97.3 0.0 0.0 100.0 0.0 2.7 99.9 0.0 1.5
ATOM 93.63 78.3 0.0 21.7 94.4 0.0 24.1 79.8 0.0 20.1 99.5 0.0 73.2
ACET 93.43 86.0 0.0 4.0 99.3 0.0 4.6 89.2 0.0 3.7 99.9 0.0 40.2
GOOD80* 87.39 76.7 47.1 57.1 90.8 43.4 76.8 97.4 70.6 93.6 96.2 72.9 89.9
GOOD100* 86.96 67.8 48.1 49.7 62.6 34.9 36.3 84.9 74.6 75.6 87.0 76.1 78.1
ProoD-Disc - 62.9 57.1 57.8 72.6 65.6 66.4 78.1 71.5 72.3 59.2 49.7 50.4
ProoD ∆=3 94.99 89.8 46.1 46.8 98.3 53.3 54.1 100.0 58.3 59.7 99.9 38.2 38.8

In: R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 92.3 0.0 0.5 92.6 0.0 0.0 92.7 0.0 0.1 98.9 0.0 8.6
OE 97.10 96.9 0.0 0.2 99.7 0.0 0.4 99.9 0.0 1.8 98.0 0.0 1.9
ProoD-Disc - 81.5 76.8 77.3 92.8 89.3 89.6 90.7 86.9 87.3 81.0 74.0 74.8
ProoD ∆=4 97.25 96.9 57.5 58.0 99.8 67.4 67.9 99.9 65.7 66.2 98.6 52.7 53.5

*Uses different architecture of classifier, see “Baselines” in Section 4.2.

2021). It also shows that there would be very little benefit in
applying stronger verification techniques like (Cheng et al.,
2017; Katz et al., 2017; Dathathri et al., 2020) in ProoD.
The bounds are also much tighter than for GOOD, which
is likely due to the fact that for GOOD the confidence is
much harder to optimize during an attack because it involves
maximizing the confidence in an essentially random class.

For CIFAR10, on 3 out of 4 out-distributions ProoD’s
GAUCs are higher than ATOM’s and ACET’s AAUCs, i.e.
our model’s provable adversarial robustness exceeds the
SOTA methods’ empirical adversarial robustness in these
cases, despite ATOM and ACET being far more expensive
to train than ProoD. This is not due to our retraining, since
the authors’ pre-trained models perform worse (see App. G).

ProoD’s GAUCs are comparable to, if slightly worse than
for GOOD80 or GOOD100 (same is true for non-retrained
models, see App. G). However, note that ProoD achieves this
while retaining both high accuracy and OOD performance,
both of which are lacking for GOOD. Additionally, the
GOOD models are over twice as large as the ProoD model.
Generally, for ProoD the accuracy is comparable to OE and
the OOD performance is similar or marginally worse. Thus,
ProoD shows that it is possible to achieve certifiable adver-
sarial robustness on the out-distribution while keeping very
good prediction and OOD detection performance. Note that
all methods struggle on separating CIFAR10 and CIFAR100
when using OpenImages as training OOD (as compared to

80M Tiny Images in App. G).

To the best of our knowledge with R.ImgNet we provide
the first worst case OOD guarantees on high-resolution im-
ages. The GAUCs are higher than on CIFAR, indicating that
meaningful certificates on higher resolution are more achiev-
able on this task than one might expect. FGVC and Cars
may seem simple to separate from the animals in R.ImgNet
but this cannot be said for Flowers which are difficult to
provably distinguish from images of insects on flowers.

5. Conclusion
We have demonstrated how to combine a provably adver-
sarially robust binary discriminator between in- and out-
distribution with a standard classifier in order to simulta-
neously achieve high accuracy, high clean OOD detection
performance as well as certified adversarially robust OOD
detection. Thus, we have combined the best properties of
previous work with only a small increase in total model
size and only a single hyperparameter. This suggests that
certifiable adversarial robustness on the out-distribution (as
opposed to the in-distribution) is indeed possible without
losing accuracy. We further showed how enforcing negativ-
ity in the final weights of our discriminator fixes the problem
of asymptotic overconfidence in ReLU classifiers. Training
ProoD models is simple and stable and thus ProoD provides
OOD guarantees that come (almost) for free.
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Figure 2: Left, Asymptotic confidence: We plot the mean confidence in the predicted in-distribution class for different
models as one moves away from CIFAR100 samples along the trajectories x+αn, where n ∈ [−0.5, 0.5]d and α ≥ 0. Only
GOOD and ProoD converge to uniform confidence. Right, Adversarial asymptotic confidence: We try to find adversarial
directions in which ProoD remains at a constant high confidence, as opposed to converging to low confidence. We plot the
maximum of p̂(i|x) across 100 adversarially chosen directions as one moves further in these directions by factors of α. Note
that p̂(i|x) → 0 implies p̂(y|x) → 1

K .

A. Adversarial Asymptotic Overconfidence
According to the authors of (Hein et al., 2019), under mild conditions, we should expect to find asymptotic overconfidence in
all ReLU networks and almost all directions. In order to empirically evaluate this, we take different models that were trained
on CIFAR10 and evaluate their confidence on different CIFAR100 samples. For each sample x we track the confidence,
maxk p̂(k|x), along a trajectory in a uniform noise direction x + αn, where n ∈ [−0.5, 0.5]d and α ≥ 0. The mean
confidence across 100 such trajectories is shown on the left side of Figure 2. Even the models that produce low confidences
on the original OOD sample asympotically converge to maximal confidence far away. The only exceptions here are GOOD
and ProoD and only ProoD can guarantee that the confidence cannot converge to 1.

However, even though the architecture provably prevents arbitrarily overconfident predictions and Theorem 1 ensures that
most directions will indeed converge to uniform, it is, in principle, possible to find directions where the confidence p̂(i|x)
remains constant if the condition Ux ̸= 0 in Theorem 1 is not satisfied. We attempted to find such directions by running the
following type of attack. We start from a random point x ∈ [−0.5, 0.5]d that we project onto a sphere of radius 100. We
now run gradient descent (for 20000 steps), maximizing g(x) while projecting onto the sphere at each step (unnormalized
gradients with step size 0.1 for the first 10000 steps and 0.01 for the last 10000 steps). We then increase the radius to 1000
and run an additional 20000 steps with step size 0.1. We rescale the resulting direction vector down to an l∞-ball of norm 1
and compute the confidence p̂(i|x) as a function of the scaling in the adversarial directions. We show the resulting scale-wise
maximum over 100 adversarial directions in Figure 2. Note that even the worst-case over 100 adversarially found directions
decays to 0 asymptotically, thus empirically confirming the practical utility of Theorem 1. Note that the value of p̂(i|x)
converging to 0 implies that the confidence of the ProoD model p̂(y|x) converges to 10%.

In Figure 2 GOOD also stands out as having low confidence in all directions that we studied. This is because in all the
asymptotic regions that we looked at, the pre-activations of the penultimate layer are all negative. If one moves outward and
these pre-activations only get more negative in all directions far away from the data, the confidence does, in fact, remain
low. Unfortunately, it also leads to gradients that are precisely zero, which is why the same attack can not be applied here.
However, there is no guarantee that GOOD does not also get in some direction asymptotically overconfident.
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Table 2: Architecture: The architectures that are used for the binary discriminators. Each convolutional layer is directly
followed by a ReLU.

CIFAR R.ImgNet

Conv2d(3, 128) Conv2d(3, 128)
Conv2d(128, 256)s=2 AvgPool(2)
Conv2d(256, 256) Conv2d(128, 256)s=2
AvgPool(2) AvgPool(2)
FC(16384, 128) Conv2d(256, 256)
FC(128, 1) AvgPool(2)

FC(50176, 128)
FC(128, 1)

B. Separate Training for ProoD
In Section 2.1 we describe semi-joint training of p̂(y|x). However, as pointed out in that section, it is possible to separately
train a certifiable binary discriminator p̂(i|x) and an OOD aware classifier p̂(y|x, i) and to then simply combine them via
Eq. (1). We call this method separate training ProoD-S and evaluate it by using an OE trained model for p̂(y|x, i). We
show the results in Table 3, where we repeat the results for OE and ProoD for the reader’s convenience. Note that OE and
ProoD-S must always have the same accuracy on the in-distribution since they use the same model for classification (note
that (1) preserves the ranking of p̂(y|x, i)).

We see that the AUCs of ProoD-S are almost identical to those of OE. Without almost any loss in performance ProoD-S
manages to provide non-trivial GAUCs. However, as one would expect, the semi-jointly trained ProoD provides stronger
guarantees at similar clean performance. Nonetheless, this post-hoc method of adding some amount of certifiability to an
existing system may be interesting in applications where retraining a deployed model from scratch is infeasible.

Table 3: Separate Training: Addendum to Table 1 showing the AUCs, GAUCs and AAUCs of ProoD-S on all datasets. The
accuracy must always be identical to that of OE and the clean AUCs are also very similar to those of OE. The guarantees are
strictly weaker than those provided by the semi-jointly trained ProoD.

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 94.91 91.1 0.0 0.9 97.3 0.0 0.0 100.0 0.0 2.7 99.9 0.0 1.5
ProoD-S ∆=3 94.91 89.3 44.7 45.3 97.3 51.8 52.6 100.0 56.7 57.7 99.9 36.7 37.6
ProoD ∆=3 94.99 89.8 46.1 46.8 98.3 53.3 54.1 100.0 58.3 59.7 99.9 38.2 38.8

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ProoD-S ∆=5 77.25 77.4 17.2 17.3 92.3 19.5 19.6 100.0 22.4 22.6 99.5 9.0 9.1
ProoD ∆=5 77.16 76.6 17.3 17.4 91.5 19.7 19.8 100.0 22.5 23.1 98.9 9.0 9.0

In: R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

OE 97.10 96.9 0.0 0.2 99.7 0.0 0.4 99.9 0.0 1.8 98.0 0.0 1.9
ProoD-S ∆=4 97.10 96.9 50.1 50.7 99.7 59.7 60.6 99.9 57.9 58.9 98.0 40.8 42.3
ProoD ∆=4 97.25 96.9 57.5 58.0 99.8 67.4 67.9 99.9 65.7 66.2 98.6 52.7 53.5



Provably Adversarially Robust Detection of Out-of-distribution Data (Almost) For Free

C. Bias shift
Under the assumption that our binary discriminator g is perfect, that is

p(i|x) = p(x|i)p(i)
p(x|i)p(i) + p(x|o)p(o)

=
1

1 + e−g(x)
, (9)

then it holds that eg(x) = p(x|i)p(i)
p(x|o)p(o) . A change of the prior probabilities p̃(i) and p̃(o) without changing p(x|i) and p(x|o)

then corresponds to a novel classifier

eg̃(x) =
p(x|i)p̃(i)
p(x|o)p̃(o)

=
p(x|i)p(i)
p(x|o)p(o)

p(o)p̃(i)

p(i)p̃(o)
= eg(x)e∆ (10)

with ∆ = log
(

p(o)p̃(i)
p(i)p̃(o)

)
. Note that p̃(i) > p(i) corresponds to positive shifts. In a practical setting, this parameter can be

chosen based on the priors for the particular application. Since no such priors are available in our case we determine a
suitable shift by evaluating on the training out-distribution, see Section 4.2 for details. Please note that we explicitly do not
train the shift parameter since this way the guarantees would get lost as the classifier implicitly learns a large ∆ in order to
maximize the confidence on the in-distribution, thus converging to a normal outlier exposure-type classifier without any
guarantees.

D. Proof of Theorem 1
The following result of (Hein et al., 2019) basically says that as one moves to infinity by upscaling a vector one eventually
ends up in a polytope which extends to infinity. We use this in the proof of our Theorem.

Lemma 1 ((Hein et al., 2019)). Let {Qr}Rr=1 be the set of convex polytopes on which a ReLU-network f : Rd → RK

is an affine function, that is for every k ∈ {1, . . . , R} and x ∈ Qk there exists V k ∈ RK×d and ck ∈ RK such that
f(x) = V kx+ ck. For any x ∈ Rd with x ̸= 0 there exists α ∈ R and t ∈ {1, . . . , R} such that βx ∈ Qt for all β ≥ α.

Theorem 1. Let x ∈ Rd with x ̸= 0 and let g : Rd → R be the ReLU-network of the binary discriminator (with last
activation being a non-leaky ReLU) and denote by {Qr}Rr=1 the finite set of polytopes such that g is affine on these polytopes
which exists by Lemma 1. Denote by Qt the polytope such that βx ∈ Qt for all β ≥ α and let x(L−1)(z) = Uz + d with
U ∈ RnL−1×d and d ∈ RnL−1 be the output of the pre-logit layer of g for z ∈ Qt. If Ux ̸= 0, then

lim
β→∞

p̂(y|βx) = 1

K
.

Proof. We note that with a similar argument as in the derivation of (3) it holds

p̂(y|βx) ≤ p̂(i|βx) + 1

K

(
1− p̂(i|βx)

)
=

K − 1

K
p̂(i|βx) + 1

K
. (11)

Using Lemma 1 we know that there exist a polytope Qt such that βx ∈ Qt for all β ≥ α. Thus for all β ≥ α it holds that
βx ∈ Qt so that

p̂(i|βx) = 1

1 + e−g(βx)
=

1

1 + e

〈
W

(Lg)
g ,Uβx+d

〉
+b

(Lg)
g

.

As x(L−1)
i (x) ≥ 0 for all x ∈ Rd it has to hold (βUx + d)i ≥ 0 for all β ≥ α and i = 1, . . . , nL−1. This implies that

(Ux)i ≥ 0 for all i = 1, . . . , nL−1 and since Ux ̸= 0 there has to exist at least one component i∗ such that (Ux)i∗ > 0.
Moreover, W (Lg)

g has strictly negative components and thus for all β ≥ α it holds

g(βx) =
〈
W (Lg)

g , Uβx+ d
〉
+ b(Lg)

g = β
〈
W (Lg)

g , Ux
〉
+

〈
W (Lg)

g , d
〉
+ b(Lg)

g .

As
〈
W

(Lg)
g , Ux

〉
< 0 we get limβ→∞ g(x) = −∞ and thus

lim
β→∞

p̂(i|βx) = 0.

Plugging this into (11) yields the result.
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E. Experimental Details
Datasets We use CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009) (MIT license), SVHN (Netzer et al., 2011) (free
for non-commercial use), LSUN (Yu et al., 2015) (no license), the ILSVRC2012 split of ImageNet (Deng et al., 2009;
Russakovsky et al., 2015) (free for non-commercial use), FGVC-Aircraft (Maji et al., 2013) (free for non-commercial
use), Stanford Cars (Krause et al., 2013) (free for non-commercial use), OpenImages v4 (Kuznetsova et al., 2020) (images
have a CC BY 2.0 license), Oxford 102 Flower (Nilsback & Zisserman, 2008) (no license) as well as 80 million tiny
images (Torralba et al., 2008) (no license given, see also App. G). For the train/test splits we use the standard splits, except
on 80M Tiny Images where we treat a random but fixed subset of 1000 images in the first 1,000,000 as our test set. For all
datasets that get used as a test out-distribution we use a random but fixed subset of 1000 images.

Following (Bitterwolf et al., 2020), the smooth noise that is used is generated as follows. Uniform noise is generated and
then smoothed using a Gaussian filter with a width that is drawn uniformly at random in [1, 2.5]. Each datapoint is then
shifted and scaled linearly to ensure full range in [0, 1], i.e. x′ = x−min(x)

max(x)−min(x) .

Binary Training The architecture that we use for the binary discriminator is relatively shallow (5 linear layers). The
architecture is shown in Table 2. Our results are fairly robust to the exact choice of architecture and significantly larger
models do not necessarily lead to better results as we show in App. J. Similarly to (Zhang et al., 2020; Bitterwolf et al.,
2020), we use long training schedules, running Adam for 1000 epochs, with an initial learning rate of 1e − 4 that we
decrease by a factor of 5 on epochs 500, 750 and 850 and with a batch size of 128 from the in-distribution and 128 from
the out-distribution (for R.ImgNet: 50 epochs with drops at 25, 35, 45, batch sizes 32). In order to avoid large losses we
also use a simple ramp up schedule for the ϵ used in IBP and we downweight the out-distribution loss during the initial
phase of training by a scalar κ. Both ϵ and κ are increased linearly from 0 to their final values (0.01 and 1, respectively)
over the first 300 epochs (for R.ImgNet over the first 25 epochs). Compared to the training of (Bitterwolf et al., 2020) which
sometimes fails, we found that training of the binary discriminator is very stable and even 100 epochs on CIFAR would be
sufficient, but we found that longer training lead to slightly better results. Weight decay is set to 5 · 10−4, but is disabled for
the weights in the final layer. As data augmentation we use AutoAugment (Cubuk et al., 2019) for CIFAR and simple 4
pixel crops and reflections on R.ImgNet. The strict negativity of the weights leads to a negative bias of g which can cause
problems at an early stage if the b

(Lg)
g is initialized at 0 and thus we choose 3 as initialization. All binary discriminators

were trained on single 2080Ti GPUs, managed on a SLURM cluster. Overall, the training of a provable discriminator takes
around 16h on CIFAR and 44h on R.ImgNet (wall clock time including evaluations and logging on each epoch).

Semi-Joint Training In order to determine a suitable bias shift ∆, we train several ProoD models for binary shifts in
{0, 1, 2, 3, 4, 5, 6} and then evaluate the AUC and guaranteed AUC (see 4.2) on a subset of the training out-distribution
OpenImages (resp. NotR.ImgNet). For all bias shifts we use the same fixed provably trained binary discriminator and only
train the classifier part. As our goal is to have provable guarantees with minimal or no loss on the standard OOD detection
task, among all solutions which have better AUC than outlier exposure (OE) (Hendrycks et al., 2019) we choose the one
with the highest guaranteed AUC on OpenImages (on CIFAR10/CIFAR100) resp. NotR.ImgNet (on R.ImgNet). If none of
the solutions has better AUC than OE on the training out-distribution we take the one with the highest AUC. We show the
trade-off curves for the example in App. E.

On CIFAR we train for 100 epochs using SGD with momentum of 0.9 and a learning rate of 0.1 that drops by a factor of
10 on epochs 50, 75 and 90 (on R.ImgNet 75 epochs with drops at 30 and 60). For all datasets we train using a batch size
of 128 (plus 128 out-distribution samples in the case of OE). The CIFAR experiments were run on single 2080Ti GPUs.
This takes about 4h20min in wall clock time. In order to fit batches of 128 in-distribution samples and 128 out-distribution
samples on R.ImgNet we had to train using 4 V100 GPUs in parallel. Because of batch normalization in multi-GPU training
it is important to not simply stack the batches but to interlace in- and out-distribution samples. The wall clock time was
around 15h for the semi-joint training on R.ImgNet. For selecting the bias we use the procedure described in Section 4. The
trade-off curves for the AUC and GAUC on CIFAR100 and R.ImgNet are given in Figure 3.

Evaluation attack details Gradient obfuscation (Papernot et al., 2017; Athalye et al., 2018) poses a significant challenge
for the evaluation of AAUCs (Bitterwolf et al., 2020) even more so than in the evaluation of adversarial robustness on
the in-distribution as the models are trained to be “flat” on the out-distribution. Thus we employ an ensemble of different
versions of projected gradient descent (PGD) (Madry et al., 2018) as well as the black-box SquareAttack (Andriushchenko
et al., 2020) with 5000 queries. We use APGD (Croce & Hein, 2020) (except on RImgNet, due to a memory leak) with 500
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Figure 3: Bias selection for CIFAR100 and RImgNet: Using CIFAR10 (top), CIFAR100 (middle) and R.ImgNet (bottom)
as the in-distribution and the test set of OpenImages (or NotR.ImgNet respectively) as OOD we plot the test accuracy, AUC
and GAUC as a function of the bias shift ∆ (see Eq. (6)).

iterations and 5 random restarts. We also use a 200-step PGD attack with momentum of 0.9 and backtracking that starts
with a step size of 0.1 which is halved every time a gradient step does not increase the confidence and gets multiplied by
1.1 otherwise. As stated above the models are trained to be flat and thus the gradients can be exactly zero which renders
gradient-based optimization impossible. Therefore it is important to use a variety of different starting points. We use for
PDG as starting points: i) a decontrasted version of the image, i.e. the point that minimizes the l∞-distance to the grey
image 0.5 · 1⃗ within the threat model, ii) 3 uniformly drawn samples from the threat model and iii) 3 versions of the original
image perturbed by Gaussian noise with σ = 10−4 and then clipped to the threat model. We always clip to the box [0, 1]d at
each step of the attack. For all attacks and all models we directly optimize the final score that is used for OOD detection.

F. Experimental results for CIFAR100
In Table 4, we show the CIFAR100 results that were omitted in Table 1. Since the GOOD model by (Bitterwolf et al., 2020)
is only available on CIFAR10, we attempted to train models on CIFAR100 using their code and the same hyperparameters
and schedules as they used for CIFAR10. This only lead to models with accuracy below 25%, so we do not include these
models in our evaluation.

On CIFAR100, ProoD’s guarantees are weaker and ATOM produces strong AAUCs. However, we observe that training both
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Table 4: OOD performance: For all models we report accuracy on the test set of the in-distribution and AUCs, guaranteed
AUCs (GAUC), adversarial AUCs (AAUC) for different test out-distributions. The radius of the l∞-ball for the adversarial
manipulations of the OOD data is ϵ = 0.01 for all datasets. The bias shift ∆ that was used for ProoD is shown for each
in-distribution. The AAUCs and GAUCs for ProoD tend to be very close, indicating remarkably tight certification bounds.

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.4 81.9 0.0 0.2 76.4 0.0 0.3 86.6 0.0 0.4
OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ATOM 68.32 78.3 0.0 50.3 91.1 0.0 67.0 95.9 0.0 75.6 98.2 0.0 80.7
ACET 73.02 73.0 0.0 1.4 97.8 0.0 0.7 75.8 0.0 2.6 99.9 0.0 12.8
ProoD-Disc - 56.1 52.1 52.3 61.0 58.2 58.4 70.4 66.9 67.1 29.6 26.4 26.5
ProoD ∆=5 77.16 76.6 17.3 17.4 91.5 19.7 19.8 100.0 22.5 23.1 98.9 9.0 9.0

*Uses different architecture of classifier, see “Baselines” in Section 4.2.

ACET and ATOM can produce inconsistent results, i.e. sometimes almost no robustness is achieved. For the successfully
trained robust ATOM model on CIFAR100 we observe drastically reduced accuracy. Due to the difficulty in attacking these
models, it is not unlikely that a more sophisticated attack could produce even lower AAUCs.

G. 80M Tiny Images as Training Out-Distribution
The 80M Tiny Images dataset has been retracted by the authors due to concerns over offensive class labels (Birhane
& Prabhu, 2021). We support the decision of the community to move away from the use of 80M Tiny Images, so we
choose to train our CIFAR models using a downscaled version of OpenImages v4 (Kuznetsova et al., 2020) as a training
out-distribution. However, since all prior work used this dataset, we present results on 80M Tiny Images here in order to
compare ProoD’s performance to prior baselines. We encourage the community to use the results in Table 1 for future
comparisons.

Our results are shown in Table 5. Apart from the models shown in Table 1 we add here the pre-trained energy-based OOD
detector EB from (Liu et al., 2020) as an additional baseline for clean OOD detection. As EB is not trained robustly, as
expected EB has low AAUCs. In terms of clean OOD detection it performs similar to OE but with worse results on the
more difficult OOD detection task CIFAR10 vs CIFAR100 and vice versa. For GOOD we use the pre-trained models from
(Bitterwolf et al., 2020). For ATOM and ACET we use the pre-trained models from (Chen et al., 2020). Note that these use
the densenet architecture and were actually trained to withstand attacks in the much stronger threat model of ϵ = 8

255 . In the
original paper, the authors claim near perfect AAUCs on this task but we can show that this is a case of gross overestimation
of robustness. Even on the easier threat model ϵ = 0.01 that we test in Table 5, their robustness is almost non-existent
for both ATOM models and the CIFAR100 ACET model. The fact that their adversarial attacks were unable to find these
samples clearly demonstrates that evaluating models adversarially is very difficult and potentially unreliable. Because of this
we believe that our guarantees are a valuable contribution to the community.

H. False Positive Rates
Since in a practical setting a threshold for OOD detection ultimately has to be chosen, it can be interesting to study the false
positive rate at a fixed threshold. It is relatively standard to pick the false positive rate at 95% true positive rate (called FPR
in Table 6), where low values are desirable. We show the results for all methods and datasets in Table 6. Although ProoD
has similarly good performance as OE on this task, it fails to give non-trivial guarantees. Therefore achieving stronger
bounds on the worst-case FPR is an interesting task for future work.

I. Additional Datasets
In addition to the results shown in Table 1, it is interesting to study how ProoD performs on additional datasets as well
as the test set of the out-distribution it was trained on. For the CIFAR datasets, we report LSUN crops, LSUN_resize,
Places365 (Zhou et al., 2017), iSUN (Xu et al., 2015), Textures (Cimpoi et al., 2014), 80M Tiny Images and uniform noise
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Table 5: Training with 80M Tiny Images: We repeat the evaluation from Table 1 for models that were trained using 80M
Tiny Images as out-distribution instead of OpenImages. Plain is identical to before and is just repeated for the reader’s
convenience. Note that the conclusions from the main paper still hold, which indicates that our method is robust to changes
in the choice of training out-distribution. For ATOM and ACET we compare to pre-trained models from (Chen et al., 2020).
Note that these models show almost no robustness on CIFAR100 - despite the far stronger claims in (Chen et al., 2020).

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.6 93.8 0.0 0.1 93.1 0.0 0.5 98.2 0.0 0.6
OE 95.53 96.1 0.0 6.0 99.2 0.0 0.4 99.5 0.0 15.2 99.0 0.0 11.3
EB⋆ 95.22 93.8 0.0 2.8 99.3 0.0 0.0 99.5 0.0 6.0 99.4 0.0 3.5
ATOM† 95.20 93.7 0.0 14.4 99.6 0.0 8.6 99.7 0.0 40.0 99.6 0.0 18.8
ACET† 91.48 91.2 0.0 80.5 95.3 0.0 87.6 98.9 0.0 95.0 99.9 0.0 98.3
GOOD80* 90.13 87.2 42.5 63.9 94.2 37.5 67.4 93.3 55.2 83.6 95.3 57.3 88.5
GOOD100* 90.14 70.7 54.5 55.0 74.9 56.3 56.6 75.2 61.0 61.6 81.4 66.6 67.5
ProoD-Disc - 67.4 61.0 61.7 73.2 65.5 66.4 78.0 72.2 72.7 82.3 71.5 72.9
ProoD ∆=3 95.47 96.0 41.9 43.9 99.5 48.8 49.4 99.6 47.6 53.1 99.7 55.8 57.0

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.3 81.9 0.0 0.2 76.4 0.0 0.3 88.8 0.0 0.5
OE 77.28 83.9 0.0 0.8 92.8 0.0 0.1 97.4 0.0 4.6 97.6 0.0 0.9
EB⋆ 75.70 77.4 0.0 0.8 96.5 0.0 0.0 96.7 0.0 5.9 98.9 0.0 4.3
ATOM† 75.06 64.3 0.0 0.2 93.6 0.0 0.2 97.5 0.0 9.3 98.5 0.0 15.0
ACET† 74.43 79.8 0.0 0.2 90.2 0.0 0.0 96.0 0.0 2.1 92.9 0.0 0.3
ProoD-Disc - 53.8 50.3 50.4 73.1 69.8 69.9 68.1 63.8 64.0 67.2 63.8 63.9
ProoD ∆=1 76.79 80.5 23.1 23.2 93.7 33.9 34.0 97.2 29.6 30.4 98.9 29.7 31.3

⋆ Pre-trained WideResnet from (Liu et al., 2020).
†Densenet architecture, using models from (Chen et al., 2020) pre-trained with ϵ = 8

255 .
*CNN architecture using pre-trained models from (Bitterwolf et al., 2020).

in Table 7. On RImgNet we report uniform noise and the training out-distribution in Table 8.

As in Table 1 the clean performance of ProoD is comparable to that of OE, but it achieves non-trivial GAUC. On CIFAR10,
GOOD100 achieves almost perfect GAUC against uniform noise, which comes at the price of significantly worse clean
AUCs on all other out-distributions, see Table 1. Almost all methods achieve very high AAUCs on uniform noise, but it is
not clear if a sufficiently powerful attack could lower those scores significantly. The unusually large gap between the GAUC
and AAUC of ProoD would seem to indicate that that might be the case. Surprisingly, the robustness characteristics of
both ATOM and ACET vary wildly between the different datasets, sometimes appearing to be perfectly robust and on other
datasets displaying no robustness at all. Especially surprising are the relatively low AAUCs on the test set of the training
out-distribution.

J. Size Ablation for Binary Discriminator
Since larger models should typically lead to better performance, we investigated the impact that model size has on the
performance of our binary discriminator. We retrained ProoD-Disc models with CIFAR10 as in-distribution and 80M Tiny
images as the out-distribution (since our dataloader is faster than for OpenImages which speeds up training). Since longer
schedules only slightly improve results we also used shorter schedules with only 300 epochs where ϵ and κ linearly increase
from 0 to 0.01 and 1.0 respectively within the first 100 epochs and the learning rate drops occur at 150, 200 and 250 epochs.
As architectures we use 10 different CNNs with different widths and depths ranging from 5 to 8 layers (for the precise
architectures please refer to sizes {S, XL_b, XS, SR, SR2, C1, C3s, C3, C2, C4} in the file provable_classifiers.py of
the accompanying code). We present scatter plots of the models’ their performance on CIFAR100 and 80M Tiny Images in
Figure 4 against their size. Clearly, there is no correlation between model size and performance and most differences are
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Table 6: False Positive Rates: For all models we report accuracy on the test of the in-distribution and the false positive
rate at 95% true positive rate (FPR) (smaller is better). We also show the adversarial FPR (AFPR) and the guaranteed FPR
(GFPR) for different test out-distributions. The radius of the l∞-ball for the adversarial manipulations of the OOD data is
ϵ = 0.01 for all datasets. The bias shift ∆ that was used for ProoD is shown for each in-distribution. ProoD struggles to
give non-trivial guarantees for the FPR@95% on most datasets. However, different from GOOD or ProoD-Disc, the clean
performance is generally as good as that of OE.

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 95.01 56.3 100.0 100.0 40.7 100.0 100.0 46.7 100.0 100.0 10.6 100.0 100.0
OE 94.91 52.2 100.0 99.9 15.4 100.0 100.0 0.0 100.0 99.0 0.0 100.0 99.0
ATOM 93.63 73.4 100.0 98.8 33.9 100.0 100.0 85.3 100.0 100.0 0.0 100.0 86.1
ACET 93.43 65.4 100.0 99.5 3.0 100.0 99.8 62.7 100.0 100.0 0.0 100.0 89.0
GOOD80 87.39 65.1 100.0 84.8 26.8 100.0 48.8 6.0 100.0 24.7 19.6 100.0 52.8
GOOD100 86.96 84.8 100.0 99.3 87.9 100.0 99.7 66.0 100.0 99.0 68.6 100.0 98.2
ProoD-Disc - 83.9 87.5 87.2 76.9 84.9 84.2 76.7 85.3 84.7 96.6 98.4 98.4
ProoD ∆=3 94.99 48.0 99.9 99.7 9.1 100.0 100.0 0.0 100.0 98.7 0.0 100.0 100.0

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 77.38 80.1 100.0 100.0 77.3 100.0 100.0 79.0 100.0 100.0 70.0 100.0 100.0
OE 77.25 81.8 100.0 100.0 37.7 100.0 100.0 0.0 100.0 99.7 0.0 100.0 100.0
ATOM 68.32 81.3 100.0 99.6 51.0 100.0 97.4 26.3 100.0 94.7 10.0 100.0 86.0
ACET 73.02 87.9 100.0 100.0 8.2 100.0 100.0 87.0 100.0 100.0 0.0 100.0 98.2
ProoD-Disc - 95.9 97.5 97.5 91.3 92.8 92.7 91.7 95.3 95.0 100.0 100.0 100.0
ProoD ∆=5 77.16 82.2 100.0 100.0 37.6 100.0 100.0 0.0 100.0 99.3 3.4 100.0 100.0

In: R.ImgNet Flowers FGVC Cars Smooth
Acc FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR FPR GFPR AFPR

Plain 96.34 55.2 100.0 100.0 48.2 100.0 100.0 75.2 100.0 100.0 0.0 100.0 100.0
OE 97.10 18.2 100.0 100.0 0.2 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
ProoD-Disc - 59.2 65.2 65.0 51.0 67.8 66.5 51.7 63.7 62.3 100.0 100.0 100.0
ProoD ∆=4 97.25 18.5 100.0 100.0 0.5 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0

rather small, justifying our choice of a fairly small architecture in the main paper.

K. Generalization to larger threat model
Since ϵ = 0.01 is a relatively weak threat model we evaluate if ProoD’s guarantees actually generalize to the much stronger
ϵ = 8

255 ≈ 0.031 that is standard in much of the literature on adversarial robustness. We use the exact same CIFAR models
from Table 1 and show the results of our evaluation at ϵ = 8

255 in Table 9.

Perhaps surprisingly, ProoD’s guarantees generalize remarkably well to the much larger radius on CIFAR10. The same
holds for GOOD, as was already observed in (Bitterwolf et al., 2020). On the other hand ATOM and ACET do not show
any robustness at this radius, despite having lower accuracy, lower clean OOD performance and being more expensive to
train. On the other hand ProoD’s guarantees on CIFAR100 are quite weak at this radius, but given ATOM’s and ACET’s
low AAUCs here and the fact that GOOD cannot be trained at all on CIFAR100, the results are not worse than for the
competitors.

L. Error Bars
In order to be mindful of our resource consumption we restrict the computation of error bars to our experiments on CIFAR10.
Additionally, because the dataloader was much faster we ran these experiments using 80M Tiny Images as an out-distribution
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Figure 4: Bigger models do not yield better guarantees: We show scatter plots of the GAUC of different architectures
against the log of the number of trainable parameters in the model. The orange cross indicates the architecture that is used in
the main paper. There is no clear dependence of performance on model size, so it is preferable to use fairly small models.

as opposed to OpenImages. We reran our experiments using the same hyperparameters 5 times. We computed the mean and
the standard deviations for our models for all metrics shown in Table 5. The results are shown in Table 10. We see that the
fluctuations across different runs are indeed rather small. Furthermore, the clean performance of OE and ProoD show no
significant discrepancies.
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Table 7: Additional Datasets: We show the AUC, AAUC and GAUC for all models on uniform noise and on the test set of
the train out-distribution.

In: CIFAR10 LSUN LSUN_resize Places365 iSUN
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 95.9 0.0 1.3 95.0 0.0 8.7 89.5 0.0 0.3 94.5 0.0 10.4
OE 94.91 98.7 0.0 0.9 97.4 0.0 6.1 99.9 0.0 2.5 97.6 0.0 9.4
ATOM 93.63 77.3 0.0 12.1 100.0 0.0 98.4 82.6 0.0 22.0 100.0 0.0 98.8
ACET 93.43 89.2 0.0 2.5 100.0 0.0 91.3 88.0 0.0 3.4 100.0 0.0 92.1
GOOD80 87.39 96.5 68.4 89.7 87.4 61.7 69.5 96.8 58.8 90.2 87.1 58.9 70.3
GOOD100 86.96 95.0 86.0 86.7 81.1 67.6 67.9 74.4 59.7 60.9 77.5 63.3 65.2
ProoD-Disc - 95.8 94.1 94.2 76.4 70.3 71.5 76.6 71.1 71.5 74.9 69.0 70.3
ProoD ∆=3 94.99 99.2 82.2 82.3 97.1 57.7 59.2 99.9 58.7 59.6 97.1 56.4 58.1

In: CIFAR10 Uniform Textures 80M Tiny Images OpenImages
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 97.9 0.0 83.1 92.0 0.0 8.6 91.1 0.0 0.8 84.0 0.0 0.4
OE 94.91 99.9 0.0 98.2 99.9 0.0 13.8 93.6 0.0 0.6 99.7 0.0 2.5
ATOM 93.63 100.0 0.0 100.0 97.5 0.0 74.7 82.8 0.0 26.7 73.4 0.0 22.3
ACET 93.43 100.0 0.0 99.9 98.0 0.0 41.6 89.0 0.0 7.8 81.7 0.0 5.6
GOOD80 87.39 99.1 83.9 98.1 96.1 54.7 89.9 84.7 50.5 66.8 93.6 53.7 85.6
GOOD100 86.96 94.6 86.1 89.3 71.0 49.9 57.1 74.5 56.7 58.2 69.5 54.2 55.6
ProoD-Disc - 53.8 46.7 46.7 75.3 69.9 70.5 75.7 69.8 70.9 64.8 59.0 59.6
ProoD ∆=3 94.99 99.9 35.0 94.7 99.9 57.6 63.1 93.8 57.5 59.0 99.8 47.7 49.7

In: CIFAR100 LSUN LSUN_resize Places365 iSUN
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 84.5 0.0 0.9 78.9 0.0 3.9 75.7 0.0 0.6 79.4 0.0 5.6
OE 77.25 94.5 0.0 1.3 88.2 0.0 2.1 99.7 0.0 1.9 88.3 0.0 3.1
ATOM 68.32 83.4 0.0 66.7 92.1 0.0 71.3 87.0 0.0 62.1 91.7 0.0 73.7
ACET 73.02 81.3 0.0 4.3 100.0 0.0 77.0 74.8 0.0 4.3 100.0 0.0 78.2
ProoD-Disc - 81.4 78.8 79.3 70.1 66.7 67.1 71.7 68.2 68.5 69.3 65.6 66.0
ProoD ∆=5 77.16 94.8 28.5 28.7 86.3 22.6 22.8 99.7 23.6 23.8 87.2 22.1 22.4

In: CIFAR100 Uniform Textures 80M Tiny Images OpenImages
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 82.7 0.0 53.0 77.5 0.0 5.3 79.7 0.0 1.2 75.5 0.0 0.7
OE 77.25 99.3 0.0 91.4 99.0 0.0 7.5 80.2 0.0 1.5 99.6 0.0 1.0
ATOM 68.32 100.0 0.0 100.0 90.0 0.0 66.6 90.1 0.0 70.0 83.7 0.0 58.9
ACET 73.02 100.0 0.0 99.9 91.5 0.0 21.0 77.0 0.0 6.8 74.5 0.0 3.0
ProoD-Disc - 40.9 37.0 37.4 53.6 50.2 48.1 59.7 56.7 56.9 58.3 54.6 54.8
ProoD ∆=5 77.16 99.7 12.1 87.0 99.1 16.8 22.6 80.5 19.5 19.7 99.7 18.6 20.1

Table 8: Additional Datasets: For RImgNet, we show the AUC, AAUC and GAUC for all models on uniform noise and on
the test set of the train out-distribution, i.e. NotRImgNet.

In: R.ImgNet Uniform NotR.ImgNet
Acc AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 99.3 0.0 74.9 91.7 0.0 0.2
OE 97.10 99.6 0.0 84.6 98.7 0.0 1.2
ProoD-Disc 99.7 99.2 99.3 73.6 69.9 69.9
ProoD ∆=4 97.25 99.8 79.7 95.2 98.6 50.1 51.3
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Table 9: Generalization to larger ϵ: We evaluate all CIFAR models in Table 1 using an ϵ = 8
255 , and thus an unseen threat

model. The provable methods GOOD and ProoD generalize surprisingly well, while neither ATOM nor ACET display any
generalization to the larger threat model.

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.0 93.8 0.0 0.0 93.1 0.0 0.0 98.0 0.0 0.0
OE 94.91 91.1 0.0 0.1 97.3 0.0 0.0 100.0 0.0 0.1 99.9 0.0 0.0
ATOM 93.63 78.3 0.0 1.3 94.4 0.0 1.5 79.8 0.0 0.2 99.5 0.0 9.6
ACET 93.43 86.0 0.0 1.1 99.3 0.0 1.1 89.2 0.0 0.8 99.9 0.0 3.8
GOOD80* 87.39 76.7 37.5 51.6 90.8 38.6 74.3 97.4 57.6 90.2 96.2 61.1 87.8
GOOD100* 86.96 67.8 39.4 43.5 62.6 29.0 30.9 84.9 67.6 70.7 87.0 63.3 69.2
ProoD-Disc - 62.9 44.1 46.1 72.6 52.5 57.1 78.1 56.3 58.9 59.2 34.9 37.2
ProoD ∆=3 95.15 84.8 39.2 41.0 98.3 46.9 50.8 100.0 50.2 52.7 99.9 30.4 30.6

In: CIFAR100 CIFAR10 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.4 81.9 0.0 0.2 76.4 0.0 0.3 86.6 0.0 0.3
OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ATOM 68.32 78.3 0.0 10.4 91.1 0.0 15.2 95.9 0.0 23.0 98.2 0.0 23.5
ACET 73.02 73.0 0.0 1.4 97.8 0.0 0.7 75.8 0.0 2.6 99.9 0.0 3.8
ProoD-Disc - 56.1 41.1 43.1 61.0 50.5 51.8 70.4 57.5 58.8 29.6 20.9 20.8
ProoD ∆=5 76.51 76.6 13.7 14.1 91.5 16.9 16.9 100.0 18.1 18.2 98.9 8.1 8.1

In: R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 92.3 0.0 0.0 92.6 0.0 0.0 92.7 0.0 0.0 98.9 0.0 0.0
OE 97.10 96.9 0.0 0.2 99.7 0.0 0.0 99.9 0.0 0.0 98.0 0.0 0.0
ProoD-Disc - 81.5 60.4 61.4 92.8 78.0 80.8 90.7 76.3 79.2 81.0 47.3 53.7
ProoD ∆=4 97.25 96.9 42.8 45.0 99.8 57.0 59.4 99.9 56.0 58.7 98.6 31.6 36.3

*Uses different architecture of classifier, see “Baselines” in Section 4.2.

Table 10: Error Bars: We show the mean and standard deviation σ of all metrics for our CIFAR10 models across 5 runs.
The tolerances for ProoD’s clean performance are very small and yet the differences in clean performance between OE
ProoD are not significant.

In: CIFAR10 CIFAR100 SVHN LSUN_CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 94.91 90.0 0.0 0.6 93.9 0.0 0.1 93.4 0.0 0.7 96.7 0.0 1.2
Plain σ 0.16 0.1 0.0 0.1 1.2 0.0 0.0 0.3 0.0 0.2 2.1 0.0 0.5

OE 95.56 96.1 0.0 7.6 99.4 0.0 0.4 99.6 0.0 16.7 99.6 0.0 4.3
OE σ 0.04 0.1 0.0 1.5 0.1 0.0 0.2 0.1 0.0 3.5 0.3 0.0 3.7

ProoD-Disc - 67.7 61.6 62.2 75.5 68.6 69.3 76.5 70.4 70.9 87.2 77.7 78.8
ProoD-Disc σ - 0.7 0.7 0.7 1.4 1.7 1.5 1.4 1.7 1.7 3.6 4.3 4.3

ProoD ∆=3 95.60 96.0 42.2 44.1 99.4 48.6 49.2 99.6 47.1 52.0 99.8 55.2 57.0
ProoD ∆=3 σ 0.11 0.1 0.8 0.8 0.1 0.6 0.6 0.1 1.5 1.9 0.1 2.9 3.4


