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Abstract
This paper studies model transferability when hu-
man decision subjects respond to a deployed ma-
chine learning model. In our setting, an agent
or a user corresponds to a sample (X,Y ) drawn
from a distribution D and will face a model h and
its classification result h(X). Agents can modify
X to adapt to h, which will incur a distribution
shift on (X,Y ). Therefore, when training h, the
learner will need to consider the subsequently
“induced” distribution when the output model is
deployed. Our formulation is motivated by ap-
plications where the deployed machine learning
models interact with human agents, and will ulti-
mately face responsive and interactive data distri-
butions. We formalize the discussions of the trans-
ferability of a model by studying how the model
trained on the available source distribution (data)
would translate to the performance on the induced
domain. We provide both upper bounds for the
performance gap due to the induced domain shift,
as well as lower bound for the trade-offs that a
classifier has to suffer on either the source train-
ing distribution or the induced target distribution.
We provide further instantiated analysis for two
popular domain adaptation settings with covariate
shift and target shift.

1. Introduction
Decision makers are increasingly required to be transparent
on their decision making to offer the “right to explanation”
(Goodman & Flaxman, 2017; Selbst & Powles, 2018; Us-
tun et al., 2019) 1. Being transparent also invites potential
adaptations from the population, leading to potential shifts.
We are motivated by settings where the deployed machine
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learning models interact with human agents, which will
ultimately face data distributions that reflect how human
agents respond to the models. For instance, when a model
is used to decide loan applications, candidates may adapt
their features based on the model specification in order to
maximize their chances of approval; thus the loan decision
classifier observes a data distribution caused by its own de-
ployment (e.g., see Figure 1 for a demonstration). Similar
observations can be articulated for application in insurance
sector (i.e. developing policy s.t. customers’ behaviors
might adapt to lower premium (Haghtalab et al., 2020)),
education sector (i.e. developing courses when students are
less incentivized to cheat (Kleinberg & Raghavan, 2020))
and so on.

FEATURE WEIGHT ORIGINAL VALUE ADAPTED VALUE

Income 2 $ 6,000 −→ $ 6,000

Education Level 3 College −→ College

Debt -10 $40,000 −→ $20,000

Savings 5 $20,000 −→ $0

Figure 1: An example of an agent who originally has both
savings and debt, observes that the classifier penalizes debt
(weight -10) more than it rewards savings (weight +5), and
concludes that their most efficient adaptation is to use their
savings to pay down their debt.

This paper investigates model transferability when the un-
derlying distribution shift is induced by the model being
deployed. What we would like is to have some guarantee
on the transferability of a classifier — that is, how training
on the available source distribution DS translates to perfor-
mance on the induced domain D(h), which depends on the
model h being deployed. A key concept in our setting is
the induced risk, defined as the error a model incurs on the
distribution induced by itself:

Induced Risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ) (1)

Most relevant to the above formulation is the strategic clas-
sification literature (Hardt et al., 2016a; Chen et al., 2020a).
In this literature, agents are modeled as rational utility max-
imizers and game theoretical solutions were proposed to
characterize the induced risk. However, our results are
motivated by the following challenges in more general sce-
narios:
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• Modeling assumptions being restrictive In many prac-
tical situations, it is often hard to faithfully character-
ize agents’ utilities. Furthermore, agents might not be
fully rational when they response. All the uncertainties
can lead to a far more complicated distribution change
in (X,Y ), as compared to often-made assumptions that
agents only change X but not Y (Chen et al., 2020a).

• Lack of access to response data Machine learning prac-
titioners may only have access to data from the source
distribution during training, and although they anticipate
changes in the population due to human agents’ responses,
they cannot observe this new distribution until the model
is actually deployed.

• Retraining being costly Even when samples from the in-
duced data distribution are available, retraining the model
from scratch may be impractical due to computational
constraints.

The above observations motivate us to understand the trans-
ferability of a model trained on the source data to the domain
induced by the deployment of itself. We study several fun-
damental questions:

• Source risk ⇒ Induced risk For a given model h, how
different is ErrD(h)(h), the error on the distribution in-
duced by h, from ErrDS

(h) := PDS
(h(X) ̸= Y ), the

error on the source distribution?

• Induced risk ⇒ Minimum induced risk How much
higher is ErrD(h)(h), the error on the induced distribu-
tion, than minh′ ErrD(h′)(h

′), the minimum achievable
induced error?

• Induced risk of source optimal ⇒ Minimum induced
risk Of particular interest, and as a special case of the
above, how does ErrD(h∗

S)(h
∗
S), the induced error of the

optimal model trained on the source distribution h∗
S :=

minh ErrDS
(h), compare to minh ErrD(h)(h)?

• Lower bound for learning tradeoffs What is the mini-
mum error a model must incur on either the source distri-
bution ErrDS

(h) or its induced distribution ErrD(h)(h)?

For the first three questions, we prove upper bounds on the
additional error incurred when a model trained on a source
distribution is transferred over to its induced domain. We
also provide lower bounds for the trade-offs a classifier has
to suffer on either the source training distribution or the
induced target distribution. We then show how to specialize
our results to two popular domain adaptation settings: co-
variate shift and target shift All omitted proofs can be found
in the Appendix (supplementary materials).

1.1. Related works

Most relevant to us are three topics: strategic classification
(Hardt et al., 2016a; Chen et al., 2020a; Dekel et al., 2010;

Dong et al., 2018; Chen et al., 2020b; Miller et al., 2020;
Kleinberg & Raghavan, 2020), a recently proposed notion
of performative prediction (Perdomo et al., 2020; Mendler-
Dünner et al., 2020), and domain adaptation (Jiang, 2008;
Ben-David et al., 2010; Sugiyama et al., 2008; Zhang et al.,
2019; Kang et al., 2019; Zhang et al., 2020). Hardt et
al. (Hardt et al., 2016a) pioneered the formalization of
strategic behavior in classification based on a sequential
two-player game between agents and classifiers. Most of the
existing literature focuses on finding the optimal classifier
by assuming fully rational agents (and by characterizing the
equilibrium response). In contrast, we do not make these
assumptions and primarily study the transferability when
only having knowledge of source data.

Our result was inspired by the transferability results in do-
main adaptations (Ben-David et al., 2010; Crammer et al.,
2008; David et al., 2010). Later works examined specific do-
main adaptation models, such as covariate shift (Shimodaira,
2000; Zadrozny, 2004; Gretton et al., 2009; Sugiyama et al.,
2008; Zhang et al., 2013a;b) and target/label shift (Lipton
et al., 2018; Azizzadenesheli et al., 2019). A commonly
established solution is to perform reweighted training on
the source data, and robust and efficient solutions have been
developed to estimate the weights accurately (Sugiyama
et al., 2008; Zhang et al., 2013a;b; Lipton et al., 2018; Guo
et al., 2020).

Our work, at the first sight, looks similar to several other
area of studies. For instance, the notion of observing an
“induced distribution” resembles similarity to the adversarial
machine learning literature (Lowd & Meek, 2005; Huang
et al., 2011; Vorobeychik & Kantarcioglu, 2018). One of
the major differences between us and adversarial machine
learning is the true label Y stays the same for the attacked
feature while in our paper, both X and Y might change
in the adapted distribution D(h). In Appendix A.2, we
provide detailed comparisons with some areas in domain
adaptations, including domain generalization, adversarial
attack and test-time adaptation.

2. Formulation
Suppose we are learning a parametric model h ∈ H for
a binary classification problem. Its training data set S :=
{xi, yi}Ni=1 is drawn from a source distribution DS , where
xi ∈ Rd and yi ∈ {−1,+1}. However, h will then be
deployed in a setting where the samples come from a test or
target distribution DT that can differ substantially from DS .
Therefore instead of minimizing the prediction error on the
source distribution ErrDS

(h) := PDS
(h(X) ̸= Y ), the goal

is to find h∗ that minimizes ErrDT
(h) := PDT

(h(X) ̸= Y ).
This is often referred to as the domain adaptation problem,
where typically, the transition from DS to DT is assumed to
be independent of the model h being deployed.
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We consider a setting in which the distribution shift depends
on h, or is thought of as being induced by h. We will use
D(h) to denote the induced domain by h:

DS → encounters model h → D(h)

Strictly speaking, the induced distribution is a function of
both DS and h and should be better denoted by DS(h). To
ease the notation, we will stick with D(h), but we shall keep
in mind of its dependency of DS .

The challenge in the above setting is that when training h,
the learner needs to carry the thoughts that D(h) should be
the distribution it will be evaluated on and that the training
cares about. Formally, we define the induced risk of a
classifier h as the 0-1 error on the distribution h induces:

Induced risk : ErrD(h)(h) := PD(h)(h(X) ̸= Y ) (2)

Denote by h∗
T := argminh∈H ErrD(h)(h) the classifier

with minimum induced risk. More generally, when the loss
may not be the 0-1 loss, we define the induced ℓ-risk as

Induced ℓ-risk : Errℓ,D(h)(h) := argmin
h∈H

Ez∼D(h)[ℓ(h; z)]

The induced risks will be the primary quantities that we are
interested in minimizing. The following additional notation
will also be helpful:

• Distributions of Y on a distribution D: DY :=
PD(Y = y)2, and in particular DY (h) := PD(h)(Y =
y), DY |S := PDS

(Y = y).

• Distribution of h on a distribution D: Dh := PD(h(X) =
y), and in particular Dh(h) := PD(h)(h(X) =
y), Dh|S := PDS

(h(X) = y).

• Marginal distribution of X for a distribution D: DX :=
PD(X = x), and in particular DX(h) := PD(h)(X =
x), DX|S := PDS

(X = x)3.

• Total variation distance defined between D and D′ (Ali &
Silvey, 1966): dTV(D,D′) := supO|PD(O)− PD′(O)|.

2.1. Examples of Distribution Shifts Induced by Model
Deployment

We provide two exemplery models to demonstrate the use
cases for the distribution shift models described in our paper.

Strategic Classification An example of distribution shift
is the setting where decision subjects perform strategic re-
sponse to a decision rule. It is well-known that when human
agents are subject to a decision rule, they will adapt their

2The “:=” defines the RHS as the probability measure function
for the LHS.

3For continuous X , the probability measure shall be read as
the density function.

feature so as to get a favorable prediction outcome. In the
literature of strategic classification, we say the human agents
perform strategic adaptation (Hardt et al., 2016a).

It is natural to assume that the feature distribution before
and after the human agents’ best response satisfies covariate
shift: namely the feature distribution P(X) will change, but
P(Y |X), the mapping between Y and X , remain unchanged.
We use Figure 2 (Up) as a demonstrating of how distribution
might shift for strategic response setting. In Section 4.3,
we will use the strategic classification setup to verify our
obtained results.

X1X1

X2X2 X3X3

YY h(X )h(X )

X′ 1X′ 1

X′ 2X′ 2 X′ 3X′ 3

Y′ Y′ 

YY

X1X1 X3X3

X2X2 h(X )h(X )

Y′ Y′ 

X′ 1X′ 1 X′ 3X′ 3

X′ 2X′ 2

Figure 2: Example causal graph annotated to demonstrate
covariate shift (Up) / target shift (Down) as a result of the
deployment of h. Grey nodes indicate observable variables
and transparent nodes are not observed at the training stage.
Red arrow emphasises h induces changes of certain vari-
ables.
Replicator Dynamics Replicator dynamics is a com-
monly used model to study the evolution of an adopted
“strategy” in evolutionary game theory (Tuyls et al., 2006;
Friedman & Sinervo, 2016; Taylor & Jonker, 1978; Raab &
Liu, 2021). The core notion of it is the growth or decline
of the population of each strategy depends on its “fitness”.
Consider the label Y = {−1,+1} as the strategy, and the
following behavioral response model to capture the induced
target shift:

PD(h)(Y = +1)

PDS
(Y = +1)

=
Fitness(Y = +1)

E[Fitness(Y )]

In short, the change of the Y = +1 population depends on
how predicting Y = +1 “fits” a certain utility function. For
instance, the “fitness” can take the form of the prediction
accuracy of h for class +1. With assuming P(X|Y ) stays
unchanged, this instantiates one example of a specific in-
duced target shift. We will specify the condition for target
shift in Section 5. We use Figure 2 (Down) as a demon-
strating of how distribution might shift for the replicator
dynamic setting. In Section 5.3, we will use a detailed
replicator dynamics model to further instantiate our results.

3. Transferability of Learning to Induced
Domains

In this section, we first provide upper bounds for the trans-
fer error of a classifier h (that is, the difference between
ErrD(h)(h) and ErrDS

(h)), as well as between ErrD(h)(h)
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and ErrD(h∗
T )(h

∗
T ). We then provide lower bounds for

max{ErrDS
(h),ErrD(h)(h)}; that is, the minimum error

a model h must incur on either the source distribution DS

or the induced distribution D(h).

3.1. Upper Bound

We first investigate upper bounds for the transfer errors.
We begin by showing generic upper bounds, and further
strengthen the bound for specific domain adaptation settings
in Section 4 and 5 . We begin with answering a central
question in domain adaptation:
How does a model h trained on its training dataset fare on

the induced distribution D(h)?

To that end, define the minimum and maximum combined
error of two distributions D and D′ as:

λD→D′ := min
h′∈H

ErrD′(h′) + ErrD(h′)

ΛD→D′ := max
h′∈H

ErrD′(h′) + ErrD(h′)

and the H-divergence (Ben-David et al., 2010) as

dH×H(D,D′)

=2 sup
h,h′∈H

|PD(h(X) ̸= h′(X))− PD′(h(X) ̸= h′(X))|

The H-divergence is celebrated measure proposed in the
domain adaptation literature (Ben-David et al., 2010) which
will be useful for bounding the difference in errors of two
classifiers. Repeating classical arguments from (Ben-David
et al., 2010), we can easily prove the following:
Theorem 3.1 (Source risk ⇒ Induced risk). The
difference between ErrD(h)(h) and ErrDS

(h) is upper
bounded by: ErrD(h)(h) ≤ ErrDS

(h) + λDS→D(h) +
1
2dH×H(DS ,D(h)).

The transferability of a model h between ErrD(h)(h) and
ErrDS

(h) looks precisely the same as in the classical domain
adaptation setting. The above practice informs us that the
classical transferability bounds under domain adaptation
still hold when the adaptation is induced by the model too.
Nonetheless, an arguably more interesting quantity in our
setting to understand is the difference between the induced
error of a given model h and the error induced by a globally
optimal model:

ErrD(h)(h)− ErrD(h∗
T )(h

∗
T ) (3)

The proof is slightly more involved, and the bound differs
from the one in Theorem 3.1:
Theorem 3.2 (Induced risk ⇒ Minimum induced risk).
The difference between ErrD(h)(h) and ErrD(h∗

T )(h
∗
T ) is

upper bounded by:

ErrD(h)(h)− ErrD(h∗
T )(h

∗
T )

≤
λD(h)→D(h∗

T ) + ΛD(h)→D(h∗
T )

2
+

1

2
· dH×H(D(h∗

T ),D(h)).

The above theorem informs us that the induced transfer er-
ror is bounded by the “average” achievable error on both
distributions D(h) and D(h∗

T ), as well as the H × H di-
vergence between the two distributions. Reflecting on the
difference between the bounds of Theorem 3.1 and Theo-
rem 3.2, we see that the primary change is replacing the
minimum achievable error λ with the average of λ and Λ.

3.2. Lower Bound

Now we provide a lower bound on the induced transfer error.
We particularly want to show that at least one of the two
errors ErrDS

(h), ErrD(h)(h) must be lower-bounded by a
certain quantity.

Theorem 3.3 (Lower bound for learning tradeoffs ). Any
model h must incur the following error on either the source
or induced distribution:

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
.

The proof leverages the triangle inequality of dTV. This
bound is dependent on h; however, by the data processing
inequality of dTV (and f -divergence functions in general)
(Liese & Vajda, 2006), we have

dTV(Dh|S ,Dh(h)) ≤ dTV(DX|S ,DX(h))

Applying this to Theorem 3.3 gives the following model-
independent bound:

Corollary 3.4. For any model h,

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(DX|S ,DX(h))

2
.

4. Covariate Shift
In this section, we focus on a particular domain adaptation
setting known as covariate shift, in which the distribution of
features changes, but the distribution of labels conditioned
on features does not:

PD(h)(Y = y|X = x) = PDS
(Y = y|X = x) (4)

PD(h)(X = x) ̸= PDS
(X = x) (5)

Thus with covariate shift, we have

PD(h)(X = x, Y = y)

=PD(h)(Y = y|X = x) · PD(h)(X = x)

=PDS
(Y = y|X = x) · PD(h)(X = x)

Let ωx(h) :=
PD(h)(X=x)

PDS
(X=x) be the importance weight at x,

which characterizes the amount of adaptation induced by h
at instance x. Then for any loss function ℓ we have

Proposition 4.1 (Expected Loss on the New Distribution).

ED(h)[ℓ(h;X,Y )] = EDS
[ωx(h) · ℓ(h;x, y)].
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The above derivation was not new and offered the basis for
performing importance reweighting when learning under
coviarate shift (Sugiyama et al., 2008). The particular form
informs us that ωx(h) controls the generation of D(h) and
encodes its dependency of both DS and h, and is critical for
deriving our results below.

4.1. Upper Bound

We now derive an upper bound for transferability under
covariate shift. We will focus particularly on the opti-
mal model trained on the source data DS , which we de-
note as h∗

S := argminh∈H ErrS(h). Recall that the clas-
sifier with minimum induced risk is denoted as h∗

T :=
argminh∈H ErrD(h)(h). We can upper bound the differ-
ence between h∗

S and h∗
T as follows:

Theorem 4.2 (Suboptimality of h∗
S). Let X be distributed

according to DS . We have:

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T )

≤
√

ErrDS
(h∗

T ) ·
(√

Var(ωX(h∗
S)) +

√
Var(ωX(h∗

T ))

)
.

This result can can be interpreted as follows: h∗
T incurs

an irreducible amount of error on the source dataset, repre-
sented by

√
ErrDS

(h∗
T ). Moreover, the difference in error

between h∗
S and h∗

T is at its maximum when the two clas-
sifiers induce adaptations in “opposite” directions; this is
represented by the sum of the standard deviations of their
importance weights,

√
Var(ωX(h∗

S)) +
√

Var(ωX(h∗
T )).

4.2. Lower Bound

Recall from Theorem 3.3, for the general setting, it is un-
clear whether the lower bound is strictly positive or not.
In this section, we provide further understanding for when
the lower bound dTV(DY |S ,DY (h))−dTV(Dh|S ,Dh(h))

2 is indeed
positive under covariate shift.

We show under several assumptions, our previously pro-
vided lower bound in Theorem 3.3 is indeed strictly positive
in the covarite shift setting. Details of the required condi-
tions are specified in the Appendix, but the intuitions of the
conditions are:

• Increased ωx(h) value points are more likely to have
positive labels. (Assumption A.3)

• Increased ωx(h) value points are more likely to be classi-
fied as positive instances. (Assumption A.4)

• For a classifier h, within all h(X) = +1 or h(X) = −1,
a higher PD(Y = +1|X = x) associates with a higher
ωx(h). (Assumption A.5)

Theorem 4.3. With Assumption A.3 - A.5, the following

lower bound is strictly positive for covariate shift:

max{ErrDS
(h),ErrD(h)(h)}

≥
dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0.

4.3. Example Using Strategic Classification

As introduced in Section 2.1, we consider a setting caused
by strategic response in which agents are classified by and
adapt to a binary threshold classifier.

Consider a setup where each agent is associated with a
d dimensional continuous feature x ∈ Rd and a binary true
qualification y(x) ∈ {−1,+1}, where y(x) is a function
of the feature vector x. Consistent with the literature in
strategic classification (Hardt et al., 2016a), a simple case
where after seeing the threshold binary decision rule h(x) =
2 · 1[x ≥ τh] − 1, the agents will best response to it by
maximizing the following utility function:

u(x, x′) = h(x′)− h(x)− c(x, x′)

where c(x, x′) is the cost function for decision subjects
to modify their feature from x to x′. Assume all agents
are rational utility maximizers: they will only attempt to
change their features when the benefit of manipulation is
greater than the cost (i.e. when c(x, x′) ≤ 2) and agent will
not change their feature if they are already accepted (i.e.
h(x) = +1). For a given threshold τh and manipulation
budget B, the theoretical best response of an agent with
original feature x is:

∆(x) = argmax
x′

u(x, x′) s.t. c(x, x′) ≤ B (6)

We show that under some further characterizations of the
agents’ responsive behaviors (see Assumption A.6 - A.9 in
Appendix A.9), we can specify the bound in Theorem 4.2
for the strategic response setting as follows:
Proposition 4.4 (Upper bound for the Strategic Response
Setting). Under assumption Assumption A.6 - A.9, we
can bound the differences between ErrD(h∗

S)(h
∗
S) and

ErrD(h∗
T )(h

∗
T ) by

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤

√
2B

3
ErrDS

(h∗
T ).

To interpret this result, we can see that the upper bound for
strategic response depends on the manipulation budget B,
and the error the ideal classifier made on the source distri-
bution ErrDS

(h∗
T ). This aligns with our intuition that the

smaller manipulation budget is, the less agents will change
their features, thus leading to a tighter upper bound on the
difference between Errh∗

S
(h∗

S) and Errh∗
T
(h∗

T ). This bound
also allows us to bound this quantity even without the knowl-
edge of the mapping between D(h) and h, since we can
directly compute ErrDS

(h∗
T ) from the source distribution

and an estimated optimal classifier h∗
T .
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5. Target Shift
We consider another popular domain adaptation setting
known as target shift, in which the distribution of labels
changes, but not the distribution of features conditioned on
the label:

PD(h)(X = x|Y = y) = PDS
(X = x|Y = y) (7)

PD(h)(Y = y) ̸= PDS
(Y = y) (8)

In the case of binary classification, let ω(h) := PD(h)(Y =
+1), and PD(h)(Y = −1) = 1−ω(h). Again, ω(h) encodes
the induced adaptation from DS and h. Then we have for
any proper loss function ℓ:

ED(h)[ℓ(h;X,Y )]

=ω(h) · ED(h)[ℓ(h;X,Y )|Y = +1]

+ (1− ω(h)) · ED(h)[ℓ(h;X,Y )|Y = −1]

=ω(h) · EDS
[ℓ(h;X,Y )|Y = +1]

+ (1− ω(h)) · EDS
[ℓ(h;X,Y )|Y = −1]

We will adopt the following shorthands:

Err+(h) := EDS
[ℓ(h;X,Y )|Y = +1]

Err−(h) := EDS
[ℓ(h;X,Y )|Y = −1]

Note that Err+(h),Err−(h) are both defined on the condi-
tional source distribution, which is invariant under the target
shift assumption.

5.1. Upper bound

We again upper bound the transferability of h∗
S under tar-

get shift. Denote by D+ the positive label distribution
on DS (PDS

(X = x|Y = +1)) and D− the negative
label distribution on DS (PDS

(X = x|Y = −1)). Let
p := PDS

(Y = +1).

Theorem 5.1. Under target shift, the difference between
ErrD(h∗

S)(h
∗
S) and ErrD(h∗

T )(h
∗
T ) bounds as:

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤ |ω(h∗

S)− ω(h∗
T )|

+(1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .

The above upper bound consists of two components. The
first quantity captures the difference between the two in-
duced distributions D(h∗

S) and D(h∗
T ). The second quan-

tity characterizes the difference between the two classifiers
h∗
S , h

∗
T on the source distribution.

5.2. Lower Bound

Now we discuss lower bounds. Denote by TPRS(h) and
FPRS(h) the true positive and false positive rates of h on
the source distribution DS . We prove the following:

Theorem 5.2. Under target shift, any model h must incur
the following error on either the DS or D(h):

max{ErrDS
(h),ErrD(h)(h)}

≥|p− ω(h)| · (1− |TPRS(h)− FPRS(h)|)
2

.

The proof extends the bound of Theorem 3.3 by fur-
ther explicating each of dTV(DY |S ,DY (h)), dTV(Dh|S ,
and Dh(h)) under the assumption of target shift. Since
|TPRS(h)−FPRS(h)| < 0 unless we have a trivial classifier
that has either TPRS(h) = 1,FPRS(h) = 0 or TPRS(h) =
0,FPRS(h) = 1, the lower bound is strictly positive. Tak-
ing a closer look, the lower bound is determined linearly
by how much the label distribution shifts: p − ω(h). The
difference is further determined by the performance of h on
the source distribution through 1− |TPRS(h)− FPRS(h)|.

5.3. Example Using Replicator Dynamics

Let us instantiate the discussion using a specific fitness
function for the replicator dynamics model (Section 2.1),
which is the prediction accuracy of h for class +1:

[Fitness of Y = +1] := PDS
(h(X) = +1|Y = +1) (9)

Then we have E [Fitness of Y ] = ErrDS
(h), and

ω(h)

PDS
(Y = +1)

=
PrDS

(h(X) = +1|Y = +1)

ErrDS
(h)

Plugging the result back to our Theorem 5.1 we have
Proposition 5.3. Under the replicator dynamics model in
Eqn. (9), |ω(h∗

S)− ω(h∗
T )| further bounds as:

|ω(h∗
S)− ω(h∗

T )| ≤ PDS
(Y = +1)

· |ErrDS
(h∗

S)− ErrDS
(h∗

T )| · |TPRS(h
∗
S)− TPRS(h

∗
T )|

ErrDS
(h∗

S) · ErrDS
(h∗

T )
.

That is, the difference between ErrD(h∗
S)(h

∗
S) and

ErrD(h∗
T )(h

∗
T ) is further dependent on the difference be-

tween the two classifiers’ performances on the source data
DS . This offers an opportunity to evaluate the possible error
transferability using the source data only.

Concluding Remarks We presented a sequence of model
transferability results for settings where agents will respond
to a deployed model. The response leads to an induced dis-
tribution that the learner would not know before deploying
the model. Our results cover for both a general response
setting and for specific ones (covariate shift and target shift).
Unawareness of the potential distribution shift might lead
to unintended consequence when training a machine learn-
ing model. One goal of this paper is to raise awareness of
this issue for a safe deployment of machine learning meth-
ods in high-stake societal applications. Our contributions
are mostly theoretical. A future direction is to collect real
human experiment data to support the findings.
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A. Appendix
We arrange the appendix as follows:

• Appendix A.1 provides some real life scenarios where transparent models are useful or required.

• Appendix A.2 provides comparisons of our setting and other sub-areas in domain adaptation.

• Appendix A.3 provides proof for Theorem 3.1.

• Appendix A.4 provides proof for Theorem 3.2.

• Appendix A.5 provides proof of Theorem 3.3.

• Appendix A.6 provides proof for Proposition 4.1.

• Appendix A.7 provides proof for Theorem 4.2.

• Appendix A.8 provides proof for Theorem 4.3.

• Appendix A.9 provides omitted assumptions and proof for Section 4.3.

• Appendix A.10 provides proof for Theorem 5.1.

• Appendix A.11 provides proof for Theorem 5.2.

• Appendix A.12 provides proof for Proposition 5.3.

• Appendix B provides missing experimental details.

A.1. Example Usages of Transparent Models

As we mentioned in Section 1, there is an increasing requirement of making the decision rule to be transparent due to its
potential consequences impacts to individual decision subject. Here we provide the following reasons for using transparent
models:

• Government regulation may require the model to be transparent, especially in public services;

• In some cases, companies may want to disclose their models so users will have explanations and are incentivized to
better use the provided services.

• Regardless of whether models are published voluntarily, model parameters can often be inferred via well-known query
“attacks”.

In addition, we name some concrete examples of some real-life applications:

• Consider the Medicaid health insurance program in the United States, which serves low-income people. There is an
obligation to provide transparency/disclose the rules (model to automate the decisions) that decide whether individuals
qualify for the program — in fact, most public services have ”terms” that are usually set in stone and explained in the
documentation. Agents can observe the rules and will adapt their profiles to be qualified if needed. For instance, an
agent can decide to provide additional documentation they need to guarantee approval. For more applications along
these lines, please refer to this report4.

• Credit score companies directly publish their criteria for assessing credit risk scores. In loan application settings,
companies actually have the incentive to release criteria to incentivize agents to meet their qualifications and use their
services.Furthermore, making decision models transparent will gain the trust of users.

• It is also known that it is possible to steal model parameters, if agents have incentives to do so5. For instance,
spammers frequently infer detection mechanisms by sending different email variants; they then adjust their spam
content accordingly.

4https://datasociety.net/library/poverty-lawgorithms/
5https://www.wired.com/2016/09/how-to-steal-an-ai/
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A.2. Comparison of our setting and Some Areas in Domain Adaptation

We compare our setting (We address it as IDA, representing “induced domain adaptation”) with the following areas:

• Adversarial attack (Chakraborty et al., 2018; Papernot et al., 2016; Song et al., 2019): in adversarial attack, the true
label Y stays the same for the attacked feature, while in IDA, we allow the true label to change as well. One can think
of adversarial attack as a specific form of IDA where the induced distribution has a specific target, that is to maximize
the classifier’s error by only perturbing/modifying. Our transferability bound does, however, provide insights for how
standard training results transfer to the attack setting.

• Domain generalization (Wang et al., 2021b; Li et al., 2017; Muandet et al., 2013): the goal of domain generalization
is to learn a more general model that can be generalized to any unseen distribution; On the contrary, our focus is to
understand how the performance of a classifier trained on the source distribution degrades when evaluated on the
induced distribution (which depends on how the population of decision subjects responds); this degradation depends on
the classifier itself.

• Test-time adaptation (Varsavsky et al., 2020; Wang et al., 2021a; Nado et al., 2021): the issue of test-time adaptation
falls into the classical domain adaptation setting where the adaptation is independent of the model being deployed.
Applying this technique to solve our problem requires accessing data (either unsupervised or supervised) drawn from
DS(h) for each h being evaluated during different training epochs.

A.3. Proof of Theorem 3.1

Proof. We first establish two lemmas that will be helpful for bounding the errors of a pair of classifiers. Both are standard
results from the domain adaption literature (Ben-David et al., 2010).

Lemma A.1. For any hypotheses h, h′ ∈ H and distributions D,D′,

|ErrD(h, h′)− ErrD′(h, h′)| ≤ dH×H(D,D′)

2
.

Proof. Define the-cross prediction disagreement between two classifiers h, h′ on a distribution D as ErrD(h, h′) :=
PD(h(X) ̸= h′(X)). By the definition of the H−divergence,

dH×H(D,D′) = 2 sup
h,h′∈H

|PD(h(X) ̸= h′(X))− PD′(h(X) ̸= h′(X))|

= 2 sup
h,h′∈H

|ErrD(h, h′)− ErrD′(h, h′)|

≥ 2 |ErrD(h, h′)− ErrD′(h, h′)| .

Another helpful lemma for us is the well-known fact that the 0-1 error obeys the triangle inequality (see, e.g., (Crammer
et al., 2008)):

Lemma A.2. For any distribution D over instances and any labeling functions f1, f2, and f3, we have ErrD(f1, f2) ≤
ErrD(f1, f3) + ErrD(f2, f3).

Denote by h̄∗ the ideal joint hypothesis, which minimizes the combined error:

h̄∗ := argmin
h′∈H

ErrD(h)(h
′) + ErrDS

(h′)

We have:

ErrD(h)(h) ≤ ErrD(h)(h̄
∗) + ErrD(h)(h, h̄

∗) (Lemma A.2)

≤ ErrD(h)(h̄
∗) + ErrDS

(h, h̄∗) +
∣∣ErrD(h)(h, h̄

∗)− ErrDS
(h, h̄∗)

∣∣
≤ ErrD(h)(h̄

∗) + ErrDS
(h) + ErrDS

(h̄∗) +
1

2
dH×H(DS ,D(h)) (Lemma A.1)

= ErrDS
(h) + λDS→D(h) +

1

2
dH×H(DS ,D(h)). (Definition of h̄∗)
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A.4. Proof of Theorem 3.2

Proof. Invoking Theorem 3.1, and replacing h with h∗
T and S with D(h∗

T ), we have

ErrD(h)(h
∗
T ) ≤ ErrD(h∗

T )(h
∗
T ) + λD(h)→D(h∗

T ) +
1

2
dH×H(D(h∗

T ),D(h)) (10)

Now observe that

ErrD(h)(h) ≤ ErrD(h)(h
∗
T ) + ErrD(h)(h, h

∗
T )

≤ ErrD(h)(h
∗
T ) + ErrD(h∗

T )(h, h
∗
T ) +

∣∣∣ErrD(h)(h, h
∗
T )− ErrD(h∗

T )(h, h
∗
T )

∣∣∣
≤ ErrD(h)(h

∗
T ) + ErrD(h∗

T )(h, h
∗
T ) +

1

2
dH×H(D(h∗

T ),D(h)) (by Lemma A.1)

≤ ErrD(h)(h
∗
T ) + ErrD(h∗

T )(h) + ErrD(h∗
T )(h

∗
T ) +

1

2
dH×H(D(h∗

T ),D(h)) (by Lemma A.2)

≤ ErrD(h∗
T )(h

∗
T ) + λD(h)→D(h∗

T ) +
1

2
dH×H(D(h∗

T ),D(h)) (by equation 10)

+ ErrD(h∗
T )(h) + ErrD(h∗

T )(h
∗
T ) +

1

2
dH×H(D(h∗

T ),D(h))

Adding ErrD(h)(h) to both sides and rearranging terms yields

2ErrD(h)(h)− 2ErrD(h∗
T )(h

∗
T ) ≤ ErrD(h)(h) + ErrD(h∗

T )(h) + λD(h)→D(h∗
T ) + dH×H(D(h∗

T ),D(h))

≤ ΛD(h)→D(h∗
T ) + λD(h)→D(h∗

T ) + dH×H(D(h∗
T ),D(h))

Dividing both sides by 2 completes the proof.

A.5. Proof of Theorem 3.3

Proof. Using the triangle inequality of dTV, we have

dTV(DY |S ,DY (h)) ≤ dTV(DY |S ,Dh|S) + dTV(Dh|S ,Dh(h)) + dTV(Dh(h),DY (h)) (11)

and by the definition of dTV, the divergence term dTV(DY |S ,DY (h)) becomes

dTV(DY |S ,Dh|S) = |PDS
(Y = +1)− PDS

(h(x) = +1)|

=

∣∣∣∣EDS
[Y ] + 1

2
− EDS

[h(X)] + 1

2

∣∣∣∣
=

∣∣∣∣EDS
[Y ]

2
− EDS

[h(X)]

2

∣∣∣∣
≤ 1

2
· EDS

[|Y − h(X)|]

= ErrDS
(h)

Similarly, we have

dTV(Dh(h),DY (h)) ≤ ErrD(h)(h)

As a result, we have

ErrDS
(h) + ErrD(h)(h) ≥ dTV(DY |S ,Dh|S) + dTV(Dh(h),DY (h))

≥ dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h)) (by equation 11)

which implies

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
.
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A.6. Proof of Proposition 4.1
Proof.

ED(h)[ℓ(h;X,Y )]

=

∫
PD(h)(X = x, Y = y)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PD(h)(X = x)ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) ·

PD(h)(X = x)

PDS
(X = x)

· ℓ(h;x, y) dxdy

=

∫
PDS

(Y = y|X = x) · PDS
(X = x) · ωx(h) · ℓ(h;x, y) dxdy

=EDS
[ωx(h) · ℓ(h;x, y)]

A.7. Proof of Theorem 4.2

Proof. We start from the error induced by h∗
S . Let the average importance weight induced by h∗

S be ω̄(h∗
S) = EDS

[ωx(h
∗
S)];

we add and subtract this from the error:

ErrD(h∗
S)(h

∗
S) = EDS

[ωx(h
∗
S) · 1(h∗

S(x) ̸= y)]

= EDS
[ω̄(h∗

S) · 1(h∗
S(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

In fact, ω̄(h∗
S) = 1, since

ω̄(h∗
S) =EDS

[ωx(h
∗
S)] =

∫
ωx(h

∗
S)PDS

(X = x)dx

=

∫ PD(h)(X = x)

PDS
(X = x)

PDS
(X = x)dx =

∫
PD(h)(X = x)dx = 1

Now consider any other classifier h. We have

ErrD(h∗
S)(h

∗
S)

= EDS
[1(h∗

S(x) ̸= y)] + EDS
[(ωx(h

∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

≤ EDS
[1(h(x) ̸= y)] + EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)] (by optimality of h∗

S on DS)
= EDS

[ω̄(h) · 1(h(x) ̸= y)] + EDS
[(ωx(h

∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)] (multiply by ω̄(h∗

S) = 1)
= EDS

[ωx(h) · 1(h(x) ̸= y)] + EDS
[(ω̄(h)− ωx(h)) · 1(h(x) ̸= y)] (add and subtract ω̄(h∗

S))
+ EDS

[(ωx(h
∗
S)− ω̄(h∗

S)) · 1(h∗
S(x) ̸= y)]

= ErrD(h)(h) + Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

Moving the error terms to one side, we have

ErrD(h∗
S)(h

∗
S)− ErrD(h)(h)

≤ Cov(ωx(h
∗
S),1(h

∗
S(x) ̸= y))− Cov(ωx(h),1(h(x) ̸= y))

≤
√

Var(ωx(h∗
S)) · Var(1(h∗

S(x) ̸= y)) (|Cov(X,Y )| ≤
√

Var(X) · Var(Y ))

+
√

Var(ωx(h)) · Var(1(h(x) ̸= y))

=
√

Var(ωx(h∗
S)) · ErrS(h∗

S)(1− ErrS(h∗
S)) +

√
Var(ωx(h)) · ErrDS

(h)(1− ErrDS
(h))

≤
√

Var(ωx(h∗
S)) · ErrS(h∗

S) +
√

Var(ωx(h)) · ErrDS
(h) (1− ErrDS

(h) ≤ 1)

≤
√

ErrDS
(h) ·

(√
Var(ωx(h∗

S)) +
√

Var(ωx(h))

)
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Since this holds for any h, it certainly holds for h = h∗
T .

A.8. Omitted Assumptions and Proof of Theorem 4.3

Denote X+(h) = {x : ωx(h) ≥ 1} and X−(h) = {x : ωx(h) < 1}. First we observe that

∫
X+(h)

PDS
(X = x)(1− ωx(h))dx

+

∫
X−(h)

PDS
(X = x)(1− ωx(h))dx = 0

This is simply because of
∫
x
PDS

(X = x) · ωx(h)dx =
∫
x
PD(h)(X = x)dx = 1.

Now we provide detailed specifications of the assumptions for proving Theorem 4.3:

Assumption A.3 (increased ωx(h) value points are more likely to have Y = +1).

∣∣∣∣∣
∫
X+(h)

PDS
(Y = +1, X = x)(1− ωx(h))dx

∣∣∣∣∣ ≥
∣∣∣∣∣
∫
X−(h)

PDS
(Y = +1, X = x)(1− ωx(h))dx

∣∣∣∣∣
Assumption A.4 (increased ωx(h) value points are more likely to be classified as +1).

∣∣∣∣∣
∫
X+(h)

PDS
(h(x) = +1, X = x)(1− ωx(h))dx

∣∣∣∣∣ ≥
∣∣∣∣∣
∫
X−(h)

PDS
(h(x) = +1, X = x)(1− ωx(h))dx

∣∣∣∣∣
Assumption A.5. PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x) and ωx(h) is positively correlated:

Cov
(
PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x), ωx(h)

)
> 0

The above assumption states that for a deterministic classifier h, within all h(X) = +1 or h(X) = −1, a higher
PD(Y = +1|X = x) associates with a higher ωx(h). With the help of Assumption A.3 - Assumption A.5, we proceed to
proof for Theorem 4.3:
Proof. Notice that in the setting of binary classification, we can write the total variation distance between DY |S and DY (h)
as the difference between the probability of Y = +1 and the probability of Y = −1:

dTV(DY |S ,DY (h))

=
∣∣PDS

(Y = +1)− PD(h)(Y = +1)
∣∣

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x)dx−
∫

PDS
(Y = +1|X = x)PDS

(X = x)ωx(h)dx

∣∣∣∣
=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣ (12)

Similarly we have

dTV(Dh|S ,Dh(h)) =

∣∣∣∣∫ PDS
(h(x) = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣ (13)
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We can further expand the total variation distance between DY |S and DY (h) as follows:

dTV(DY |S ,DY (h))

=

∣∣∣∣∫ PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

∣∣∣∣
=
∣∣∣∫

X+(h)

PD(Y = +1|X = x)PDS
(X = x) · (1− ωx(h))dx︸ ︷︷ ︸

≤0

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx︸ ︷︷ ︸
>0

∣∣∣
=−

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx

−
∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (1− ωx(h))dx (by Assumption A.3)

=

∫
X+(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx

+

∫
X−(h)

PDS
(Y = +1|X = x)PDS

(X = x) · (ωx(h)− 1)dx (by equation 12)

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Similarly, by assumption A.4 and equation equation 13, we have

dTV(Dh|S ,Dh(h)) =

∫
PDS

(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

Thus we can bound the difference between dTV(DY |S ,DY (h)) and dTV(Dh|S ,Dh(h)) as follows:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

=

∫
PDS

(Y = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

−
∫

PD(h(x) = +1|X = x)PDS
(X = x) · (ωx(h)− 1)dx

=

∫
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]PDS

(X = x) · (ωx(h)− 1)dx

= EDS
[(PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)) (ωx(h)− 1)] (by Assumption A.5)

> EDS
[PDS

(Y = +1|X = x)− PDS
(h(x) = +1|X = x)]EDS

[ωx(h)− 1]

= 0

Combining the above with Theorem 3.3, we have

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2
> 0

A.9. Omitted details for Section 4.3

To make the problem tractable and meaningful, we make the following assumptions:
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Assumption A.6. (Agent’s Initial Feature Distribution) Agents’ initial features are uniformly distributed between [0, 1] ∈
R1:

Pr
DS

(x) =

{
1, if x ∈ [0, 1]

0, otherwise

Assumption A.7. (Agent’s Cost Function) The cost of changing from x to x′ is proportional to the distance between them:
c(x, x′) = ∥x− x′∥.

Under Assumption A.7, only agents whose features are in between [τh −B, τh) will attempt to change their feature. We
also assume that feature updates are probabilistic, such that agents with features closer to the decision boundary τh have a
greater chance of updating their feature and each updated feature x′ is sampled from a uniform distribution depending on τh,
B, and x (see Assumption A.8 and Assumption A.9):

Assumption A.8 (Agent’s Success Manipulation Probability). For agents who attempt to update their features, the probability
of a successful feature update is

Pr(X ′ ̸= X) = 1− |x− τh|
B

(14)

Intuitively this assumption means that the closer the agent’s original feature x is to the decision boundary τh, the more likely
they can successfully change their feature to cross the decision boundary.

Assumption A.9 (Newly Adapted Feature’s Distribution). An agent’s updated feature x′, given original feature x, manipu-
lation budget B, and classification boundary τh, is sampled as

X ′ ∼ Unif(τh, τh +B − x) (15)

This assumption aims to capture the fact that even though agent targets to change their feature to the decision boundary τh
(i.e. the least cost action to get a favorable prediction outcome), they might end up reaching to a feature that is beyond the
decision boundary.

With Assumption A.7 - Assumption A.9, we can further specify the important weight wx(h) for the strategic response
setting:

Lemma A.10. Recall the definition for the covariate shift important weight coefficient ωx(h) :=
PD(h)(X=x)

PDS
(X=x) , for our

strategic response setting, we have,

wx(h) =


1, x ∈ [0, τh −B)
τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

1, x ∈ [τh +B, 1]

(16)

Proof for Lemma A.10:

Proof. We discuss the induced distribution D(h) by cases:

• For the features distributed between [0, τh −B]: since we assume the agents are rational, under assumption A.7, agents
with feature that is smaller than [0, τh −B] will not perform any kinds of adaptations, and no other agents will adapt
their features to this range of features either, so the distribution between [0, τh −B] will remain the same as before.

• For the target distribution between [τh −B, τh] can be directly calculated from assumption A.8.

• For distribution between [τh, τh +B], consider a particular feature x⋆ ∈ [τh, τh +B], under Assumption A.9, we know
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its new distribution becomes:

Pr
D(h)

(x = x⋆) = 1 +

∫ τh

x⋆−B

1− τh−z
B

B − τh + z
dz

= 1 +

∫ τh

x⋆−B

1

B
dz

=
1

B
(−x⋆ + τh + 2B)

• For the target distribution between [τh +B, 1]: under assumption A.7 and A.9, we know that no agents will change
their feature to this feature region. So the distribution between [τh +B, 1] remains the same as the source distribution.

Recall the definition for the covariate shift important weight coefficient ωx(h) :=
PD(h)(X=x)

PDS
(X=x) , the distribution of ωx(h)

after agents’ strategic responding becomes:

ωx(h) =


1, x ∈ [0, τh −B) and x ∈ [τh +B, 1]
τh−x
B , x ∈ [τh −B, τh)

1
B (−x+ τh + 2B), x ∈ [τh, τh +B)

0, otherwise

(17)

Proof for Proposition 4.4:

Proof. According to Lemma A.10, we can compute the variance of wx(h) as Var(wx(h)) = E(wx(h)
2)−E(wx(h)

2) = 2
3B.

Then by plugging it to the general bound for Theorem 4.2 gives us the desirable result.

A.10. Proof of Theorem 5.1

Proof. Defining p := PDS
(Y = +1), we have

ErrD(h∗
S)(h

∗
S) = ω(h∗

S) · Err+(h∗
S) + (1− ω(h∗

S)) · Err−(h∗
S) (by definitions of ω(h∗

S), Err+(h∗
S), and Err−(h∗

S))

= p · Err+(h∗
S) + (1− p) · Err−(h∗

S)︸ ︷︷ ︸
(I)

+(ω(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] (18)

We can expand (I) as follows:

p · Err+(h∗
S) + (1− p) · Err−(h∗

S)

≤ p · Err+(h∗
T ) + (1− p) · Err−(h∗

T ) (by optimality of h∗
S on DS)

= ω(h∗
T ) · Err+(h∗

T ) + (1− ω(h∗
T )) · Err−(h∗

T ) + (p− ω(h∗
T )) · [Err+(h∗

T )− Err−(h∗
T )]

= ErrD(h∗
T )(h

∗
T ) + (p− ω(h∗

T )) · [Err+(h∗
T )− Err−(h∗

T )] .

Plugging this back into equation 18, we have

ErrD(h∗
S)(h

∗
S)− ErrD(h∗

T )(h
∗
T ) ≤ (ω(h∗

S)− p)[Err+(h∗
S)− Err−(h∗

S)] + (p− ω(h∗
T )) · [Err+(h∗

T )− Err−(h∗
T )]

Notice that

0.5(Err+(h)− Err−(h)) = 0.5 · 1− 0.5 · P(h(X) = +1|Y = +1)− 0.5 · P(h(X) = +1|Y = −1)

= 0.5− PDu
(h(X) = +1)

where Du is a distribution with uniform prior. Then

(ω(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] = 2(ω(h∗

S)− p) · (0.5− PDu
(h(X) = +1))

(p− ω(h∗
T ))[Err+(h∗

T )− Err−(h∗
T )] = 2(p− ω(h∗

T )) · (0.5− PDu
(h(X) = +1))
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Adding together these two equations yields

(ω(h∗
S)− p)[Err+(h∗

S)− Err−(h∗
S)] + (p− ω(h∗

T )) · [Err+(h∗
T )− Err−(h∗

T )]

= 2(ω(h∗
S)− p) · (0.5− PDu

(h∗
S(X) = +1)) + 2(p− ω(h∗

T )) · (0.5− PDu
(h∗

T (X) = +1))

= (ω(h∗
S)− ω(h∗

T ))− 2 (ω(h∗
S)PDu

(h∗
S(X) = +1)− ω(h∗

T )PDu
(h∗

T (X) = +1))

+ 2p · (PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1))

≤ |ω(h∗
S)− ω(h∗

T )| · (1 + 2|PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1)|)
+ 2p · |PDu

(h∗
S(X) = +1)− PDu

(h∗
T (X) = +1)| (19)

Meanwhile,

|PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1)|
≤ 0.5 · |PD|Y=+1(h

∗
S(X) = +1)− PD|Y=+1(h

∗
T (X) = +1)|

+ 0.5 · |PD|Y=−1(h
∗
S(X) = +1)− PD|Y=−1(h

∗
T (X) = +1)|

= 0.5 (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) (20)

Combining equation 19 and equation 20 gives

|ω(h∗
S)− ω(h∗

T )| · (1 + 2 · |PDu
(h∗

S(X) = +1)− PDu
(h∗

T (X) = +1)|)
+ 2p · |PDu

(h∗
S(X) = +1)− PDu

(h∗
T (X) = +1)|

≤ |ω(h∗
S)− ω(h∗

T )| · (1 + dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

+ p · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T ))

≤ |ω(h∗
S)− ω(h∗

T )|+ (1 + p) · (dTV(D+(h
∗
S),D+(h

∗
T )) + dTV(D−(h

∗
S),D−(h

∗
T )) .

A.11. Proof of Theorem 5.2

We will make use of the following fact:

Lemma A.11. Under label shift, TPRS(h) = TPRh(h) and FPRS(h) = FPRh(h).

Proof. We have

TPRh(h) =PD(h)(h(X) = +1|Y = +1)

=

∫
PD(h)(h(X) = +1, X = x|Y = +1)dx

=

∫
PD(h)(h(X) = +1|X = x, Y = +1)PD(h)(X = x|Y = +1)dx

=

∫
1(h(x) = +1)PD(h)(X = x|Y = +1)dx

=

∫
1(h(x) = +1)PDS

(X = x|Y = +1)dx (by definition of label shift)

=

∫
PDS

(h(X) = +1|X = x, Y = +1)PDS
(X = x|Y = +1)dx

=TPRS(h)

The argument for TPRh(h) = TPRS(h) is analogous.

Now we proceed to prove the theorem.



Model Transferability

Proof of Theorem 5.2. In section 3.2 we showed a general lower bound on the maximum of ErrDS
(h) and ErrD(h)(h):

max{ErrDS
(h),ErrD(h)(h)} ≥

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h))

2

In the case of label shift, and by the definitions of p and ω(h),

dTV(DY |S ,DY (h)) = |PDS
(Y = +1)− PD(h)(Y = +1)| = |p− ω(h)| (21)

In addition, we have

Dh|S = PS(h(X) = +1) = p · TPRS(h) + (1− p) · FPRS(h) (22)

Similarly

Dh(h) = PD(h)(h(X) = +1)

= ω(h) · TPRh(h) + (1− ω(h)) · FPRh(h)

= ω(h) · TPRS(h) + (1− ω(h)) · FPRS(h) (by Lemma A.11) (23)

Therefore

dTV(Dh|S ,Dh(h)) =|PDS
(h(X) = +1)− PD(h)(h(X) = +1)|

=|(p− ω(h)) · TPRS(h) + (ω(h)− p) · FPRS(h)| (By equation 23 and equation 22)
=|p− ω(h)| · |TPRS(h)− FPRS(h)| (24)

which yields:

dTV(DY |S ,DY (h))− dTV(Dh|S ,Dh(h)) = |p− ω(h)|(1− |TPRS(h)− FPRS(h)|) (By equation 21 and equation 24)

completing the proof.

A.12. Proof of Proposition 5.3

Proof.

|ω(h∗
S)− ω(h∗

T )| ·
1

PDS
(Y = +1)

=
|(1− ErrDS

(h∗
S))TPRS(h

∗
S)− (1− ErrDS

(h∗
T ))TPRS(h

∗
T )|

(1− ErrDS
(h∗

S)) · (1− ErrDS
(h∗

T ))

≤|ErrDS
(h∗

S)− ErrDS
(h∗

T )| · |TPRS(h
∗
S)− TPRS(h

∗
T )|

(1− ErrDS
(h∗

S)) · (1− ErrDS
(h∗

T ))
(25)

The inequality above is due to Lemma 7 of (Liu & Liu, 2015).

B. Missing Experimental Details
B.1. Synthetic Experiments Using DAG

Covariate Shift We specify the causal DAG for covariate shift setting in the following way:

X1 ∼ Unif(−1, 1)

X2 ∼ 1.2X1 +N (0, σ2
2)

X3 ∼ −X2
1 +N (0, σ2

3)

Y := 2sign(X2 > 0)− 1
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where σ2
2 and σ2

3 are parameters of our choices.
Adaptation function We assume the new distribution of feature X ′

1 will be generated in the following way:

X ′
1 = ∆(X) = X1 + c · (h(X)− 1)

where c ∈ R1 > 0 is the parameter controlling how much the prediction h(X) affect the generating of X ′
1, namely the

magnitude of distribution shift. Intuitively, this adaptation function means that if a feature x is predicted to be positive
(h(x) = +1), then decision subjects are more likely to adapt to that feature in the induced distribution; Otherwise, decision
subjects are more likely to be moving away from x since they know it will lead to a negative prediction.

Target Shift We specify the causal DAG for target shift setting in the following way:

(Y + 1)/2 ∼ Bernoulli(α)

X1|Y = y ∼ N[0,1](µy, σ
2)

X2 = −0.8X1 +N (0, σ2
2)

X3 = 0.2Y +N (0, σ2
3)

where N[0,1] represents a truncated Gaussian distribution taken value between 0 and 1. α, µy , σ2,σ2
2 and σ2

3 are parameters
of our choices.
Adaptation function We assume the new distribution of the qualification Y ′ will be updated in the following way:

P(Y ′ = +1|h(X) = h, Y = y) = chy, where {h, y} ∈ {−1,+1}

where 0 ≤ chy ∈ R1 ≤ 1 represents the likelihood for a person with original qualification Y = y and get predicted as
h(X) = h to be qualified in the next step (Y ′ = +1).

B.2. Synthetic Experiments Using Real-world Data

On the preprocessed FICO credit score data set (Board of Governors of the Federal Reserve System (US), 2007; Hardt et al.,
2016b), we convert the cumulative distribution function (CDF) of TransRisk score among demographic groups (denoted as
A, including Black, Asian, Hispanic, and White) into group-dependent densities of the credit score. We then generate a
balanced sample where each group has equal representation, with credit scores (denoted as Q) initialized by sampling from
the corresponding group-dependent density. The value of attributes for each data point is then updated under a specified
dynamics (as detailed below) to model the real-world scenario of repeated resource allocation (with decision denoted as D).
Since we are considering the dynamic setting, we further specify the data generating process in the following way (from
time step T = t to T = t+ 1):

Xt,1 ∼ 1.5Qt + U [−ϵ1, ϵ1]

Xt,2 ∼ 0.8At + U [−ϵ2, ϵ2]

Xt,3 ∼ At +N (0, σ2)

Yt ∼ Bernoulli(qt) for a given value of Qt = qt

Dt = ft(At, Xt,1, Xt,2, Xt,3)

Qt+1 = {Qt · [1 + αD(Dt) + αY (Yt)]}(0,1]
At+1 = At (fixed population)

where {·}(0,1] represents truncated value between the interval (0, 1], ft(·) represents the decision policy from input features,
and ϵ1, ϵ2, σ are parameters of our choices.

Within the same time step, i.e., for variables that share the subscript t, Qt and At are root causes for all other variables
(Xt,1, Xt,2, Xt,3, Dt, Yt). For different time steps, e.g., from T = t to T = t + 1, the new distribution at T = t + 1 is
induced by the deployment of the decision policy Dt. Such impact is modeled by a multiplicative update in Qt+1 from Qt

with parameters (or functions) αD(·) and αY (·) that depend on Dt and Yt, respectively.


