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Abstract

Deep generative models, such as Generative Ad-
versarial Networks (GANs), synthesize diverse
high-fidelity data samples by estimating the un-
derlying distribution of high dimensional data.
Despite their success, GANs may disclose pri-
vate information from the data they are trained on,
making them susceptible to adversarial attacks
such as membership inference attacks, in which
an adversary aims to determine if a record was
part of the training set. We propose an informa-
tion theoretically motivated regularization term
that prevents the generative model from overfit-
ting to training data and encourages generaliz-
ability. We show that this penalty minimizes the
Jensen–Shannon divergence between components
of the generator trained on data with different
membership, and that it can be implemented at
low cost using an additional classifier. Our exper-
iments on image datasets demonstrate that with
the proposed regularization, which comes at only
a small added computational cost, GANs are able
to preserve privacy and generate high-quality sam-
ples that achieve better downstream classification
performance compared to non-private and differ-
entially private generative models.

1. Introduction
Generative models for synthetic data are promising ap-
proaches addressing the need for large quantities of (often
sensitive) data for training machine learning models. This
need is especially pronounced in domains with strict privacy-
protecting regulations, such as healthcare and finance, as
well as domains with data scarcity issues or where collecting
data is expensive, such as autonomous driving. Given a set
of training samples, generative models (Hinton & Salakhut-
dinov, 2006; Kingma & Welling, 2013; Goodfellow et al.,
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2014) approximate the data generating distribution from
which new samples can be generated.

Deep generative models such as Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs)
have shown great potential for synthesizing samples with
high-fidelity (Arjovsky et al., 2017; Radford et al., 2015;
Brock et al., 2019), with various applications in image super-
resolution, image-to-image translation, object detection and
text-to-image synthesis. However, recent studies (Hayes
et al., 2019; Hilprecht et al., 2019; Chen et al., 2020) have
shown that generative models can leak sensitive information
from the training data, making them vulnerable to privacy at-
tacks. For example, Membership Inference Attacks (MIA),
which aim to infer whether a given data record was used for
training the model, and active inference attacks in collabo-
rative settings, which reconstruct training samples from the
generated ones, were shown to be very successful in (Hayes
et al., 2019) and (Hitaj et al., 2017), respectively. Several
paradigms have been proposed for defending against such
attacks, including differentially private mechanisms that en-
sure a specified level of privacy protection for the training
records (Xie et al., 2018; Jordon et al., 2018; Liu et al.,
2019). Other defense frameworks prevent the memoriza-
tion of training data by using regularization such as weight
normalization and dropout training (Hayes et al., 2019), or
with adversarial regularization by using an internal privacy
discriminator as in (Mukherjee et al., 2021).

Contributions: In this paper, we focus on deep generative
models and propose a new mechanism to provide privacy
protection against membership inference attacks. Specifi-
cally, our contributions are as follows:

• We propose a modification to the GAN objective which
encourages learning more generalizable representa-
tions that are less vulnerable to MIAs. To prevent
memorization of the training set, we train the gener-
ator on different subsets of the data while penalizing
learning which subset a given training instance is from.
This penalty is quantified by the mutual information
between the generated samples and a latent code that
represents the subset membership of training samples.

• We show that the proposed information-theoretic regu-
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larization is equivalent to minimizing the divergence
between the generative distribution learned from train-
ing on different subsets of data and can be implemented
using a classifier that interacts with the generator.

• We demonstrate that the proposed privacy-preserving
mechanism can be trained more efficiently with less
data compared to previously proposed approaches.

• We empirically evaluate our proposed model on bench-
mark image datasets (Fashion-MNIST, CIFAR-10),
and demonstrate its effective defense against MIAs
without significant compromise in generated sample
quality and downstream task performance. We com-
pare the privacy-fidelity trade-off of our proposed
model to non-private models as well as other privacy-
protecting mechanisms, and show that our model
achieves better trade-offs with negligible added compu-
tational cost compared to its non-private counterparts.

2. Background
2.1. Generative Adversarial Networks

GANs train deep generative models through a minimax
game between a generative model G and a discriminative
model D. The generator learns a mapping G(z) from a
prior noise distribution pz(z) to the data space, such that the
generator distribution pg(x) matches the data distribution
px(x). The discriminator is trained to correctly distinguish
between data samples and synthesized samples, and assigns
a valueD(x) representing its confidence that sample x came
from the training data rather than the generator. G and D
optimize the following objective function

min
G

max
D

V (D,G) :=

Ex∼px [log(D(x))] + Ez∼pz [log(1−D(G(z)))]. (1)

For a given generator G, the optimal discriminator is given
by D?(x) = px(x)

px(x)+pg(x)
. Training a GAN minimizes the

divergence between the generated and real data distributions
(Goodfellow et al., 2014).

2.2. Membership Inference Attacks

MIAs are privacy attacks on trained machine learning mod-
els where the goal of the attacker, who may have limited or
full access to the model, is to determine whether a given data
point was used for training the model. Based on the extent
of information available to an attacker, MIAs are divided
into various categories, such as black-box and white-box
attacks. (Shokri et al., 2017) focuses on discriminative mod-
els in the black-box setting and shows their vulnerability
to MIAs using a shadow training technique that trains a
classifier to distinguish between the model predictions on
members versus non-members of the training set. The au-
thors relate the privacy leakage to overfitting and present

mitigation strategies against MIAs by restricting the model’s
prediction power or by using regularization. In (Hayes et al.,
2019), several successful attacks against GANs are proposed
using models that are trained on the generated samples to de-
tect overfitting. (Hilprecht et al., 2019) proposes additional
MIAs against GANs and VAEs which identify members of
the training set using the proximity of a given record to the
generated samples based on Monte Carlo integration. We
provide a detailed description of MIAs considered in this
paper in Sec. 4. The attack accuracy of an MIA on a trained
model is the fraction of data samples that are correctly in-
ferred as members of the training set.

2.3. Privacy-Preserving Generative Models

Privacy-preserving generative models modify their respec-
tive model frameworks, e.g. by changing objective functions
or training procedures, to reduce the effectiveness of MIAs
and other privacy attacks. For example, differentially private
GANs (Xie et al., 2018; Jordon et al., 2018; Liu et al., 2019)
provide formal membership privacy guarantees by adding
carefully designed noise during the training process. Dif-
ferentially private generative models, however, often result
in low-fidelity samples unless a low-privacy setting is used.
Another approach is adversarial regularization, such as in
(Mukherjee et al., 2021), which trains multiple generator-
discriminator pairs and uses a built–in privacy discriminator
that acts as regularization to prevent memorization of the
training set. While adversarial regularization does not pro-
vide the formal guarantees of differential privacy, (Mukher-
jee et al., 2021) shows that the proposed model is able to
mitigate MIAs at the cost of training multiple GANs with-
out considerably sacrificing performance in downstream
learning tasks.

In this work, we propose a novel adversarial regularization
that defends against MIAs and combats overfitting by regu-
larizing the GAN generator loss, which we empirically show
to be effective. We further show that the regularization is
equivalent to minimizing the Jensen-Shannon divergence
between subsets of the training dataset, resembling the ob-
jective function in (Mukherjee et al., 2021) for the optimal
discriminators and optimal privacy discriminator.

3. Privacy Preservation Through an
Information-Theoretic Objective

In order to prevent the generative model from memorizing
private information in the training data and to improve its
generalization ability, we impose an information-theoretic
regularization on the generator G. Let us assume that the
training data is divided into N non-overlapping subsets
of samples xi ∼ pxi

(x), i = 1, . . . , N . We indicate the
membership of training samples from each distribution with
the variable c ∈ {1, . . . , N}, and capture the difference
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between sample distributions px1
, . . . , pxN

through an ad-
ditional latent code c provided to both the generator and the
discriminator. Specifically, for c ∼ pc = Multinomial(π),
π = (π1, . . . , πN ), where πi denotes the relative frequency
of samples from pxi

(x), the generator G(z, c) is provided
with noise z and latent code c, and the discriminator takes
a data sample x and latent code c as inputs. Our goal is
for the generator to learn a distribution pg(x) that matches
the underlying data generating distribution px(x), rather
than sample distributions {pxi

(x)}Ni=1. Therefore, we pe-
nalize the generator encouraging it to synthesize samples
that are independent from the latent code c, by minimizing
the mutual information I(G(z, c); c). If G(z, c) and c are
independent, then I(G(z, c); c) = 0. We propose to solve
the following regularized minimax game:

min
G

max
D

VI(D,G) := E(x,c)∼px,c
[log(D(x, c))] +

Ez∼pz,c∼π[log(1−D(G(z, c), c))] + λI(G(z, c); c),
(2)

where parameter λ controls the trade-off between the fidelity
of the generative process and its privacy protection. Let the
conditional generative distributions be denoted by pgi(x) :=
Px|c(x|c = i), for x ∼ G(z, c). Then, for independently
sampled z ∼ pz and c ∼ pc, the generator distribution is
pg =

∑N
i=1 πipgi .

Theorem 3.1. The mutual information regularization term
in (2) is equivalent to the Jensen–Shannon divergence (JSD)
between conditional generative distributions pg1 , . . . , pgN .

Proof. Let KL(P1||P2) denote the Kullback–Leibler (KL)
divergence between probability distributions P1 and P2.
Then, from the definition of mutual information and by
conditioning random variable G(z, c) on c, it follows that

I(G(z, c); c) = Ec∼pc

[
KL
(
PG(z,c)|c(x|c)||PG(z,c)(x)

)]
=
∑N

i=1
πiKL

(
pgi(x)||pg(x)

)
(3)

=
∑N

i=1
πiKL

(
pgi(x)||

∑N

j=1
πjpgj (x)

)
(4)

= JSD
(
pg1(x), . . . , pgN (x)

)
, (5)

where JSD(P1, . . . , PN ) denotes the JSD between distribu-
tions P1, . . . , PN .

We refer to GANs trained with respect to (2) as Private
Information-Theoretic Generative Adversarial Networks
(PIGAN).

Theorem 3.2. For the optimal discriminator, the global
optimum of value function (2) is − log 4 which is achieved
if and only if px1(x) = · · · = pxN

(x) = pg1(x) = · · · =
pgN (x).

Proof. Please see Appendix A.

Remark 3.3. PIGAN is trained to minimize the JSD between
generated sample distributions trained on different subsets
of the training set. For the optimal discriminator D?, the ob-
jective function in (9) is closely related to the objective func-
tion of PrivGAN, the privacy-preserving model proposed
in (Mukherjee et al., 2021). It was shown in (Mukherjee
et al., 2021) that given the N optimal discriminators and
the optimal privacy discriminator of PrivGAN, its objective
function is equivalent to the JSD between the N generators’
distributions, differing from PIGAN’s value function only
in constant multiplicative and additive terms.
Remark 3.4. The privacy penalty in PIGAN resembles the
variational regularization term used in InfoGAN (Chen et al.,
2016). While both are based on the mutual information, the
two terms are being used in completely different ways and,
in fact, have opposing impacts on the GAN solution. In-
foGAN maximizes the mutual information term to learn
disentangled representations in the latent space; latent codes
represent learnt semantic features of the data. PIGAN, how-
ever, uses latent codes to explicitly represent membership
when the data is randomly divided into different groups and
minimizes the mutual information quantity so that group
membership is private.

3.1. Implementation

Our goal is to minimize the mutual information term in (2).
By expanding the KL divergence term in (4), we have∑N

i=1
πiKL

(
pgi(x)||

∑N

j=1
πjpgj (x)

)
=

N∑
i=1

πiEx∼pgi

[
log
( pgi(x)∑N

j=1 πjpgj (x)

)]
=

N∑
i=1

πiEx∼pgi

[
log
( πipgi(x)∑N

j=1 πjpgj (x)

)]
−

N∑
i=1

πi log(πi)

(6)

=
∑N

i=1
πiEx∼pgi [log(π̂i(x))] +H(c) (7)

where (6) follows from adding and subtracting the en-
tropy of c, H(c) = −

∑N
i=1 πi log(πi). In (7), π̂i(x) :=

πipgi (x)∑N
j=1 πjpgj (x)

denotes the posterior probability that sample

x belongs to conditional generative distribution pgi which
was trained on samples from pxi

. For fixed π, H(c) is con-
stant, and the regularization term in (2) is equivalent to the
negative of the cross-entropy between distributions π and π̂.
We estimate π̂i(x) using a multi-class classifier which uses
the latent code c taken as input by G(z, c) as class labels.
We denote this classifier by Q(x), and its predicted label
by ĉ. The classifier is trained to correctly determine which
conditional generative distribution generated a given syn-
thetic sample, i.e., to maximize the negative cross entropy
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term in (7), which in turn encourages the generator to syn-
thesize data with indistinguishable conditional distributions.
Therefore, (2) becomes

min
G

max
D,Q

V ′I (D,G,Q) := E(x,c)∼px,c
[log(D(x, c))]

+ Ez∼pz,c∼pc [log(1−D(G(z, c), c))]

+ λ
∑N

i=1
πiEz∼pz [log(Q(G(z, i)))] (8)

In our experiments, we arbitrarily partition the dataset
into N equal non-overlapping subsets such that πi = 1

N ,
for which H(c) = log(N). For an i.i.d. dataset dis-
tributed according to px(x), we expect that any partition-
ing of data will result in subsets with similar distributions.
The discriminator, generator and classifier are neural net-
works parametrized by θd, θg and θq, respectively, and are
trained according to Algorithm 1 in Appendix B. In order
to prevent vanishing gradients early in learning, as pro-
posed in (Goodfellow et al., 2014), we train the genera-
tor to maximize log(D(G(z, c), c)) rather than minimiz-
ing log(1−D(G(z, c), c)). Additionally, as in adversarial
training, the generator is trained to fool the classifier by
maximizing the cross-entropy loss for randomly selected
incorrect class labels. Following (Mukherjee et al., 2021),
we improve the convergence by initializing classifier Q with
weights obtained from pre-training it on the train set using
the corresponding membership indices as class labels. Fi-
nally, we train the discriminator and generator forK epochs,
without training the classifier to allow for the generative
model to recover a rough estimate of the data distribution.
Remark 3.5. Even though privacy preservation via PIGAN
comes at an additional computational cost of training classi-
fier Q relative to a non-private GAN, it can be trained more
efficiently compared to the PrivGAN architecture proposed
in (Mukherjee et al., 2021), which requires training multiple
generator-discriminator pairs to convergence, and hence,
requires a larger training dataset.

4. Evaluation Metrics
Privacy-preserving generative models are evaluated based
on the level of privacy they provide and the quality of sam-
ples they generate. We briefly describe the metrics used
to compare different generative models in our experiments;
more detailed descriptions are provided in Appendix C.

We measure a model’s privacy loss level, by empirically
evaluating the success of the attacks proposed in (Hayes
et al., 2019; Hilprecht et al., 2019; Mukherjee et al., 2021).
Specifically, we consider (1) White-box (WB) attacks, where
the adversary has access to the trained discriminator and
uses its confidence scores to differentiate between samples,
(2) Total Variation Distance (TVD) attacks, which provide
an upper limit on the accuracy of attacks that use discrimi-
nator scores, and (3) Monte-Carlo (MC) attacks, which use

generated samples to distinguish between train and holdout
samples.

Generative models should synthesize diverse high-fidelity
data that agree with human perceptual judgments. We eval-
uate the quality of generated samples, in terms of the (1)
Inception Score (IS), which estimates the synthetic image
quality based on a pre-trained image classifier (2) Fréchet
Inception Distance (FID), which measures the distance be-
tween embeddings of real and synthetic images, (3) Intra-
FID Score, which uses the FID score for evaluating class-
conditional models and (4) Classification Performance,
which measures fidelity in a downstream classification task.

5. Experiments
We empirically investigate the effectiveness of the proposed
regularization in preserving privacy on two widely-adopted
image datasets, and compare the privacy-fidelity trade-off
achieved by PIGAN with respect to non-private and private
baselines. We consider the following datasets: (1) Fashion-
MNIST (Xiao et al., 2017) which contains 70, 000 labeled
28 × 28 grayscale images representing 10 clothing cate-
gories, and (2) CIFAR-10 (Krizhevsky et al., 2009), which
contains 60, 000 labeled 32× 32 color images representing
10 categories such as planes, cars and ships.

5.1. Setup and Model Architectures

As conventional in MIA literature on generative models,
to trigger overfitting, we select a random 10% subset from
each dataset for training and use the remainder for evalu-
ating the models. Results are reported by averaging attack
accuracy and fidelity metrics corresponding to 10 experi-
ments run with different train-test splits. In addition to stan-
dard non-private GANs, we compare PIGAN with PrivGAN
(Mukherjee et al., 2021) and DPGAN (Xie et al., 2018).

5.1.1. MODELS

Following existing work in this area (Hayes et al., 2019;
Hilprecht et al., 2019; Mukherjee et al., 2021; Xie et al.,
2018), we adopt the deep convolutional generative adversar-
ial network (DCGAN) (Radford et al., 2015) architecture for
all models, and generate class labels by implementing the
conditional variant of DCGAN (Mirza & Osindero, 2014).
For PIGAN, we use the same architecture as the non-private
GAN modified to take the membership latent code c as an
additional input to the first layer. The regularization clas-
sifier Q is implemented similar to the discriminator, but
without taking class and membership labels as inputs. Priv-
GAN uses the same architecture as non-private GAN for
all generator-discriminator pairs and its privacy discrimi-
nator is identical to all other discriminators differing only
in the activation function of the final layer. We implement
DPGAN using the same architecture and train it in a differ-
entially private manner with δ = 10−4 (typically chosen as
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the inverse of train set size). All model architectures are
described in detail in Appendix D.1.

5.1.2. ATTACK PARAMETERS

WB and TVD attacks are tested on the 90% holdout sam-
ples not used for training. MC attacks are conducted using
105 synthetic samples generated by each model, assuming
that the adversary dataset contains M = 100 samples from
each of the train and holdout sets. For each experiment,
MC attacks are repeated 20 times and average accuracy is
reported. As in (Hilprecht et al., 2019), we use the Eu-
clidean distance on the top 40 PCA components. From each
dataset’s 90% holdout samples, we select a random 10%
subset to compute the PCA transformation and use the rest
for testing MC attacks. Based on the train-holdout split of
the attacker’s dataset, a baseline attack that uses random
guessing will result in 10% WB attack accuracy, and 50%
MC attack accuracy.

5.2. Evaluation

5.2.1. PRIVACY PRESERVATION WITH PIGAN

We quantitatively assess how the proposed regularization in
PIGAN prevents privacy loss with respect to its performance
against various MIA attacks. Fig. 1 shows the attack vul-
nerability and generated sample fidelity of PIGAN (N = 2)
as regularization penalty λ varies between [0, 30]. For both
datasets, WB and MC-Set attack accuracy are reduced for
stronger regularization values. With λ = 10, PIGAN pro-
vides 34.8% and 13% improvement for Fashion-MNIST
against WB and MC-Set attacks compared to non-private
GAN, respectively, which comes only with 3.2% degrada-
tion in downstream classification performance, and negligi-
ble increase in Intra-FID score. For CIFAR-10, regularizing
with λ = 10 reduces WB and MC-Set attack success by
21.8% and 2.5%, respectively, with small loss in terms of
Intra-FID and classification accuracy. Further quantitative
evaluation of PIGAN in terms of TVD and MC-Single at-
tacks, and inception and FID scores, as well as visual com-
parison of generated samples are provided in Appendix E.1.

5.2.2. PRIVACY-FIDELITY TRADE-OFF

To simultaneously compare the privacy level and generated
sample quality achieved by PIGAN (N = 2) with the base-
lines (GAN, PrivGAN (N = 2) and DPGAN), we use the
trade-off curves presented in Fig. 2. The curves are gener-
ated by training PIGAN and PrivGAN for a range of λ and
by training DPGAN for a range of ε obtained from different
clipping and noise levels. For both Fashion-MNIST and
CIFAR-10, the two left curves in Figs. 2 (a) and (b) are
strictly higher (other than one point for CIFAR-10) than the
curves of all other private methods, and the two right curves
are strictly lower. Therefore, for a specified level of privacy
(i.e., a fixed point on the x-axis), a classifier trained on data

generated by PIGAN will generalize better compared to one
trained on data generated by other private models. More-
over, based on the lower Intra-FID scores shown in two
right curves in Figs. 2 (a) and (b), PIGAN is able to generate
data with better sample quality and higher intra-class diver-
sity. As expected for differentially private GANs, DPGAN
is inferior to PIGAN and PrivGAN for both datasets, and
provides privacy at the cost of losing on downstream utility
and generated sample quality. The models are compared
visually based on generated sample quality in Appendix E.3.

Table 1 reports the different fidelity metrics for each model
based on a fixed WB accuracy point on the curves in Fig. 2,
i.e., when the models are trained (with proper λ and ε) to
achieve (almost) equal WB attack accuracy. Specifically,
considering WB attack accuracy close to 17% for Fashion-
MNIST, PIGAN (λ = 5) outperforms PrivGAN (λ = 0.01)
and DPGAN by 2.1% and 5.6% in terms of downstream
classification, and by 5.5 and 34.7 in terms of Intra-FID
score, respectively. For CIFAR-10, when considering WB
attack success of around 23-26%, PIGAN (λ = 30) gener-
ates data with 3.8% and 6.8% higher classification utility
compared to PrivGAN (λ = 20) and DPGAN, respectively.

5.2.3. TRAINING EFFICIENCY OF PIGAN

We empirically demonstrate that PIGAN requires less data
for training and its training is less expensive compared
to PrivGAN, which requires training multiple generator-
discriminator pairs with almost N× more trainable param-
eters for large values of N . Due to space limitations, the
experiment results showing the computational and training
efficiency of PIGAN are provided in Appendix F.

6. Conclusions
We propose a membership privacy-preserving training
framework for deep generative models that mitigates over-
fitting to training data and leakage of sensitive informa-
tion. Our proposed model, referred to as PIGAN, learns to
estimate almost identical generative distributions for data
with different membership, using an information-theoretic
regularization term that aims to minimize the divergence
between the distributions. We show that this can be imple-
mented using a multi-class classifier at relatively low cost
compared to private GANs that train multiple generators and
discriminators. Our experiments demonstrate the resilience
of PIGAN against several well-known MIA attacks with-
out considerable degradation in generated data fidelity, and
show that PIGAN outperforms alternative private GANs
in terms of various utility measures achieving improved
privacy-fidelity trade-offs.

Disclaimer This paper was prepared for informational
purposes by the Artificial Intelligence Research group of JP-
Morgan Chase & Co. and its affiliates (“JP Morgan”), and is
not a product of the Research Department of JP Morgan. JP
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(a) Fashion-MNIST

(b) CIFAR 10

Figure 1: Privacy and fidelity measures for PIGAN trained with N = 2 and various regularization λ.

(a) Fashion-MNIST

(b) CIFAR 10
Figure 2: Privacy-fidelity trade-off achieved with different private models.

Table 1: Comparison of privacy-preserving models trained to achieve similar WB attack accuracy levels.

Fashion-MNIST CIFAR-10

PIGAN PrivGAN DPGAN PIGAN PrivGAN DPGAN

WB attack (%) ↓ 17.7±1.1 18.3±1.3 16.9±0.9 26.2±7.8 23.8±6.8 23.0±5.4

MC-Set attack (%) ↓ 68.3±10.9 67.0±12.5 65.0±9.2 52.5±8.2 53.5±12.6 55.5±9.12
Inception Score ↑ 2.43±0.03 2.40±0.03 2.19±0.08 3.92±0.16 3.62±0.22 3.49±0.15

FID Score ↓ 22.8±1.57 33.9±1.3 46.1±7.4 70.44±15.3 87.6±7.8 75.4±9.2

Intra-FID Score ↓ 119.7±6.04 125.2±4.8 154.4±8.6 110.2±16.4 127.4±5.2 113.4±11.2

Classification Accuracy (%) ↑ 81.7±1.1 79.6±1.7 76.1±1.4 41.4±3.7 37.6±1.1 34.6±3.6

Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This docu-
ment is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the
purchase or sale of any security, financial instrument, fi-

nancial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.
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Appendix
The source code for experiments is included as Supplementary Material. All experiments are implemented in Keras and run
with a single NVIDIA T4 GPU on an Amazon Web Services g4dn.4xlarge instance.

A. Proof of Theorem 3.2
Theorem 3.2. For the optimal discriminator, the global optimum of value function (2) is − log 4 which is achieved if and
only if px1(x) = · · · = pxN

(x) = pg1(x) = · · · = pgN (x).

Proof. By conditioning the data generating distribution on c, value function VI(D,G) can be rewritten as

VI(D,G) = Ec∼πEx∼pxc
[log(D(x, c))] + Ec∼πEx∼pgc [log(1−D(x, c))] + λJSD

(
pg1(x), . . . , pgN (x)

)
Based on Proposition 1 in (Goodfellow et al., 2014), for a fixed generator G(z, c), the discriminator D?(x, c) =

pxc (x)
pxc (x)+pgc (x)

maximizes (2). For c = {1, . . . , N}, if pxc
(x) = pgc(x), we have D?(x, c) = 1

2 , and if pg1(x) =

· · · = pgN (x), then JSD
(
pg1(x), . . . , pgN (x)

)
= 0. Therefore, VI(D?, G) = − log 4.

To find the global optimum, by replacing D? in VI(D,G), it follows from Theorem 1 in (Goodfellow et al., 2014) that

min
G

VI(D
?, G) =

∑N

i=1
πi
(
− log 4 + 2JSD

(
pxi(x)||pgi(x)

))
+ λJSD

(
pg1(x), . . . , pgN (x)

)
(9)

Since the JSD between two or more distributions is always non-negative and zero only when they are equal, the global
minimum of VI(D?, G) is − log 4, which is achieved only when px1(x) = · · · = pxN

(x) = pg1(x) = · · · = pgN (x). At
this point, the generative model conditioned on each membership code c perfectly replicates the data generating process.

B. Training Framework for PIGAN
In PIGAN, the discriminator, generator and classifier are differentiable functions represented by neural networks parametrized
by θd, θg and θq, respectively. Algorithm 1, presents the pseudo-code for learning the parameters by alliteratively training
G, D and Q using stochastic gradient descent.

Algorithm 1 Training PIGAN using stochastic gradient descent
1: Partition dataset X into N non-overlapping subsets, index all points in each subset by c = 1, . . . , N .
2: for number of training iterations do
3: Sample a minibatch of m data points {(x(1), c(1)), . . . , (x(m), c(m))} from the data distribution px(x).
4: Sample a minibatch of m noise samples {z(1), . . . , z(m)} from pz(z), and m latent samples {c(1), . . . , c(m)} from

pc.
5: Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
log(D(x(i), c(i))] + log(1−D(G(z(i), c(i)), c(i)))

]

6: Update the classifier by ascending its stochastic gradient: ∇θq 1
m

∑m
i=1 log(Q(G(z(i), c(i)))

7: Sample a minibatch of m noise samples {z(1), . . . , z(m)} from pz(z), and m latent samples {c(1), . . . , c(m)} from
pc.

8: Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

[
log(1−D(G(z(i), c(i)), c(i))) + λ log(Q(G(z(i), c(i)))

]
9: end for
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C. Evaluation Metrics
This section provides detailed descriptions of the metrics that were briefly mentioned in Section 4 of the paper. These
metrics have been used in our experiments to compare different generative models in terms the level of privacy they provide
and the quality of samples they generate.

C.1. Membership Attack Vulnerability

We measure a model’s privacy loss level, by empirically evaluating the success of adversarial attacks introduced in (Hayes
et al., 2019; Hilprecht et al., 2019; Mukherjee et al., 2021). We assume that the adversary has a suspect dataset that contains
samples from the training set and a holdout set, and that it knows the size of the training set m. We consider the following
MIAs:

• White-box (WB) attack: The adversary has access to the trained discriminator model. As proposed in (Hayes et al.,
2019), the attacker can use the discriminator outputs to rank samples in its dataset, since the discriminator will assign
higher confidence scores to train data samples if the model has overfit on the training set. The attacker predicts the
m samples with the highest scores as members of the training set. The WB attack was extended to the multiple
discriminator setting of PrivGAN in (Mukherjee et al., 2021), by ranking the samples using the max (or mean) score
among all discriminator scores assigned to a record. Similarly, the WB attack for PIGAN uses max

c∈{1,...,N}
D(x, c) to

rank record x.

• Total Variation Distance (TVD) attack: It was shown in (Mukherjee et al., 2021) that the total variation distance
between the distribution of the discriminator scores on train and holdout sets, provides an upper limit on the accuracy
of attacks that use discriminator scores. In the multiple discriminator setting, the maximum TVD is used as the upper
limit, and for PIGAN, we use max

c∈{1,...,N}
TVD(Pc, Qc), where Pc and Qc denote the distribution of D(x, c) for x in

train and holdout sets.

• Monte-Carlo (MC) attack: The adversary has access to the generator or a set of generated samples. (Hilprecht et al.,
2019) designs two attacks: (1) single membership inference (MC-Single), where the adversary aims to identify all
records that are a member of the training set, and (2) set membership inference (MC-Set), where the adversary aims to
determine which of two given sample sets are a subset of the training set. We assume the adversary dataset contains M
samples from the train set and M samples from the holdout set. The adversary uses a metric f(x) to rank samples x in
its dataset.

MC-Single: The M samples with the highest scores are predicted to be training set members, and attack accuracy is
defined as the fraction of correctly labeled samples.

MC-Set: The set containing most of the top M samples with the highest scores is identified as the set used to train
the model. The attack accuracy is defined as the average success rate of correctly identifying the training subset.

While (Hilprecht et al., 2019) proposes various f(x) as the ranking metric, their experiments show that the following
distance-based metric using the median heuristic outperforms others.

f(x) =
1

n

n∑
i=1

1{xgi ∈ Uε(x)}, Uε(x) = {x
′|d(x, x′) ≤ ε},

where {xg1 , . . . , xgn} are generated samples, andUε(x) denotes the ε-neighbourhood of xwith respect to some distance
d(., .), and ε is computed as ε = median1≤i≤2M ( min

1≤j≤n
d(xi, xgj )). For image datasets, we use the Euclidean distance

on few of the top components resulting from applying the Principal Components Analysis (PCA) transformation on
pixel intensities of any two images (Hilprecht et al., 2019).

C.2. Sample Quality

Generative models should synthesize diverse high-fidelity samples that agree with human perceptual judgments. We use the
following quantitative measures to compare different image synthesis models, and refer the reader to (Borji, 2019) for a
comprehensive review on GAN evaluation measures.
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• Inception Score (IS): A pre-trained neural network (generally Inception Net (Szegedy et al., 2016)) is used to assess
if samples are highly classifiable and diverse with respect to class labels y (Salimans et al., 2016). This metric
measures the KL divergence between the conditional class distribution p(y|x) and marginal class distribution p(y).
For a high-quality generator, p(y|x) has low entropy (highly classifiable images), while p(y) is high-entropy (diverse
images), resulting in high IS. Despite its wide adoption as a metric, IS does not take into account the statistics of real
images, and is not able to capture how well the data distribution is approximated by the generator.

• Fréchet Inception Distance (FID): The FID score uses embeddings from the penultimate layer of Inception Net to
measure the distance between real and generated image distributions (Heusel et al., 2017). The embedding vector
distributions are modeled as multivariate Gaussians, their mean and covariance are estimated, and their distance is
measured using the Fréchet (Wasserstein-2) distance. A high-quality generator is able to approximate the real data
distributions well resulting in low FID.

• Intra-FID Score: For class-conditional models, (Miyato & Koyama, 2018) introduced Intra-FID as a metric to assess
the quality of a conditional generative distribution, by calculating the FID score separately for each conditioning and
reporting the average score. They empirically demonstrated that Intra-FID is able to capture visual quality, intra-class
diversity and conditional consistency.

• Classification performance: In order to evaluate how well the generative model captures the data distribution, it is
proposed in (Ravuri & Vinyals, 2019) to use the synthetic samples for a downstream task such as training a classifier to
predict the real data class labels. The classification accuracy can be interpreted as a recall measure that relates to the
diversity of generated samples (Shmelkov et al., 2018).

D. Experimental Settings
D.1. Model Architectures

The proposed privacy preservation framework is independent of the architecture and should generalize to alternative
models, particularly more complex models that generate higher fidelity samples since they would be more susceptible to
MIAs (Hayes et al., 2019). However, since the focus of our work is privacy-preserving techniques, we follow existing
work in this area (Hayes et al., 2019; Hilprecht et al., 2019; Mukherjee et al., 2021; Xie et al., 2018) and adopt the deep
convolutional generative adversarial network (DCGAN) (Radford et al., 2015) as our base architecture and we compare
various privacy-preserving techniques for the same architecture. Models are implemented in their conditional format to
provide control over the generated class labels. All models are trained for 300 epochs on Fashion-MNIST and 500 epochs on
CIFAR-10, and we use the Adam optimizer (Kingma & Ba, 2014) with learning rate α = 0.0002 and momentum β1 = 0.5,
and a batch size of 128. The generator and discriminator architectures for non-private GAN are presented in Table 2. We use
BN to denote batch normalization with momentum 0.9, and LReLU to denote Leaky Rectified Unit with slope α = 0.2. The
noise vector z is generated from a normal distribution with dimension nz = 100 for both Fashion-MNIST and CIFAR-10.
Table 3 provides the architectures used for PIGAN, which have been modified compared to their non-private counterparts to
take the latent code c as an additional input, which is concatenated with other inputs in the early layers. Classifier Q(x)
is implemented using a very similar architecture as the non-private discriminator with the difference that it does not take
the class labels y as input and that a Softmax activation is used in the final layer instead of a Sigmoid. For PrivGAN1

(Mukherjee et al., 2021), all generator-discriminator pairs use the same architecture as non-private GAN, and the privacy
discriminator is implemented identical to the classifier of PIGAN. DPGAN is implemented with the same architecture as
non-private GAN and trained with differential privacy2 for δ = 1e−4. For CIFAR-10, we use one-sided label smoothing for
the discriminators by using a target label of 0.9 rather than 1.

D.2. Other Design Choices and Hyperparameters

For both PIGAN and PrivGAN, we initialize classifier Q and the privacy discriminator with weights obtained from pre-
training them for 50 epochs on the training data using membership indices as class labels. Additionally, the discriminators
and generators of PrivGAN are trained for K = 100 epochs without training the privacy discriminator (Mukherjee et al.,
2021), while for PIGAN, they are trained for K = 200 epochs on Fashion-MNIST and K = 400 epochs on CIFAR-10,
without updating the classifier.

1https://github.com/microsoft/privGAN
2Implemented using https://github.com/tensorflow/privacy

https://github.com/microsoft/privGAN
https://github.com/tensorflow/privacy
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When evaluating the fidelity of data generated by the models, we use Tensorflow implementations of the Inception score
and Fréchet Inception Distance, provided in https://github.com/tsc2017/Inception-Score and https:
//github.com/tsc2017/Frechet-Inception-Distance. We use 104 generated samples for evaluations on
Fashion-MNIST and 2× 104 generated samples for CIFAR-10. The classifier architectures used for evaluating the models
based on downstream task performance is summarized in Table 4. MaxPool denotes a maxpool layer with pooling size of
2 × 2. The classifiers are trained with the Adam optimizer (learning rate α = 0.0002 and momentum β1 = 0.5), for 50
epochs and a batch size of 64 for both Fashion-MNIST and CIFAR-10.

Table 2: Non-private GAN generator and discriminator architectures.

Generator G(z,y) Discriminator D(x,y)

Inputs z ∼ N (0, I) and y ∈ {1, . . . , 10} x ∼ R28×28×1 and y ∈ {1, . . . , 10}

Layers Concatenate z and y Dense 28× 28, Reshape (y→ ŷ)

Dense 7× 7× 128, BN, LReLU, Reshape Concatenate x and ŷ

5× 5 stride=2 Deconv 128, BN, LReLU 5× 5 stride=2 Conv 64, LReLU

5× 5 stride=2 Deconv 128, BN, LReLU 5× 5 stride=2 Conv 128, LReLU

3× 3 stride=1 Deconv 64, BN, LReLU 5× 5 stride=2 Conv 128, LReLU, Flatten

3× 3 stride=1 Conv 1, Tanh Dense 1, Sigmoid

(a) Fashion-MNIST

Generator G(z,y) Discriminator D(x,y)

Inputs z ∼ N (0, I) and y ∈ {1, . . . , 10} x ∼ R32×32×3 and y ∈ {1, . . . , 10}

Layers Concatenate z and y 3× 3 stride=1 Conv 64, LReLU (x→ x̂)

Dense 4× 4× 256, LReLU, Reshape Dense 32× 32× 3, Reshape (y→ ŷ)

4× 4 stride=2 Deconv 128, LReLU Concatenate x̂ and ŷ

4× 4 stride=2 Deconv 128, LReLU 3× 3 stride=2 Conv 128, LReLU

4× 4 stride=2 Deconv 64, LReLU 3× 3 stride=2 Conv 128, LReLU

3× 3 stride=1 Conv 3, Tanh 3× 3 stride=2 Conv 256, LReLU, Flatten

Dense 1, Sigmoid

(b) CIFAR-10

E. Additional Results
E.1. Further evaluation of PIGAN trained with different λ

Fig. 3 provides additional quantitative evaluation measures for PIGAN that were not presented in the main paper as the
regularization parameter λ increases. As expected, the TVD attack score, which is an upper limit on WB attack accuracy
using the discriminator, is lower for larger values of λ for both datasets. Similarly, PIGAN becomes less vulnerable
to MC-Single attacks as λ increases. Our observations from Fig. 3 regarding MC-Single attacks are aligned with the
experiments in (Hilprecht et al., 2019) (also noted in (Mukherjee et al., 2021)) that MC-Single attacks are much less
successful compared to MC-Set attacks and achieve accuracy close to random guessing. As λ is increased, the FID score
also increases while the inception score decreases for Fashion-MNIST, indicating the degradation in generated sample
quality. When moving from λ = 0 to λ = 1, an initial dip in FID and rise in the Inception score is observed, which is in
agreement with the small increase in classification accuracy observed in Fig. 1, confirming an improvement in generated
data fidelity. A possible explanation for this improvement for very small λ could be that the PIGAN regularization used to
prevent overfitting and improve privacy is also improving the training process. The curves for CIFAR-10 exhibit similar
expected trends. In Fig. 4 we visually compare the samples generated with PIGAN and observe that while for small λ the
images are comparable to non-private GAN samples, the quality gets progressively worse with larger values of λ.

https://github.com/tsc2017/Inception-Score
https://github.com/tsc2017/Frechet-Inception-Distance
https://github.com/tsc2017/Frechet-Inception-Distance
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Table 3: PIGAN generator, discriminator and classifier architectures.

Generator G(z, c,y) Discriminator D(x, c,y) Classifier Q(x)

Inputs z ∼ N (0, I), y ∈ {1, . . . , 10} x ∼ R28×28×1, y ∈ {1, . . . , 10} x ∼ R28×28×1

and c ∼ Uniform{1, N} and c ∼ Uniform{1, N}
Layers Concatenate z and y (z, y→ zy) Dense 28× 28× 1, Reshape (y→ ŷ) 5× 5 stride=2 Conv 64, LReLU

Dense 7× 7× 128 (zy→ ẑy) Dense 28× 28× 1, Reshape (c→ ĉ) 5× 5 stride=2 Conv 128, LReLU
Dense 7× 7× 32 (c→ ĉ) Concatenate x, ĉ and ŷ 5× 5 stride=2 Conv 128, LReLU, Flatten

Concatenate ẑy and ĉ, BN, LReLU, Reshape 5× 5 stride=2 Conv 64, LReLU Dense N , Softmax
5× 5 stride=2 Deconv 128, BN, LReLU 5× 5 stride=2 Conv 128, LReLU
5× 5 stride=2 Deconv 128, BN, LReLU 5× 5 stride=2 Conv 128, LReLU, Flatten
3× 3 stride=1 Deconv 64, BN, LReLU Dense 1, Sigmoid

3× 3 stride=1 Conv 1, Tanh

(a) Fashion-MNIST

Generator G(z, c,y) Discriminator D(x, c,y) Classifier Q(x)

Inputs z ∼ N (0, I), y ∈ {1, . . . , 10} x ∼ R32×32×3, y ∈ {1, . . . , 10} x ∼ R32×32×3

and c ∼ Uniform{1, N} and c ∼ Uniform{1, N}
Layers Concatenate z and y (z, y→ zy) 3× 3 stride=1 Conv 64, LReLU (x→ x̂) 3× 3 stride=1 Conv 64, LReLU

Dense 4× 4× 256, Reshape (zy→ ẑy) Dense 32× 32× 3, Reshape (y→ ŷ) 3× 3 stride=2 Conv 128, LReLU
Dense 4× 4× 64, Reshape (c→ ĉ) Dense 32× 32× 1, Reshape (c→ ĉ) 3× 3 stride=2 Conv 128, LReLU

Concatenate ẑy and ĉ, LReLU Concatenate x, ĉ and ŷ 3× 3 stride=2 Conv 256, LReLU, Flatten
4× 4 stride=2 Deconv 128, LReLU 3× 3 stride=2 Conv 128, LReLU Dense N , Softmax
4× 4 stride=2 Deconv 128, LReLU 3× 3 stride=2 Conv 128, LReLU
4× 4 stride=2 Deconv 64, LReLU 3× 3 stride=2 Conv 256, LReLU, Flatten

3× 3 stride=1 Conv 3, Tanh Dense 1, Sigmoid

(b) CIFAR-10

Table 4: Classifier architectures used to evaluate generative models in downstream tasks.

Fashion-MNIST CIFAR-10

Inputs x ∼ R28×28×1 and y ∈ {1, . . . , 10} x ∼ R32×32×3 and y ∈ {1, . . . , 10}

Layers 3× 3 stride=1 Conv 32, ReLU 3× 3 stride=1 Conv 32, ReLU
3× 3 stride=1 Conv 64, ReLU, MaxPool, Dropout(0.5) 3× 3 stride=1 Conv 32, ReLU, MaxPool, Dropout(0.2)

3× 3 stride=1 Conv 128, ReLU, MaxPool, Dropout(0.5), Flatten 3× 3 stride=1 Conv 64, ReLU
Dense 128, ReLU, Dropout(0.5) 3× 3 stride=1 Conv 64, ReLU, MaxPool, Dropout(0.2)

Dense 10, Softmax 3× 3 stride=1 Conv 128, ReLU
3× 3 stride=1 Conv 128, ReLU, MaxPool, Dropout(0.3), Flatten

Dense 256, ReLU, Dropout(0.3)
Dense 10, Softmax

E.2. WB attacks using discriminator confidence scores

As pointed out in (Mukherjee et al., 2021), GANs can be visually compared in terms of their resistance to WB attacks based
on the distribution of scores predicted by the discriminator on train and holdout samples. For a generative model with better
privacy protection, the distributions will be more similar and the statistical differences between scores assigned to train and
non-train samples can not be exploited by an adversary. As shown in Fig. 5, the distributions for non-private GAN are very
different, and they overlap more for PIGAN as regularization parameter λ is increased.

E.3. Comparison of the privacy-fidelity trade-off

In Fig. 6, we compare the different private models in terms of privacy and fidelity measures not presented in the main paper.
As with the trade-offs observed in Fig. 2, the two left curves for both Fashion-MNIST and CIFAR-10 are almsot always
higher than the curves of other private methods, and the two right curves are lower. It is also observed that PIGAN covers a
wider privacy-level range compared to PrivGAN and especially DPGAN. For a given WB attack success rate, PIGAN is able
to generate images with higher Inception score, i.e., better sample quality. Similarly, for a given MC-Set and MC-Single
attack success rate, PIGAN results in better downstream classification performance and achieves lower FID and Intra-FID
scores, respectively. It is worth noting that as discussed in (Borji, 2019) and (Liu et al., 2018), both IS and FID score have
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(a) Fashion-MNIST

(b) CIFAR 10

Figure 3: Additional privacy and fidelity measures for PIGAN trained with N = 2 and various regularization λ.

(a) GAN (b) PIGAN (λ = 1) (c) PIGAN (λ = 10) (d) PIGAN (λ = 20)

Figure 4: Samples generated by PIGAN with various λ compared to non-private GAN.
limitations especially when evaluating class-conditional models. While we use Intra-FID to evaluate generated image quality
in our experiments, other metrics for conditional generative models include Class-Aware Fréchet Distance (CAFD) (Liu
et al., 2018), Fréchet Joint Distance (FJD) (DeVries et al., 2019) and Conditional IS and Conditional FID scores (Benny
et al., 2021).

We visually compare the generated sample quality of different private models in Figs. 7 and 8. For Fashion-MNIST it can be
observed that PIGAN generates better samples visually mostly noticeable in categories such as sandals and bags. Samples
generated with DPGAN have very poor quality especially in terms of color and item diversity. However, as expected,
the discriminator distributions for DPGAN look almost identical confirming the strong privacy guarantees provided by
differentially private trained models. Since we use class-conditional models in our experiments, we do not observe the
mode-collapse resulting from high regularization values of λ for PrivGAN, which was pointed out in (Mukherjee et al.,
2021). From comparing the generated CIFAR-10 images in Fig. 8, we observe that despite the high regularization, PIGAN
is able to generate images resembling those generated by non-private GAN in some of the categories, while PrivGAN
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(a) GAN (b) PIGAN (λ = 1) (c) PIGAN (λ = 10) (d) PIGAN (λ = 20)

Figure 5: Distribution of PIGAN’s discriminator confidence score on train and holdout data compared to non-private GAN
for Fashion-MNIST (top) and CIFAR-10 (bottom).
generates images with lower quality overall. DPGAN is not able to generate images with reasonable visual quality, and as in
Fashion-MNIST there is much less diversity in terms of color and objects within each class.

(a) Fashion-MNIST

(b) CIFAR-10

Figure 6: Privacy-fidelity trade-off achieved with different private models.

E.4. HyperparameterN
In theory, increasing N should improve privacy since the classifier Q would prevent the generative model from overfitting to
specific subsets of the data. However, larger N results in less training samples for each membership group, which impacts
the learned generative distribution for each group and the resulting sample quality. Privacy and fidelity measures for PIGAN
trained on Fashion-MNIST for λ = 1 are reported in Table 5 as N varies from 2 to 6. An equal train set size is used for
training PIGAN with different N . Increasing N from 2 to 3 reduces the success of WB and MC-Set attacks by 10.3% and
6.1%, respectively. This improvement in privacy only degrades the Intra-FID score by 1.6 points and the classification
performance by 1.1%. Increasing N beyond 3 does not seem to improve the privacy-utility trade-off on Fashion-MNIST
considerably. Parameters N and λ are hyper-parameters that can be tuned for the downstream task, and will likely depend
on the dataset as mentioned by (Mukherjee et al. 2021) based on experiments for PrivGAN.

E.5. No Penalty λ = 0

To further demonstrate the vulnerability of GANs to privacy attacks, we train PIGAN on Fashion-MNIST with N = 2 and
λ = 0, such that the generator is conditionally trained on different subsets of the data but is not penalized for memorizing
the data in each subset. As shown in Fig. 9, synthetic samples generated by PIGAN are visually indistinguishable for
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(a) GAN (b) PIGAN (λ = 5) (c) PrivGAN (λ = 0.1) (d) DPGAN (σ2 = 0.5, cp = 1.2)

Figure 7: Fashion-MNIST: Comparison between private models in terms of generated sample quality and discriminator
confidence score distribution. Models are trained to achieve similar WB attack accuracy reported in Table 1.

(a) GAN (b) PIGAN (λ = 30) (c) PrivGAN (λ = 20) (d) DPGAN (σ2 = 0.7, cp = 1.5)

Figure 8: CIFAR-10: Comparison between private models in terms of generated sample quality and discriminator confidence
score distribution. Models are trained to achieve similar WB attack accuracy reported in Table 1.
c = 1 and c = 2, i.e., when a GAN is trained on different subsets of the dataset. However, there is a clear distinction
between the discriminator’s confidence about the realness of a sample from the train or holdout set for both values of c.
Such statistical differences arise from overfitting to the training set and can be exploited by an adversary. By imposing
regularization with λ = 1, the WB and MC-Set attack accuracy diminish from 49.1% to 28.8%, and from 73.5% to 70%,
respectively (as reported in Table 5). PIGAN’s discriminator confidence score distributions are compared for various λ in
Appendix E.2, which shows that the distributions become more similar as λ is increased, meaning the discriminator assigns
closer confidence values to real samples coming from train and holdout sets.

E.6. Privacy Range

As observed from Fig. 2, PIGAN provides a wider privacy range against WB attacks compared to PrivGAN (as also noted in
(Mukherjee et al., 2021)) and DPGAN, especially for Fashion-MNIST. It is worth noting that PrivGAN requires training
multiple G-D pairs with a more trainable parameters compared to PIGAN, and therefore, it requires more training data and
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Table 5: Privacy and fidelity measures of PIGAN trained with λ = 1 and different N on Fashion-MNIST.

Privacy Attacks Fidelity Scores

WB ↓ TVD ↓ MC-Set ↓ MC-Single ↓ Inception ↑ FID ↓ Intra-FID ↓ Classification ↑
N = 2 28.8±1.5 0.448±0.015 70.0±7.7 51.8±0.8 2.44±0.03 20.7±1.2 118.5±5.1 82.6±0.6
N = 3 18.5±1.9 0.422±0.016 63.9±10.6 51.4±0.6 2.43±0.04 24.2±1.8 120.1±3.2 81.5±0.1
N = 4 22.7±2.6 0.461±0.024 65.5±11.5 51.8±0.9 2.45±0.06 24.4±1.3 120.7±4.3 81.9±0.5
N = 5 21.3±2.7 0.455±0.025 64.5±9.3 51.6±0.6 2.34±0.04 22.9±1.7 125.1±4.8 82.2±0.7
N = 6 22.3±2.8 0.458±0.027 69.5±3.5 51.9±1.1 2.44±0.03 25.7±2.1 119.4±4.6 81.5±0.8

(a) c = 1 (b) c = 2

Figure 9: PIGAN trained on Fashion-MNIST with N = 2, λ = 0.
updates compared to PIGAN, especially for large values of N . PrivGAN’s smaller privacy range, may potentially be due
to the additional computational cost, since all N G-D pairs may not converge as fast as models with a single generator
and discriminator (e.g., GAN and PIGAN) when trained for the same number of iterations. Consequently, it may be less
susceptible to privacy attacks due to less fitting to the data. Based on the results reported in Fig. 2, without regularization
(λ = 0), PrivGAN is 30.7% and 31.4% less susceptible to WB attacks compared to non-private GAN for Fashion-MNIST
and CIFAR-10, respectively. However, as expected, with no privacy regularization using λ = 0, PIGAN achieves almost
the same WB attack accuracy as non-private GAN. We empirically compare PIGAN and PrivGAN in terms of the training
efficiency in Appendix F.

F. Computation and Training Efficiency

#parameters (×106)

GAN PIGAN PrivGAN

Fashion-MNIST 2.24 2.98 5.11
CIFAR-10 1.93 2.59 4.39

The following table summarizes the number of trainable parameters in
each model. Compared to the GAN architecture, PIGAN has 1.33× more
parameters when trained on Fashion-MNIST, while PrivGAN has 2.28×
more parameters. As opposed to PIGAN, the number of parameters in
PrivGAN increases (almost linearly) withN , and each G-D pair in PrivGAN
is trained with a smaller fraction of the data. The training procedure for
PrivGAN is such that each G-D pair is only trained on 1/N th of the training
data. Therefore, for equal batch size and number of epochs, PrivGAN parameters are updated less compared to PIGAN.
We conduct the following two experiments to compare the models in terms of training efficiency, and report the results in
Table 6. In both experiments, N = 2 and λ is chosen such that PIGAN generates samples with relatively similar (or slightly
stronger3) privacy levels compared to PrivGAN in terms of WB attack accuracy. Note that for this choice of λ, PrivGAN has
lower vulnerability to MC-Set attacks compared to PIGAN.

3Note that in cases that the WB attack accuracy of PIGAN is less than PrivGAN, PIGAN provides stronger privacy protection.
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Experiment 1: We trained PIGAN for less number of epochs compared to PrivGAN. For Fashion-MNIST, PIGAN was
trained for 200 epochs (with K = 100), while PrivGAN was trained for 300 epochs. For CIFAR-10 we used 400 epochs
(with K = 300) for PIGAN compared to 500 epochs for PrivGAN. As observed from Table 6(a), when the models are
trained to achieve similar levels of privacy in terms of WB attacks, PIGAN outperforms PrivGAN in terms of generated
sample fidelity despite being trained for less epochs.

Experiment 2: We trained PIGAN on 3/4th of the train set on both Fashion-MNIST and CIFAR-10 datasets, while we
trained PrivGAN on the entire train set. From Table 6(b), it can be observed that even with 25% less training samples,
PIGAN is able to generate images with higher (or similar) quality in terms of classification accuracy and Intra-FID score,
while providing WB privacy levels comparable to PrivGAN for both datasets.

Table 6: PIGAN vs PrivGAN in terms of training efficiency.

Fashion-MNIST CIFAR-10

PIGAN PrivGAN PIGAN PrivGAN

WB (%) ↓ 13.9±0.7 14.3±0.8 30.9±3.9 42.9±6.8
MC-Set (%) ↓ 64.5±7.1 62.0±11.7 59.5±10.6 56.5±8.4

Intra-FID ↓ 119.5±4.6 131.9±4.4 96.9±3.3 117.5±4.3
Classification Accuracy (%) ↑ 80.2±0.8 77.0±0.8 45.3±1.4 40.7±1.2

(a) Experiment 1

Fashion-MNIST CIFAR-10

PIGAN PrivGAN PIGAN PrivGAN

WB (%) ↓ 12.0±0.3 12.2±0.5 39.8±2.7 42.9±6.8
MC-Set (%) ↓ 62.1±13.1 57.0±8.7 59.0±11.5 56.5±8.4

Intra-FID ↓ 122.2±7.0 132.4±7.9 100.1±3.1 117.5±4.3
Classification Accuracy (%) ↑ 77.1±0.9 76.2±2.8 43.0±1.7 40.7±1.2

(b) Experiment 2


