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Abstract
As the curation of data for machine learning be-
comes increasingly automated, dataset tampering
is a mounting threat. Backdoor attackers tamper
with training data to embed a vulnerability in mod-
els that are trained on that data. This vulnerability
is then activated at inference time by placing a
“trigger” into the model’s input. Typical backdoor
attacks insert the trigger directly into the training
data, although the presence of such an attack may
be visible upon inspection. In contrast, the Hid-
den Trigger Backdoor Attack achieves poisoning
without placing a trigger into the training data at
all. However, this hidden trigger attack is inef-
fective at poisoning neural networks trained from
scratch. We develop a new hidden trigger attack,
Sleeper Agent, which employs gradient matching,
data selection, and target model re-training during
the crafting process. Sleeper Agent is the first hid-
den trigger backdoor attack to be effective against
neural networks trained from scratch. We demon-
strate its effectiveness on ImageNet and in black-
box settings. Our implementation code can be
found at: https://github.com/hsouri/
Sleeper-Agent.

1. Introduction
High-performance deep learning systems have grown in
scale at a rapid pace. As a result, practitioners seek larger
and larger datasets with which to train their data-hungry
models. Due to the surging demand for training data along
with improved accessibility via the web, the data curation
process is increasingly automated. Dataset manipulation
attacks exploit vulnerabilities in the curation pipeline to ma-
nipulate training data so that downstream machine learning

*Equal contribution 1Johns Hopkins University 2University
of Maryland, College Park. Correspondence to: Hossein Souri
<hsouri1@jhu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Figure 1: High-level schematic of our attack. A small pro-
portion of slightly perturbed data is added to the training set
which “backdoors” the model so that it misclassifies patched
images at inference.

models contain exploitable behaviors. Some attacks degrade
inference across samples (Biggio et al., 2012; Fowl et al.,
2021a), while targeted data poisoning attacks induce a mal-
function on a specific target sample (Shafahi et al., 2018;
Geiping et al., 2020).

Backdoor attacks are a style of dataset manipulation that
induces a model to execute the attacker’s desired behavior
when its input contains a backdoor trigger (Gu et al., 2017;
Bagdasaryan et al., 2020; Liu et al., 2017; Li et al., 2020b).
To this end, typical backdoor attacks inject the trigger di-
rectly into training data so that models trained on this data
rely on the trigger to perform inference (Gu et al., 2017;
Chen et al., 2017). Such threat models for classification
problems typically incorporate label flips as well. How-
ever, images poisoned under this style of attack are often
easily identifiable since they belong to the incorrect class
and contain a visible trigger. One line of work uses only
small or realistic-looking triggers, but these may still be
visible and are often placed in conspicuous image regions
(Chen et al., 2017; Gu et al., 2017; Li et al., 2020a). Another
recent method, Hidden Trigger Backdoor Attack (HTBD),
instead crafts correctly labeled poisons which do not con-
tain the trigger at all, but this feature collision method is not
effective on models trained from scratch (Saha et al., 2019;
Schwarzschild et al., 2020). The task of crafting backdoor
poisons that simultaneously hide the trigger and are also
effective at compromising deep models remains an open
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and challenging problem. This is especially the case in
the black-box scenario, where the attacker does not know
the victim’s architecture and training routine, and in the
clean-label scenario where the attacker cannot flip labels.

In this work, we develop the first hidden trigger attack that
can reliably backdoor deep neural networks trained from
scratch. Our threat model is illustrated in Figure 1. Our
attack, Sleeper Agent, contains the following essential fea-
tures:

• Gradient matching: our attack is based on recent ad-
vances that replace direct solvers for bi-level opti-
mization problems with a gradient alignment objective
(Geiping et al., 2020). However, the following techni-
cal additions are necessary to successfully backdoor
neural networks (see Tables 10, 11, 12).

• Data selection: we specifically poison images that have
a high impact on training in order to maximize the
attack’s effect.

• Adaptive retraining: while crafting poisons, we period-
ically retrain the surrogate models to better reflect how
models respond to our poisoned data during training.

• Black-box: our method succeeds in crafting poisons
on a surrogate network or ensemble, knowing nothing
about the victim’s architecture and training hyperpa-
rameters.

We demonstrate empirically that Sleeper Agent is effec-
tive against a variety of architectures and in the black-box
scenario where the attacker does not know the victim’s ar-
chitecture. The latter scenario has proved very difficult for
existing methods (Schwarzschild et al., 2020), although it
is more realistic. An added benefit of the gradient match-
ing strategy is that it scales to large tasks. We demonstrate
this property by backdooring models on ImageNet (Rus-
sakovsky et al., 2015). Some random clean and poisoned
samples from the ImageNet dataset are shown in Figure 2.

2. Related Work
Data poisoning attacks come in many shapes and sizes. For
a detailed taxonomy of data poisoning attacks, refer to Gold-
blum et al. (2020). Early data poisoning attacks often fo-
cused simply on degrading clean validation performance on
simple models like SVMs, logistic regression models, and
linear classifiers (Biggio et al., 2012; Muñoz-González et al.,
2017; Steinhardt et al., 2017). These methods often relied
upon the learning problems being convex in order to ex-
actly anticipate the impact of perturbations to training data.
Following these early works, attacks quickly became more
specialized in their scope and approach. Modern availability

Figure 2: Sample clean source (first column), patched source
(second column), clean target (third column), and poisoned
target (fourth column) from the ImageNet dataset. The
last column is slightly perturbed, but the perturbed and
corresponding clean images are hardly distinguishable by
the human eye. More visualizations of the sucessful attacks
on the ImageNet and CIFAR-10 datasets can be found in
the Appendix C.

attacks on deep networks degrade overall performance via
gradient minimization (Shen et al., 2019), easily learnable
patterns (Huang et al., 2021), or adversarial noise (Feng
et al., 2019; Fowl et al., 2021b). However, these works often
perturb the entire training set - an unrealistic assumption for
many poisoning settings.

Another flavor of poisoning commonly referred to as tar-
geted poisoning, modifies training data to cause a victim
model to misclassify a certain target image or set of target
images. Early work in this domain operates in the setting of
transfer learning by causing feature collisions (Shafahi et al.,
2018). Subsequent work improved results by surrounding a
target image in feature space with poisoned features (Zhu
et al., 2019). Follow up works further improved targeted
poisoning by proposing methods that are effective against
from-scratch training regimes (Huang et al., 2020; Geiping
et al., 2020). These attacks remain limited in scope, how-
ever, and often fail to induce misclassification on more than
one target image (Geiping et al., 2020). Adjacent to targeted
data poisoning are backdoor attacks. Generally speaking,
backdoor attacks, sometimes called Trojan attacks, mod-
ify training data in order to embed a trigger vulnerability
that can then be activated at test time. Crucially, this at-
tack requires the attacker to modify data at inference time.
For example, an attacker may add a small visual pattern,
like a colorful square, to a clean image that was previously
classified correctly in order for the image to be misclassi-
fied by a network after the addition of the patch (Gu et al.,
2017). However, these works can require training labels
to be flipped, and/or a conspicuous patch to be added to
training data.
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Of particular relevance to this work is a subset of backdoor
attacks that are clean label, meaning that modifications to
training data must not change the semantic label of that
data. This is especially important because an attacker may
not control the labeling method of the victim and therefore
cannot rely upon techniques like label flipping in order to
induce poisoning. One previous work enforces this criterion
by applying patches to adversarial examples, but the patches
are clearly visible, even when they are not fully opaque,
and the attack fails when patches are transparent enough to
be unnoticeable (Turner et al., 2019; Schwarzschild et al.,
2020). Another work, “Hidden Trigger Backdoor Attacks”
enforces an ℓ∞ constraint on the entire perturbation (as is
common in the adversarial attack literature), but this method
is only effective on hand selected class pairs and only works
in transfer learning scenarios where the pretrained victim
model is both fixed and known to the attacker (Saha et al.,
2019; Schwarzschild et al., 2020). Another clean label back-
door attack hides the trigger in training data via steganog-
raphy (Li et al., 2019); however, this attack also assumes
access to the pretrained model that a victim will use to fine
tune on poisoned data. Moreover, the latter attack uses trig-
gers that cover the entire image, and these triggers cannot
be chosen by the user. Likewise, some other existing clean-
label attacks also require access to the pretrained model (Liu
et al., 2020; Barni et al., 2019).

In contrast to these existing methods, Sleeper Agent does
not require knowledge of the victim model, the perturbations
are not visible in poisoned training data, and poisons can be
adapted to any patch.

3. Method
3.1. Threat Model

We follow commonly used threat models used in the back-
door literature (Gu et al., 2017; Saha et al., 2019). We define
two parties, the attacker and the victim. We assume that the
attacker perturbs and disseminates data. As in Saha et al.
(2019); Geiping et al. (2020), we assume the training data
modifications are bounded in ℓ∞ norm. The victim then
trains a model on data - a portion of which has been per-
turbed by the attacker. Once the victim’s model is trained
and deployed, we also assume that the attacker can then
apply a patch to select images at test time to trigger the
backdoor attack. This combination of ℓ∞ poison bounds,
along with a patch-based trigger is especially threatening to
a practitioner who trains a model on a large corpus of data
scraped from the internet, and then deploys said model on
real-world data which could be more easily altered with a
patch perturbation.

However, we diverge from Gu et al. (2017), Saha et al.
(2019) in our assumptions about the knowledge of the vic-

tim. We assume a far more strict threat model wherein the
attacker does not have access to the parameters, architecture,
or learning procedure of the victim. This represents a realis-
tic scenario wherein a victim trains a randomly initialized
deep network from scratch on scraped data.

3.2. Problem Setup

Formally, we aim to craft perturbations δ = {δi}Ni=1 to
training data T = {(xi, yi)}Ni=1 for a loss function, L, and
a surrogate network, F , with parameters θ that solve the
following bilevel problem:

min
δ∈C

E(x,y)∼D

[
L (F (x+ p; θ(δ)), yt)

]
(1)

s.t. θ(δ) ∈ argmin
θ

∑
(xi,yi)∈T

L(F (xi + δi; θ), yi), (2)

where p denotes the trigger, yt denotes the intended target
label of the attacker, and C = {δ : ||δ||∞ ≤ ϵ, δi = 0 ∀i >
M} denotes a set of constraints on the perturbations. Naive
backdoor attacks often solve this bilevel problem by insert-
ing p directly into training data (belonging to class yt) so
that the network learns to associate the trigger pattern with
the desired class label. However, our threat model is more
strict, which is reflected in our constraints on δ. We require
that δ is bounded in ℓ∞ norm and that δi = 0 for all but a
small fraction of indices, i. WLOG, assume that the first
M ≤ N perturbations are allowed to be nonzero. In the
black-box scenario, the surrogate model, F , may not resem-
ble the victim, in terms of either architecture or training
hyperparameters, and yet the attack is effective nonetheless.

We stress that unlike Saha et al. (2019), our primary area
of interest is not transfer learning but rather from-scratch
training. This threat model results in a more complex op-
timization procedure - one where simpler objectives, like
feature collision, have failed (Schwarzschild et al., 2020).
Due to the inner optimization problem posed in Equation 2,
directly computing optimal perturbations is intractable for
deep networks as it would require differentiating through
the training procedure of F . Thus, heuristics must be used
to optimize the poisons.

3.3. Our Approach

Recently, several works have proposed solving bilevel prob-
lems for deep networks by utilizing gradient alignment.
Gradient alignment modifies training data to align the train-
ing gradient with the gradient of some desired objective.
It has proven useful for dataset condensation (Zhao et al.,
2020), as well as integrity and availability poisoning attacks
(Geiping et al., 2020; Fowl et al., 2021a). Unlike other
heuristics like partial unrolling of the computation graph
or feature collision, gradient alignment has proven to be a
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stable way to solve a bilevel problem that involves training a
deep network in the inner objective. However, poisoning ap-
proaches utilizing gradient alignment have often come with
limitations, such as poor performance on multiple target
images (Geiping et al., 2020), or strict requirements about
poisoning an entire dataset (Fowl et al., 2021a).

In contrast, we study the behaviour of a class of attacks
capable of causing misclassification of a large proportion
of unseen patched images of a selected class, all while
modifying only a small fraction of training data. We first
define the adversarial objective:

Ladv = E(x,y)∼Ds

[
L
(
F (x+ p; θ), yt

)]
, (3)

where Ds denotes the source class distribution, p is a patch
that the attacker uses to trigger misclassification at test-
time, and yt is the intended target label. This objective
is minimized when an image becomes misclassified into a
desired class after the attacker’s patch is added to it. For
example, an attacker may aim for a network to classify
images of dogs correctly but to misclassify the same dog
images as cats when a patch is added to the dog images.

To achieve this behavior, we perturb training data by opti-
mizing the following alignment objective:

A = 1− ∇θLtrain · ∇θLadv

||∇θLtrain|| · ||∇θLadv||
, (4)

∇θLtrain =
1

M

M∑
i=1

∇θL
(
F (xi + δi; θ), yi

)
is the training gradient involving the nonzero perturbations.
We then estimate the expectation in Equation 3 by calculat-
ing the average adversarial loss over K training points from
the source class:

∇θLadv =
1

K

∑
(x,ys)∈T

∇θ

(
L
(
F (x+ p; θ), yt

))
In our most basic attack, we begin optimizing the objective
in Equation 4 by fixing a parameter vector θ used to calcu-
late A throughout crafting. This parameter vector is trained
on clean data and is used to calculate the training and adver-
sarial gradients. We then optimize using 250 steps of signed
Adam. Note that while this is not a general constraint for
our method, we follow the setup in Saha et al. (2019) where
all poisoned training samples are drawn from a single target
class. That is to say, the M poisons the attacker is allowed
to perturb have the form {(xi, yt)}Mi=1.

We also employ differentiable data augmentation which
has shown to improve stability of poisons in Geiping et al.
(2020). While gradient alignment proves more successful
than other approaches to the bilevel problem, we addition-
ally introduce two novel techniques that boost success by

> 250%. In Appendix A.1, we see that these techniques
yield significantly better estimates of the adversarial gradi-
ents during a victim’s training run:

Poison Selection: Our threat model assumes the attacker
disseminates perturbed images online through avenues such
as social media. With this in mind, the attacker can choose
which images to perturb. For example, the attacker could
choose images of dogs in which to “hide” the trigger. While
random selection with our objective does successfully poi-
son victims trained from scratch, we experiment with selec-
tion by gradient norm. Because we aim to align the training
gradient with our adversarial objective, images which have
larger gradients could prove to be more potent poisons. We
find that choosing target poison images by taking images
with the maximum training gradient norm at the parame-
ter vector θ noticeably improves poison performance (see
Tables 3, 10).

Model Retraining: In the most straightforward version
of our attack, the attacker optimizes the perturbations us-
ing fixed model parameters for a number of steps (usually
250). However, this may lead to perturbations overfitting
to a clean-trained model; during a real attack, a model is
trained on poisoned data, but we optimize the poisons on a
model that is trained only with clean data. To close the gap,
we introduce model retraining during the poison crafting
procedure. After retraining our model on the perturbed data,
we again take optimization steps on the perturbations, but
this time evaluating the training and adversarial losses at
the new parameter vector. We repeat this process of retrain-
ing/optimizing several times and find that this noticeably
improves the success of the poisons - often boosting success
by more than 20% (see Tables 3, 10, 11).

See Appendix A.1 for an empirical evaluation of the impor-
tance of poison selection and model retraining for estimating
the adversarial gradients of a victim. A brief description of
our threat model is found in Algorithm 1.

4. Experiments
In this section, we empirically test the proposed Sleeper
Agent backdoor attack on multiple datasets, against black-
box settings, using an existing benchmark. Additional ex-
periments including evaluations against popular defenses
and ablations studies can be found in Appendix A. The
experimental setup is described in detail in Appendix B.

4.1. Baseline Evaluations

Typically, backdoor attacks are considered successful if
poisoned models do not suffer from a significant drop in
validation accuracy on images without triggers, but they
reliably misclassify images from the source class into the
target class when a trigger is applied. We begin by test-
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Table 1: Baseline evaluations on CIFAR-10. Perturbations have ℓ∞-norm bounded above by 16/255, and poison budget is
1% of training images.

Architecture ResNet-18 MobileNetV2 VGG11

Clean model val (%) 92.31 (±0.08) 88.19 (±0.05) 89.00 (±0.03)
Poisoned model val (%) 92.16 (±0.05) 88.03 (±0.05) 88.70 (±0.04)
Clean model source val (%) 92.36 (±0.93) 88.55 (±1.64) 90.62 (±1.23)
Poisoned model source val (%) 91.50 (±0.88) 87.79 (±1.60) 89.45 (±1.19)
Poisoned model patched source val (%) 12.96 (±5.40) 21.09 (±5.41) 17.97 (±4.00)
Attack Success Rate (%) 85.27 (±5.90) 72.92 (±6.09) 75.15 (±5.40)

Table 2: The effect of poison budget. Experiments on CIFAR-10 with ResNet-18 models (He et al., 2016). Perturbations
have ℓ∞-norm ≤ 16/255.

Poison Budget 50 (0.1%) 100 (0.2%) 250 (0.5%) 400 (0.6%) 500 (1%)

Clean model val (%) 92.34 (±0.05) 92.36 (±0.04) 92.31 (±0.04) 92.15 (±0.08) 92.31 (±0.08)
Poisoned model val (%) 92.33 (±0.04) 92.34 (±0.05) 92.25 (±0.04) 92.12 (±0.06) 92.16 (±0.05)
Clean model source val (%) 93.01 (±0.69) 91.08 (±0.85) 92.43 (±0.74) 92.42 (±0.80) 92.36 (±0.93)
Poisoned model source val (%) 93.03 (±0.67) 90.61 (±0.86) 91.83 (±0.75) 91.88 (±0.79) 91.50 (±0.88)
Poisoned model patched source val (%) 61.04 (±4.27) 40.07 (±5.72) 22.77 (±4.77) 15.88 (±4.91) 12.96 (±5.40)
Attack Success Rate (%) 24.71 (±4.10) 49.76 (±6.21) 72.48 (±5.24) 81.44 (±5.25) 85.27 (±5.90)

Algorithm 1 Sleeper Agent poison crafting procedure

Input: Pretrained surrogate network F (. ; θ), training data T =
{(xi, yi)}Ni=1, trigger patch p, source label ys, target label
yt, poison budget M ≤ N , optimization steps R, retraining
factor T

Begin:
1: Select M samples with label yt from T with highest gradient

norm
2: Randomly initialize perturbations δMi=1

3: for r = 1, 2, ... , R optimizations steps do
4: Compute A(δ, θ, p, yt, ys) and update δMi=1 with a step of

signed Adam
5: if r mod ⌊R/(T + 1)⌋ = 0 and r ̸= R then
6: Retrain F on poisoned training data {(xi+δi, yi)}Mi=1∪

{(xi, yi)}Ni=M+1 and update θ
7: end if
8: end for
9: return: poison perturbations δMi=1

ing our method in the gray-box setting. In the gray-box
setting, we use the same architecture but different random
initialization for crafting poisons and testing. Table 1 de-
picts the performance of Sleeper Agent on CIFAR-10 when
perturbing 1% of images in the training set with each per-
turbation constrained in an ℓ∞-norm ball of radius 16/255.
During poison crafting, the surrogate model undergoes four
evenly spaced retraining periods (T = 4), and we test the
effectiveness of each surrogate model architecture at gen-
erating poisons for victim models of the same architecture.
In subsequent sections, we will extend these experiments to
the black-box setting and to an ensemblized attacker. We
observe in these experiments that the poisoned models in-
deed achieve very similar validation accuracy to their clean
counterparts, yet the application of triggers to source class
images causes them to be misclassified into the target class
as desired. In Table 2, we observe that Sleeper Agent can
even be effective when the attacker is only able to poison
a very small percentage of the training set. Note that the

success of backdoor attacks depends greatly on the choice
of source and target classes, especially since some classes
contain very large objects which may dominate the image,
even when a trigger is inserted. As a result, the variance
of attack performance is high since we sample class pairs
randomly. The poisoning and victim hyperparameters we
use for our experiments can be found in Appendix B.

The benefits of ensembling: One simple way we can im-
prove the transferability of our backdoor attack across ini-
tializations of the same architecture is to craft our poisons
on an ensemble of multiple copies of the same architec-
ture but trained using different initializations and different
batch sampling during their training procedures. In Table
3, we observe that this ensembling strategy indeed can of-
fer significant performance boosts, both with and without
retraining.

The black-box setting: Now that we have established the
transferability of Sleeper Agent across models of the same
architecture, we test on the hard black-box scenario where
the victim’s architecture is completely unknown to the at-
tacker. This setting has proven extremely challenging for
existing methods (Schwarzschild et al., 2020). Table 4 con-
tains four settings. In the first row, we simply craft the
poisons on a single ResNet-18 and transfer these to other
models. Second, we craft poisons on an ensemble consist-
ing of two MobileNet-V2 and two ResNet-34 architectures
and transfer to the remaining models. Third, for each ar-
chitecture, we craft poisons with an ensemble consisting of
the other two architectures and test on the remaining one.
The second and third scenarios are ensemblized black-box
attacks, and we see that Sleeper Agent is effective. In the
last row, we perform the same experiment but with the test-
ing model included in the ensemble, and we observe that
a single ensemble can craft poisons that are extremely ef-
fective on a range of architectures. We choose ResNet-18,
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Table 3: Ensembles consisting of copies of the same architecture (ResNet-18). S denotes the size of the ensemble, and T
denotes the retraining factor. Experiments are conducted on CIFAR-10, perturbations have ℓ∞-norm bounded by 16/255,
and the attacker can poison 1% of training images.

Attack Clean model val (%) Poisoned model val (%) Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 92.36 (±0.05) 92.08 (±0.08) 63.49 (±6.13)
Sleeper Agent (S = 2, T = 0) 92.10 (±0.04) 92.12 (±0.06) 64.70 (±5.65)
Sleeper Agent (S = 4, T = 0) 92.14 (±0.03) 91.98(±0.05) 74.81 (±4.10)
Sleeper Agent (S = 2, T = 4) 92.11 (±0.07) 92.08 (±0.13) 87.40 (±6.23)
Sleeper Agent (S = 4, T = 4) 92.17 (±0.03) 91.81 (±0.06) 88.45 (±6.00)

Table 4: Black-box attacks: First row: Attacks crafted on a single ResNet-18 and transferred. Second row: attacks crafted
on MobileNet-V2 and ResNet-34 and transfered. Third row: attacks crafted on the remaining architectures excluding the
victim. The ensemble used in the last row includes the victim architecture. Experiments are conducted on CIFAR-10 and
perturbations have ℓ∞-norm bounded above by 16/255, and the attacker can poison 1% of training images.

Attack ResNet-18 MobileNet-V2 VGG11 Average

Sleeper Agent (S = 1, T = 4, ResNet-18) − 29.10% 31.96% 29.86%
Sleeper Agent (S = 4, T = 0, MobileNet-V2, ResNet-34) 70.30% − 46.48% 58.44%
Sleeper Agent (S = 4, T = 0, victim excluded) 63.11% 42.40% 55.28% 53.60%
Sleeper Agent (S = 6, T = 0, victim included) 68.46% 67.28% 85.37% 73.30%

Table 5: ImageNet evaluations. Perturbations have ℓ∞-
norm bounded above by 16/255, and the poison budget is
0.05% of training images.

Architecture ResNet-18 MobileNetV2

Clean model val (%) 69.76 71.88
Poisoned model val (%) 67.84 (±0.10) 68.60 (±0.03)
Attack Success Rate (%) 44.00 (±6.73) 41.00 (±3.31)

MobileNet-V2, and VGG11 as these are common and con-
tain a wide array of structural diversity (He et al., 2016;
Sandler et al., 2018; Simonyan & Zisserman, 2014).

ImageNet evaluations: In addition to CIFAR-10, we per-
form experiments on ImageNet. Table 5 summarizes the per-
formance of Sleeper Agent on ImageNet where attacks are
crafted and tested on ResNet-18 and MobileNetV2 models.
Each attacker can only perturb 0.05% of training images,
and perturbations are constrained in an ℓ∞-norm ball of
radius 16/255 - a bound seen in prior poisoning works on
ImageNet (Fowl et al., 2021a; Geiping et al., 2020; Saha
et al., 2019). To have a strong threat model, we use the
retraining factor of two (T = 2) so that the surrogate model
is retrained at two evenly spaced intervals. Figure 2 contains
visualizations of the patched sources and the crafted targets.
The details of models and hyperparameters can be found in
Appendix B. Additional experiments on ImageNet and fur-
ther visualizations are presented in Appendices A.8 and C.

4.2. Comparison to Other Methods

There are several existing clean-label hidden-trigger back-
door attacks that claim success in settings different than
ours. In order to further demonstrate the success of our
method, we compare our poisons to ones generated from
these methods in our strict threat model of from-scratch
training. In these experiments, poisons are generated by

Table 6: Benchmark results on CIFAR-10. Comparison
of our method to popular “clean-label” attacks. Results
averaged over the same source/target pairs with ϵ = 16/255
and poison budget 1%.

Attack ResNet-18 MobileNetV2 VGG11 Average

Hidden-Trigger Backdoor (Saha et al., 2019) 3.50% 3.76% 5.02% 4.09%
Clean-Label Backdoor (Turner et al., 2019) 2.78% 3.50% 4.70% 3.66%

Sleeper Agent (Ours) 78.84% 75.96% 86.60% 80.47%

our attack, clean label backdoor, and hidden trigger back-
door. All poison trials have the same randomly selected
source-target class pairs, the same budget, and the same
ε-bound (Note: clean-label backdoor originally did not use
ℓ∞ bounds, so we adjust the opacity of their perturbations
to ensure the constraint is satisfied). We then train a ran-
domly initialized network from scratch on these poisons and
evaluate success over 1000 patched source images. We test
three popular architectures and find that our attack signifi-
cantly outperforms both methods and is the only backdoor
method to exceed single digit success rates, confirming the
findings of Schwarzschild et al. (2020) on the fragility of
these existing methods. See Table 6 for full results.

5. Conclusion
In this work, we present the first hidden-trigger backdoor
attack that is effective against deep networks trained from
scratch. This is a challenging setting for backdoor attacks,
and existing attacks typically operate in less strict settings.
Nonetheless, we choose the strict setting because practition-
ers often train networks from scratch in real-world appli-
cations, and patched poisons may be easily visible upon
human inspection. In order to accomplish the above goal,
we use a gradient matching objective as a surrogate for
the bilevel optimization problem, and we add features such
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as re-training and data selection in order to significantly
enhance the performance of our method, Sleeper Agent.
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Appendix

A. Additional Experiments
A.1. Gradient Alignment Throughout Training

In order to demonstrate that the gradients of the poison
examples are well aligned with the adversarial gradient
throughout the training of the victim model, we visualize
the cosine similarity between the adversarial gradient and
the poison examples in multiple settings across epochs of
training. Figure 3 contains three experiments. First, we train
a clean model where the attack’s success rate is very low
(almost zero). Second, we train a poisoned model without
data selection or retraining. And third, we employ poisons
that have been generated utilizing data selection and retrain-
ing techniques. As shown in Table 10, the average attack
success rate for the second and third experiments is 33.95%
and 85.27%, respectively. Figure 3 shows that a success-
ful attack yields far superior gradient alignment and hence
a high attack success rate. In addition, these experiments
demonstrate that gradient alignment, data selection, and
retraining all work together collaboratively.
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Figure 3: Cosine Similarity, per epoch, between the adver-
sarial gradient ∇θLadv and gradient of the poison examples
(clean examples from the target class in the case of clean
model training) ∇θLtrain for two different poisoned models
and a clean model. Experiments are conducted on CIFAR-
10 with ResNet-18 models.

A.2. Defenses

A selling point for hidden trigger backdoor attacks is that the
trigger that is used to induce misclassification at test-time
is not present in any training data, thus making inspection
based defenses, or automated pattern matching more diffi-
cult. However, there exist numerous defenses, aside from
visual inspection, that have been proposed to mitigate the
effects of poisoning - both backdoor and other attacks. We
test our method against a number of popular defenses.

Spectral Signatures: This defense, proposed in Tran et al.
(2018), aims to filter a pre-selected amount of training data
based upon correlations with singular vectors of the feature
covariance matrix. This defense was originally intended to
detect triggers used in backdoor attacks.

Activation Clustering: Chen et al. (2018) clusters activa-
tion patterns to detect anomalous inputs. Unlike the spectral
signatures defense, this defense does not filter a pre-selected
volume of data.

DPSGD: Poison defenses based on differentially private
SGD (Abadi et al., 2016) have also been proposed (Hong
et al., 2020). Differentially private learning inures models
to small changes in training data, which provably imbues
robustness to poisoned data.

Data Augmentations: Recent work has suggested that
strong data augmentations, such as mixup, break data poi-
soning (Borgnia et al., 2021). This has been confirmed in
recent benchmark tests which demonstrate many poisoning
techniques are brittle to slight changes in victim training
routine (Schwarzschild et al., 2020). We test against mixup
augmentation (Zhang et al., 2017).

STRIP: Gao et al. (2019) proposes to add strong perturba-
tions by superimposing input images at test time to detect
the backdoored inputs based on the entropy of the predicted
class distribution. If the entropy is lower than a prede-
fined threshold, the input is considered backdoored and is
rejected.

NeuralCleanse: Wang et al. (2019) proposes a defense
designed for traditional backdoor attacks by reconstruct-
ing the maximally adversarial trigger used to backdoor a
model. While this defense was not designed for hidden
trigger backdoor attacks, we experiment with this as a de-
tection defense wherein we test whether NeuralCleanse can
detect the backdoored class. This modification is denoted
by NeuralCleanse*. In our trials, NeuralCleanse* does not
successfully detect any of the backdoored classes - as de-
termined by taking the maximum mask MAD (see Wang
et al. (2019)). Neural Cleanse does not produce an anomaly
score > 2 (their characterization of detecting outliers) for
the backdoored class in any of our experiments.

We find that across the board, all of these defenses exhibit a
robustness-accuracy trade-off. Many of these defenses do
not reliably nullify the attack, and defenses that do degrade
attack success also induce such a large drop in validation
accuracy that they are unattractive options for practitioners.
For example, to lower the attack success to an average of
13.14%, training with DPSGD degrades natural accuracy
on CIFAR-10 to 70%. See Table 7 for the complete results
of these experiments.
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Table 7: Defenses. Experiments are conducted on CIFAR-
10 with ResNet-18 models, perturbations have ℓ∞-norm
bounded above by 16/255, and poison budget is 1% of
training images.

Defense Attack Success Rate (%) Clean model Val (%)

Spectral Signatures 37.17 (±10.10) 89.94 (±0.19)
Activation Clustering 15.17 (±5.38) 72.38 (±0.48)

DPSGD 13.14 (±4.49) 70.00 (±0.17)
Data Augmentation 69.75 (±10.77) 91.32 (±0.12)

STRIP 62.68 (±4.90) 92.23 (±0.05)
NeuralCleanse* 85.11 (±5.04) 92.26 (±0.06)

(a) ϵ = 16 (b) ϵ = 14 (c) ϵ = 10 (d) ϵ = 8

Figure 4: Visualization of clean targets (first row) and poi-
soned targets (second row) with different ℓ∞-norms from
the CIFAR-10 dataset.

A.3. Evaluations Under Hard ℓ∞-norm Constraints

While existing works on backdoor attacks consider poisons
with ℓ∞-norm bounded above by 16/255 as an impercepti-
ble threat (Saha et al., 2019; Turner et al., 2019), Nguyen
& Tran (2021) shows that human inspection can detect poi-
soned samples effectively. This inspection might mitigate
the threat of large perturbations. To bypass this possibility,
we conduct our baseline experiments on CIFAR-10 using
perturbations with small ℓ∞-norms. From Table 8, we ob-
serve that our threat model is effective even with an ℓ∞-
norm bounded above by 8/255. Randomly selected clean
and poisoned samples from the CIFAR-10 dataset are shown
in Figures 4 and 11. The perturbed and corresponding clean
images are hardly distinguishable by the human eye, espe-
cially in the last column where the ℓ∞-norm of perturbation
is bounded above by 8/255.

Table 8: Evaluation under different ℓ∞-norm. Experi-
ments are conducted on CIFAR-10 with ResNet-18 models,
and the poison budget is 1% of training images.

Perturbation ℓ∞-norm Attack Success Rate (%)

8/255 37.32 (±8.33)
10/255 55.75 (±8.12)
12/255 63.31 (±8.84)
14/255 78.03 (±7.13)
16/255 85.27 (±5.90)

A.4. Sleeper Agent Can Poison Images in Any Class

Typical backdoor attacks which rely on label flips or fea-
ture collisions can only function when poisons come from
the source and/or target classes (Saha et al., 2019; Turner
et al., 2019). This restriction may be a serious limitation
in practice. In contrast, we show that Sleeper Agent can
be effective even when we poison images drawn from all
classes. To take advantage of our data selection strategy,
we select poisons with maximum gradient norm across all
classes. Table 9 contains the performance of Sleeper Agent
in the aforementioned setting.

Table 9: Random poisons. Experiments are conducted
on CIFAR-10 with ResNet-18 models. Perturbations have
ℓ∞-norm bounded above by 16/255 and poisons are drawn
from all classes.

Attack Poison budget Attack Success Rate (%)

Sleeper Agent (S = 1, T = 4) 1% 41.90 (±7.16)
Sleeper Agent (S = 1, T = 4) 3% 66.51 (±6.90)

A.5. Ablation Studies

Here, we analyze the importance of each technique in our
algorithm via ablation studies. We focus on three aspects of
our method: 1) patch location, 2) retraining during poison
crafting, 3) poison selection, and 4) retraining factor. Ta-
ble 10 details the combinations and their effects on poison
success. We find that randomizing patch location improves
poisoning success, and both retraining and data selection
based on maximum gradient significantly improve poison
performance. Combining all three boosts poison success
more than four-fold. To further show the importance of
retraining, we conduct more experiments with and without
retraining on ImageNet. From Table 11, we infer that re-
training is essential. Similarly, Table 12 demonstrates the
effect of the retraining factor on the attack success rate on
the CIFAR-10 dataset. For T larger than 4, we do not see a
considerable improvement in the attack success rate. Since
increasing T is costly, we choose T = 4 as it simultaneously
gives us a high success rate and is also significantly faster
than T = 8. We observe that even with T = 4, the attack
success rate is above 95% in most trials.

Table 10: CIFAR-10 Ablation studies. Investigation the
effects of random patch-location, retraining, and data selec-
tion. Experiments are conducted on CIFAR-10 with ResNet-
18 models, perturbations have ℓ∞-norm bounded above by
16/255, and poison budget is 1% of training images.

Attack setup Attack Success Rate (%)

Fix patch-location (bottom-right corner) 19.25 (±3.01)
Random patch-location 33.95 (±4.57)
Random patch-location + retraining 59.42 (±5.78)
Random patch-location + data selection 63.49 (±6.13)
Random patch-location + retraining + data selection 85.27 (±5.90)
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Table 11: ImageNet ablation studies. Perturbations have
ℓ∞-norm bounded above by 16/255, and the poison budget
is 0.05% of training images.

Attack Attack Success Rate (%)

Sleeper Agent (S = 1, T = 0) 22.00 (±5.65)
Sleeper Agent (S = 1, T = 2) 44.00 (±6.73)

Table 12: Ablation studies on retraining factor. Inves-
tigation of the effects of retraining factor T . Experiments
are conducted on CIFAR-10 with ResNet-18 models, pertur-
bations have ℓ∞-norm bounded above by 16/255, and the
poison budget is 1% of training images.

Retraining factor Attack Success Rate (%)

T = 1 63.49 (±6.13)
T = 2 70.66 (±6.66)
T = 4 85.27 (±5.90)
T = 8 86.48 (±6.26)

A.6. Patch Choice

Sleeper Agent is designed in a way that the backdoor attack
is efficient for any random patch the threat model uses for
crafting poisons. To show this, we conduct the same base-
line experiments discussed in section 4.1 using different
random patches that are generated using a Bernoulli distri-
bution. From Table 13, we observe that the choice of the
patch does not affect Sleeper Agent’s success rate. Figure 5
depicts few samples of the random patches we use for the
experiments presented in Table 13.

A.7. Patch Size

To investigate the effect of patch size on the attack success
rate, we perform the baseline evaluation discussed in section
4.1 using different patch sizes. From Table 14, we observe
that by poisoning only 0.05% of the training set and using
a larger patch, we can effectively poison ImageNet. Fur-
thermore, by using a proper amount of perturbation, Sleeper
Agent works well with the smaller patches on both CIFAR-
10 and ImageNet datasets. Visualizations of patched sources
using different patch sizes are shown in Figure 8.

Table 13: Baseline evaluations using random patches on
CIFAR-10. Perturbations have ℓ∞-norm bounded above by
16/255, and poison budget is 1% of training images.

Architecture ResNet-18

Clean model val(%) 92.16 (±0.08)
Poisoned model val (%) 92.00 (±0.07)
Clean model source val (%) 92.55 (±0.98)
Poisoned model source val (%) 91.77 (±1.09)
Poisoned model patched source val (%) 14.86 (±5.06)
Attack Success Rate (%) 82.05 (±5.80)

Figure 5: Sample random patches

A.8. More Evaluations on ImageNet

In addition to the experiments in Section 4.1 and Appendix
A.7, we provide more evaluations on ImageNet dataset fo-
cusing on low poison budget and smaller ℓ∞-norm con-
straint. The evaluation results are listed in Table 15. The
results indicate that our proposed threat model is still effec-
tive by poisoning only 250 images in the ImageNet trainset.
Additionally, under the hard ℓ∞-norm constraint of 8/255,
Sleeper Agent has a partial success of one out of four (sig-
nificantly better than random guess with a success rate of
0.001 on ImageNet).

B. Implementation Details
B.1. Experimental Setup

The most challenging setting for evaluating a backdoor at-
tack targets victim models that are trained from scratch
(Schwarzschild et al., 2020). On the other hand, it is crucial
to compute the average attack success rate on all patched
source images in the validation set to evaluate effectiveness
reliably. Hence, to evaluate our backdoor attack, we first
poison a training set using a surrogate model as described
in Algorithm 1, then the victim model is trained in a stan-
dard fashion on the poisoned training set from scratch with
random initialization. After the victim model is trained, to
compute the attack success rate, we measure the average
rate at which patched source images are successfully clas-
sified as the target class. To be consistent and to provide a
fair comparison to (Saha et al., 2019), in our primary exper-
iments, we use a random patch selected from (Saha et al.,
2019) as shown in Figure 6. In our baseline experiments,
following (Saha et al., 2019), the patch size is 8 × 8 for
CIFAR-10 (6.25% of the pixels) and 30 × 30 for the Im-
ageNet (1.79% of the pixels). Note that the choice of the
patch in our implementation is not essential, and our model
is effective across randomly selected patches (see Appendix
A.6). More experiments on smaller patch sizes are presented
in Appendix A.7.
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Table 14: The effect of patch size. Experiments are conducted on CIFAR-10 and ImageNet datasets with ResNet-18 models.
Visualizations of different patched sources from ImageNet dataset can be found in Figure 8.

Attack Dataset Poison budget Patch size ℓ∞-norm Attack Success Rate (%)

Sleeper Agent (S = 1, T = 4) CIFAR-10 1% 6× 6 20/255 64.78
Sleeper Agent (S = 1, T = 4) CIFAR-10 1% 8× 8 16/255 85.27
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 25× 25 16/255 38.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 25× 25 24/255 52.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 30× 30 16/255 44.00
Sleeper Agent (S = 1, T = 2) ImageNet 0.05% 45× 45 16/255 50.50

Table 15: ImageNet Evaluations. Experiments are con-
ducted on ResNet-18 models.

Perturbation ℓ∞-norm Poison budget Attack Success Rate (%)

8/255 0.05% (500 images) 28.00
16/255 0.025% (250 images) 27.33

Figure 6: The trigger we use in our primary experiments.

B.2. Models and Hyperparameters

For our evaluations, we use ResNet-18, ResNet-34,
MobileNet-v2, and VGG11 (He et al., 2016; Sandler et al.,
2018; Simonyan & Zisserman, 2014). For training ResNet-
18 and ResNet-34, we use initial learning rate 0.1, and for
MobileNet-v2 and VGG11, we use initial learning rate 0.01.
We schedule learning rate drops at epochs 14, 24, and 35
by a factor of 0.1. For all models, we employ SGD with
Nesterov momentum, and we set the momentum coefficient
to 0.9. We use batches of 128 images and weight decay with
a coefficient of 4 × 10−4. For all CIFAR-10 experiments,
we train and retrain for 40 epochs, and for validation, we
train the re-initialized model for 80 epochs. For the Im-
ageNet experiments, we employ pre-trained models from
torchvision to start crafting, and for retraining and val-
idation, we apply a similar procedure explained: training for
80 epochs for both retraining and validation while we sched-
ule learning rate drops at epochs 30, 50, and 70 by a factor
of 0.1. To incorporate data augmentation, for CIFAR-10, we
apply horizontal flips with probability 0.5 and random crops
of size 32 × 32 with zero-padding of 4. And for the Ima-
geNet, we use the following data augmentations: 1) resize
to 256×256, 2) central crop of size 224×224, 3) horizontal
flip with probability 0.5, 4) random crops of size 224× 224
with zero-padding of 28. Our complete implementation
code is attached.

B.3. Implementation of Benchmark Experiments

In Section 3.2 we compared our threat model with Clean-
Label Backdoor (Turner et al., 2019) and Hidden-Trigger
Backdoor (Saha et al., 2019). For both methods, We fol-
low the same procedure used in their papers as described in
(Schwarzschild et al., 2020). Specifically, to reproduce the
clean-label attack, we use the implementation code provided
in (Schwarzschild et al., 2020). To get each poison, we com-
pute the PGD-based adversarial perturbation to each image,
and then the trigger is added to the image (Schwarzschild
et al., 2020; Turner et al., 2019).

B.4. Runtime Cost

We use two NVIDIA GEFORCE RTX 2080 Ti GPUs for
baseline evaluations on CIFAR-10 and two-four NVIDIA
GEFORCE RTX 3090 GPUs for ImageNet baseline evalu-
ations depending on the network size. Figure 7 shows the
time cost of the Sleeper Agent with different settings.

C. Visualizations
In this section, we present more visualizations of the suc-
cessful attacks on CIFAR-10 and ImagNet datasets. Figures
8, 9, 10, and 11 show patched sources and poisoned targets
generated by Sleeper Agent on CIFAR-10 and ImageNet.
We observe that the generated perturbed images and their
corresponding clean images are hardly distinguishable by
the human eye.
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Figure 7: Average poisoning time for various Sleeper Agent setups. All experiments are conducted on CIFAR-10 with
ResNet-18 models. Perturbations have ℓ∞-norm bounded above by 16/255, and the poison budget is 1% of training images.
T denotes the training factor and S denotes the ensemble size.

(a) Patch size = 25 (b) Patch size = 30

(c) Patch size = 45

Figure 8: Sample clean source (first column), patched source (second column), clean target (third column), and poisoned
target (fourth column) from the ImageNet dataset with different trigger size. Perturbations have ℓ∞-norm bounded above by
16/255.
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Figure 9: Visualizations of the successful attacks on the Im-
ageNet dataset. Each row includes the clean source, patched
source, clean target, and poisoned target, respectively. Per-
turbations have ℓ∞-norm bounded above by 16/255, and
the patch size is 30. Figure 10: Visualizations of the successful attacks on the

CIFAR-10 dataset. Each row includes the clean source,
patched source, clean target, and poisoned target, respec-
tively. Perturbations have ℓ∞-norm bounded above by
16/255 and the patch size is 8. Here, patches are randomly
generated as described in Appendix A.6.
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Figure 11: Sample clean source (first column), patched source (second column), clean target (third column), and poisoned
target (fourth column) from the CIFAR-10 dataset with different ℓ∞-norm perturbation.


