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Abstract

We present a data-driven framework for learning
fair universal representations (FUR) that guaran-
tee statistical fairness for any learning task that
may not be known a priori. Our framework lever-
ages recent advances in adversarial learning to
allow a data holder to learn representations in
which a set of sensitive attributes are decoupled
from the rest of the dataset. We formulate this
as a constrained minimax game between an en-
coder and an adversary where the constraint en-
sures a measure of usefulness (utility) of the rep-
resentation. For appropriately chosen adversar-
ial loss functions, our framework precisely clari-
fies the optimal adversarial strategy against strong
information-theoretic adversaries; it also achieves
the fairness measure of demographic parity for the
resulting constrained representations. We high-
light our results for the UCI Adult and UTKFace
datasets.

1. Introduction
The use of data-driven machine learning (ML) has re-
cently seen unprecedented success in a variety of automated
decision-making systems including facial recognition, natu-
ral language processing, mortgage lending, and even parole
prediction. The success of these approaches hinges on the
availability of large datasets that often include sensitive per-
sonal information. It has been shown that models learned
from such datasets can inherit societal bias and discrimina-
tion patterns (Ladd, 1998; Pedreshi et al., 2008) and learn
sensitive features even when they are not explicitly used
during training (Song & Shmatikov, 2019). Concerns about
the fairness, bias, and privacy of learning algorithms have
led to a growing body of research focused on both defin-
ing meaningful fairness measures and designing algorithms
with such guarantees.
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Three distinct approaches have been considered to assure
fair ML: in-processing, pre-processing, and post-processing.
In-processing approaches are common in the supervised
setting where the learning objective is known (e.g., (Dwork
et al., 2012; Zhang et al., 2018)); the resulting trained model
guarantees fairness for the specific objective. Pre-processing
generally produces fair representations tuned for a chosen
learning objective (Madras et al., 2018; Edwards & Storkey,
2016; Calmon et al., 2017) while post-processing provides
fairness by properly altering decision outputs (Hardt et al.,
2016; Hajian et al., 2015; Wei et al., 2020).

Censoring has emerged as a compelling pre-processing ap-
proach wherein protected features (e.g., race, gender, and
their correlates) are actively decorrelated from the rest of
the data to explicitly limit their effect on decisions. Cen-
soring is inspired by information-theoretic privacy methods
to limit leakage of sensitive features (Hamm, 2017; Huang
et al., 2017; Bertran et al., 2019; Song & Shmatikov, 2019)
and can be achieved using generative adversarial networks
(GANs) (Goodfellow et al., 2014). Censoring for fairness
has largely focused on learning fair predictors (Edwards &
Storkey, 2016; Madras et al., 2018; Zhang et al., 2018).

Our Contributions: Taking a preprocessing approach, the
main contribution of this work is to use censoring to gener-
ate fair representations (FRs) that are universal. These are
representations from which the sensitive features have been
actively decoupled and can be universally used for a variety
of a priori unknown learning tasks. We formally define de-
mographic parity (DemP) for representations and show that
our fair universal representation (FUR) framework assures
DemP group fairness for all downstream predictions.

There has been recent work on using adversarial methods
to generate transferable fair representations (Madras et al.,
2018); our approach, while similar in philosophy, goes a step
further by enforcing a hard distortion constraint that allows
better control of the learned representations, and therefore,
better downstream utility guarantees. Algorithmically, we
showcase how Lagrange penalty methods (Lillo et al., 1993)
can help enforce the hard constraint in a GAN-setting1.

Our most important contribution is in illustrating the utility

1Recently TensorFlow updated its package to allow enforcing
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of FURs for two publicly available datasets, namely, the UCI
Adult (Kohavi, 1996) and the UTKFace (Zhang et al., 2017).
Our visual results demonstrate our success in creating high
quality representations that increasingly erase the sensitive
attributes with decreasing fidelity requirements. In contrast
to state-of-the-art (Madras et al., 2018; Edwards & Storkey,
2016; Zhang et al., 2018), our framework is the first to
include non-binary sensitive attributes, multiple downstream
tasks, as well as hard distortion constraints. Our results show
that one can still learn high accuracy DemP (and even equal
opportunity) fair classifiers from DemP FURs. Finally, our
results straddle a wide range of values for DemP, thereby
including perfect fairness, in contrast to the above works.

We set up the problem and review fairness measures in
Section 2. In Section 3, we formalize our framework, de-
fine censored and fair representations, and highlight the
theoretical guarantees of this approach. We showcase the
performance of the FUR framework on the UCI Adult and
UTKFace datasets in Section 4. Proofs, algorithm, and deep
learning architectures for the datasets are in the Appendix.

2. Preliminaries
Consider a dataset D with n entries where each entry is a
random tuple (S,X, Y ) ∈ S × X × Y where S, X , and
Y are sensitive, non-sensitive, and target (non-sensitive)
features, respectively, and Ŷ ∈ Y is a predictor of Y . Note
that S and Y can be a collection of features or labels (e.g.,
S can be gender, race, sexual orientation, or a combination
of these, while Y could be age, facial expression, etc.); we
use the term variable to denote both single and multiple
features/labels. Instances of X , S, and Y are denoted by
x, s and y, respectively. The entries (X,S, Y ) of D are
independent and identically distributed (i.i.d.) according
to P (X,S, Y ). We emphasize that Y represents a set of
downstream ML tasks and is not used to create FRs.

Algorithmic fairness measures try to guarantee that, for a
specific target Y , the prediction of a ML model is accurate
with respect to (w.r.t.) Y but unbiased w.r.t. the sensitive S.
While more than two dozen measures for fairness have been
proposed, two oft-used fairness measures are DemP and
equalized odds (EO) (and variants thereof). DemP ensures
complete independence between the prediction of the target
Ŷ and the sensitive S; this notion of fairness favors utility
the least, especially when Y and S are correlated (Hardt
et al., 2016). EO enforces this independence conditioned on
Y , thereby ensuring equal rates for true and false positives
(when Y is binary) for all demographics. We now define
DemP and EO formally (for binary S and Y as originally
introduced). These can be generalized to the non-binary
setting, and we do so later for FRs.

Definition 2.1 ((Hardt et al., 2016)). A predictor f(S,X) =
Ŷ satisfies

Figure 1. Generative adversarial model for censoring/fairness.

• demographic parity (DemP) w.r.t. S, if Ŷ ⊥ S, i.e.,

Pr(Ŷ =1|S=1)=Pr(Ŷ =1|S=0) (1)

• equalized odds (EO) w.r.t. (S, Y ), if Ŷ ⊥S|Y , for y∈
{0, 1}:

Pr(Ŷ =1|S=1, Y =y)=Pr(Ŷ =1|S=0, Y =y). (2)

In the following section, we present our FUR framework.

3. FURs via Generative Adversarial Models
Formally, the FUR model consists of an encoder and an
adversary, as shown in Figure 1. The goal of the encoder
g : X × S → Xr is to actively eliminate the dependence
between S and X while that of the adversary h : Xr → S
is to infer S. In general, g(X,S) is a randomized mapping
that outputs a representation Xr = g(X,S). Note that S
may not always be available to the curator; however, it will
always affect the design of g via the adversarial training pro-
cess. For brevity, we henceforth write g(·) to include both
possibilities (just X or (X,S) as inputs). On the other hand,
the role of the adversary is captured via h(Xr), which is the
adversarial decision rule in inferring the sensitive variable
S as Ŝ = h(Xr = g(·)) from the representation g(·). In
general, the hypothesis h can be a hard decision rule under
which h(g(·)) is a direct estimate of S or a soft decision rule
under which h(g(·)) = Ph(·|g(·)) is a distribution over S.

To quantify the adversary’s performance, we use a loss func-
tion ℓ(h(g(X = x, S = s)), S = s) defined for every pair
(x, s). Thus, the adversary’s expected loss w.r.t. X and S is
L(h, g) ≜ E[ℓ(h(g(·)), S)], where the expectation is taken
over P (X,S) and the randomness in g and h. To ensure
utility, we introduce a constraint on the fidelity of Xr via a
distortion function d(xr, x), which measures the goodness
of Xr = xr w.r.t. X = x. We ensure statistical utility by
constraining the average distortion E[d(g(·), X)], where the
expectation is taken over P (X,S) and the randomness in g.

3.1. FUR: Framework and Theoretical Results

Generating an FR Xr requires learning an encoder g that
guarantees both censoring (i.e., it is difficult for the adver-
sary to learn S from Xr) and utility (g guarantees bounded
distortion of X). For a fixed g, the adversary learns a (poten-
tially randomized) function h that minimizes its expected
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loss in inferring S, or equivalently maximizes the negative
expected loss. This leads to a constrained minimax game
between the encoder and the adversary given by

min
g(·)

max
h(·)

−E[ℓ(h(g(·)), S)], s.t. E[d(g(·), X)] ≤ D, (3)

where D ≥ 0 determines the distortion constraint on Xr.
The optimization in (3) highlights that the input to g de-
pends on whether the curator has access to both (X,S)
or just X . Having access to both (X,S) in general will
yield a better decorrelator (e.g., see Section 4.1 for the UCI
dataset). Finally, without the constraint in (3), the optimal
Xr = g(·) ⊥ S. One can approximate this in practice via
arbitrarily large distortions as we show in Theorem 3.4; as a
setup to these results, we first define censoring and fairness
for representations. Our censoring definition clarifies the
representation that best limits an adversary from inferring
S. We then define DemP for FRs; we combine the two
definitions to show how and when adversarial learning can
help ensure demographic parity.

Definition 3.1 (Censored Representations). A representa-
tion Xr of X is censored w.r.t. the sensitive features S
against a learning adversary h(·), whose performance is
evaluated via a loss function ℓ(h(Xr), S), if for an optimal
adversarial strategy h∗ = argminh E[ℓ(h(Xr), S)],

E[ℓ(h∗(g(·)), S)] ≤ E[ℓ(h∗(Xr), S)], (4)

where g(·) is any (randomized) function of X (or (X,S))
and the expectation is over h, g, X , and S.
The above definition suggests that the best censored repre-
sentation Xr is the least informative about S to an adversary
whose inferential action is captured by a loss function ℓ(·, ·),
i.e., the average loss is the worst for Xr than for any other
arbitrary function g(·). While the comparison in (4) is w.r.t.
the best h∗(Xr) for Xr, choosing the optimal h(·) for any
g(·) will only serve as a lower bound to the left side of (4).

We now define DemP for representations; we then prove that
a DemP FR Xr guarantees that any downstream algorithm
using Xr satisfies DemP w.r.t. S.

Definition 3.2 (Demographically Fair Representations). For
(X,S) ∈ X × S, a representation Xr = g(X,S) ∈ Xr

satisfies demographic parity w.r.t. S if for any xr ∈ Xr and
s, s′ ∈ S

Pr(Xr = xr|S = s) = Pr(Xr = xr|S = s′) (5)

where g : X × S → Xr is a randomized function.
Theorem 3.3 (Fair Learning via Fair Representation). If
Xr = g(X,S) satisfies DemP w.r.t. S, then any algorithm
f : Xr → Y satisfies DemP w.r.t. S.
Proof of Theorem 3.3 (see Appendix A) follows from a di-
rect application of the data-processing inequality for mutual
information since (X,S)−Xr − Y form a Markov chain.

One simple approach to obtain a fair/censored representation
Xr is by choosing Xr = N where N ⊥ (X,S). However,
such an Xr has no utility. Since Xr has to ensure utility,
there is a tradeoff between guaranteeing fairness/censoring
and achieving a desired level of utility as formalized below.

Theorem 3.4. For sufficiently large distortion bound D, (3)
yields a universal representation Xr censored w.r.t. S.

The proof follows by observing that for sufficiently large
D, Xr can be arbitrarily noisy, reducing (3) to an
unconstrained optimization. For this Xr with h∗ =
argminh E[ℓ(h(Xr), S)],

E[ℓ(h∗(Xr), S)] = −min
g(·)

max
h(·)

−E[ℓ(h(g(·)), S)] (6)

≥ E[ℓ(h∗(g(·)), S)], (7)

thus satisfying Definition 3.1.

A predominant approach in the literature in the context
of fair representations is to explicitly include the intended
classification/prediction task, i.e., design representations
that guarantee DemP for the specific task (Madras et al.,
2018; Edwards & Storkey, 2016; Zhang et al., 2018). The
FUR formulation in (3) can be extended to include this
by adding an additional term to the objective that ensures
accuracy in learning Y . The resulting minimax game is

min
g̃(·),f(·)

max
h(·)

−E[ℓ(h(g̃(·)), S)] + λE[ℓ′(f(g̃(·)), Y )],

s.t. E[d(g̃(·), X)] ≤ D, (8)

where f(·) is a classifier for a target Y , λ > 0, and g̃(·)2 and
h(·) are the encoder and the adversarial classifier, respec-
tively, as in (3). Note that the loss functions ℓ(·) and ℓ′(·)
can be different. The setup in (8) involves an additional term
ensuring fair classification and is, thus, a more constrained
optimization than the FUR framework; in fact, we recover
the FUR setup with λ = 0. However, even while generating
intermediate representations g(·), (8) is primarily intended
to design fair classifiers, and therefore, requires knowing
the intended tasks on Y . In contrast, our FUR framework al-
lows generating DemP FRs Xr that in turn guarantee DemP
fairness to all downstream tasks on any subset of Y .
3.2. Data-driven FUR

We propose a data-driven version of the FUR framework
that learns a generative decorrelator g(X; θp), parameter-
ized by θp, from an n-sample dataset D = {(x(i), s(i))}ni=1.
This model takes X (or (X,S)) as input and outputs Xr. In
the training phase, the data holder learns the optimal param-
eters θp by competing against a computational adversary: a
classifier modeled by a neural network h(g(X; θp); θa) that
is parameterized by θa. In the evaluation phase, we use the

2In general, g̃(·) can be a function of both X and S; the depen-
dence on S is implicit when S is not directly available.
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accuracy of a classifier learned using Xr as a measure of
goodness of the representations and compute the empirical
DemP and EO to evaluate the fairness guarantees. For a
fixed h and g, binary S and ℓ as log-loss, the adversary’s
empirical loss using cross entropy is given by

Ln(θp, θa) = − 1

n

n∑
i=1

s(i) log h(g(x(i); θp); θa)

+ (1− s(i)) log(1− h(g(x(i); θp); θa)).
(9)

The optimal model parameters (θp, θa) are then solutions of

min
θp

max
θa

−Ln(θp, θa), s.t.
1

n

n∑
i=1

d(g(x(i); θp), x(i)) ≤ D.

(10)

It is crucial to note that the hard distortion constraint in (10)
makes it different from what has been extensively studied
in the literature. To incorporate the distortion constraint,
we use the penalty method (Lillo et al., 1993) that replaces
(10) by a series of unconstrained optimization problems by
adding a penalty to the objective as detailed in Appendix B.

4. Illustration of Results
We apply our FUR framework to two real-world datasets,
namely, UCI Adult (Kohavi, 1996) and UTKFace (Zhang
et al., 2017), briefly described below. For both datasets,
we restrict the architecture of h, g, and the downstream
predictive models to neural networks.

(i) The UCI Adult dataset (Kohavi, 1996) consists of 10
categorical and 4 continuous features and is used to predict
a binary salary label (1: salary > 50k or 0: salary ≤ 50k).
We choose gender or the tuple (gender, relationship) as the
sensitive S, the remaining features except salary as non-
sensitive X (Table 1 in the Appendix lists all features), and
salary as the target Y .

(ii) The UTKFace dataset (Zhang et al., 2017) consists of
more than 20k 200 × 200 color images of faces labeled
by age, ethnicity, and gender. Individuals in the dataset
have ages from 0 to 116 years and belong to 5 ethnicities:
White, Black, Asian, S. Asian (Indian), and others (includes
Hispanic, Latino and Middle Eastern). We set gender as S,
image as X , and age and ethnicity as two target labels Y ,
and restrict the data to images for ages between 10 and 65.

We use the accuracy of predicting S as the measure of
censoring. We evaluate the fairness guarantees of Xr by
computing the DemP obtained on tasks using Y . To this end,
we compute the following maximal difference as a proxy
for DemP in Definition 2.1 (includes non-binary Y and S):

∆DemP(y)= max
s,s′∈S

|P (Ŷ =y|S=s)− P (Ŷ =y|S=s′)|

(11)

with smaller values of ∆DemP(y) suggesting better DemP
fairness guarantees. For binary Y , ∆DemP(y) in (11) sim-
plifies to a single value that we denote as ∆DemP. In our
experiments, we use the empirical frequencies to estimate
P (Ŷ =y|S=s) for a chosen (y, s). We illustrate both cen-
soring and fairness results for the abovementioned datasets
in the following subsections. Experimental and model de-
tails are in Appendix C.
4.1. Illustration of Results for UCI Adult Dataset

For the UCI Adult dataset with both categorical and con-
tinuous features as shown in Table 1 in the Appendix, we
consider two cases:
(i) Case I: binary S by choosing ‘gender’ as sensitive feature
(ii) Case II: non-binary S by considering both ‘gender’ and
‘relationship’ as sensitive.
For both cases, ‘salary’ is the binary target Y ∈{0, 1}, with
Y =1 denoting salary >50K. Since the two values for
∆DemP(y) in (11) are the same for binary Y , we write ∆DemP
when illustrating results. We illustrate Case I below; Case
II is relegated to Appendix C.1.1 for reasons of space.
Case I: Binary Sensitive Feature.
Figure 2 illustrates the censoring and fairness performance
of the FR Xr for the UCI dataset. For censoring, the per-
formance is evaluated via the tradeoff between the clas-
sification accuracies of salary (utility of Xr) and gender
(censoring of S). Note that salary accuracy is evaluated as
a downstream task via a separately learned classifier that
uses Xr while gender accuracy is a measure of performance
of the neural network adversary h in the FUR model. We
evaluate fairness via the tradeoff between salary accuracy
and ∆DemP. We consider two possible inputs to the encoder
g(·) in (3), i.e., only X or both (X,S).

From Figure 2a, the baseline3 salary and gender accuracies
for the UCI dataset are about 84.5% and 85%, respectively.
Further, for the FUR Xr and downstream Ŷ :
(i) the smallest gender accuracy achievable is about 66%,
20% below its baseline, while the lowest salary accuracy is
about 82%, 2.5% below its baseline. Since the likelihood
of a male in the original test data is 66%, with increasing
distortion, the FUR gender accuracy is as good as a random
guess, i.e., the generated Xr hides gender effectively while
maintaining high salary accuracy.
(ii) For the same gender accuracy, using both (X,S) appears
useful only for high utility regime (salary accuracy ≥83%).

From Figure 2b, we observe the following:
(i) salary classification accuracy and ∆DemP have an approx-
imately affine relationship, and when ∆DemP≈0, the salary
accuracy is ≥79%, i.e., the FUR framework is effective in

3The baseline performances are the salary and gender accura-
cies as well as ∆DemP obtained from the original uncensored test
dataset.
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approaching perfect DemP with a small reduction in utility;
(ii) the FURs Xr generated from either X or (S,X) lead to
similar fairness guarantees. For ∆DemP=0.06, state-of-the-
art approaches in (Edwards & Storkey, 2016) and (Madras
et al., 2018) achieve 2% and 2.5% higher salary accuracy
than ours, respectively; however, our approach is distinct in
achieving ∆DemP≈0 with salary accuracy ≥79%.

From Figure 2a, we see that gender accuracy saturates at
67% while achieving a salary accuracy of at least 81% for
a specific value of distortion bound D, and therefore, test
distortion; in turn, this choice of D corresponds in Figure 2b
to ∆DemP≈0.06. Further reducing ∆DemP requires further
increasing D, thus lowering the salary accuracy to 79%
for ∆DemP≈0. This is because classification accuracy cap-
tures an average measure of correctness and is dominated
by the performance over the majority class. On the other
hand, ∆DemP captures the difference in performance of the
intended classifier on each of the two classes. Thus, en-
forcing fairness via ∆DemP reduces salary accuracy thereby
highlighting the tradeoff between guaranteeing fairness and
utility.

We can also evaluate the fairness performance of the gen-
erated Xr by using the EO measure in Definition 2.1.
Thus, for Y ∈{0, 1} where Y =1 when salary >50K,
S∈{0, 1} (female:1 and male:0), and Ŷ ∈{0, 1}, we write
∆EO(y),∀y∈{0, 1} as:

∆EO(y)≜
∣∣∣P (Ŷ =y|S=0, Y =y)− P (Ŷ =y|S=1, Y =y)

∣∣∣ .
(12)

Note that for binary Y , as is the case here, (12) is the same as
the definition of EO in (2). From Figure 3, which plots salary
accuracy vs. DemP or EO measures of fairness, we observe
that while the salary accuracy is above 82.4%, the values
of ∆EO(1) and ∆EO(0) decrease to 0.0007 and 0.0254, re-
spectively. To understand the significance of these results,
we compare against the state-of-the-art in (Madras et al.,
2018), wherein fair salary classifiers for both DemP and EO
measures, referred to as LAFTR-DP4 and LAFTR-EO, re-
spectively, are learned for the UCI dataset. For the LAFTR-
DP, the authors also compute the resulting EO of the DemP
classifier. As a preamble to the following comparisons, we
note that fair predictors, trained on specific tasks, will do at
least as well as the same predictors learned on FRs.

We make the following observations: (i) when ∆EO(1) +
∆EO(0)= 0.045, our salary accuracy is 1.3% smaller than
that achieved by LAFTR-DP (cf. Figure 2b in (Madras
et al., 2018)), but our minimal achieved value of ∆EO(1) +
∆EO(0) is only 72% of that achieved by LAFTR-DP and

4Learned Adversarially Fair and Transferable Representations
(LAFTR)

5(Madras et al., 2018) introduced an EO measure as ∆EO ≜
∆EO(1) + ∆EO(0).

(a) Salary vs. gender classification accuracy

(b) Salary classification accuracy vs. ∆DemP

Figure 2. Results for UCI Adult: Case I. In Figure 2a, the green
and red lines denote the baseline performances for the target Y
(salary) and sensitive S (gender), respectively; in Figure 2b, the
value of ∆DemP for the original test data is 0.2. In both plots, each
point corresponds to a specific value of achieved test distortion;
for Figures 2a and 2b, the achieved test distortion for the blue
points ranges over (0.69, 4.1) and (0.69, 4.4), respectively, with
decreasing distortion from left to right for each plot. The achieved
test distortion for the yellow-green points ranges over (0.87, 4.2)
and (0.87, 4.9), respectively.

is the same as the value achieved by LAFTR-EO, which
uses EO as the fairness metric to train a salary classifier;
(ii) the decrease of ∆EO(1) + ∆EO(0) is even larger than
∆DemP. That is, even though the representation is generated
to satisfy DemP, it can also provide competitive downstream
EO fairness guarantees. This, in turn, justifies the rationality
of generating fair representations under DemP.

4.2. Illustration of Results for UTKFace Dataset

In the UTKFace dataset, the face images are the non-
sensitive X . We choose ‘gender’ as the sensitive S; fo-
cusing on multiple downstream tasks, we consider both
ethnicity classification and age regression, for which we
choose ‘ethnicity’ or ‘age’ as the target variable Y , respec-
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Figure 3. Evaluation of equalized odds fairness metric under Case
I for the UCI Adult dataset. The EO measures ∆EO(1) and
∆EO(0) are defined in (12). The red curve plotting ∆EO =
∆EO(1) + ∆EO(0) matches ∆EO in Figure 2(b) of (Madras et al.,
2018). Each point corresponds to a specific value of achieved test
distortion ranging over (0.59, 2.01), with distortion decreasing
from left to right for each plot.

tively. We detail the results for ethnicity classification in
this section, while those for age regression can be found
in Appendix C.2.1. The support of Y for ethnicity clas-
sification is Y = {White, Black, Asian, Indian}. We use
the maximum of the DemP measure, defined in (11), over
the support Y , i.e., ∆DemP =maxy∈Y ∆DemP(y), as the
achieved fairness level.

Figure 4a shows the tradeoffs between gender and ethnicity
classification accuracies. While gender accuracy is about
62% and decreases about 35% from the baseline, the ethnic-
ity classification accuracy is above 74% and only decreases
14% from its baseline performance. Note that in the original
test data, the highest marginal probabilities for gender and
ethnicity are 54.6% (likelihood of male) and 43.2% (likeli-
hood of White), respectively. Therefore, gender accuracy
is better than a random guess by only 7.4% while ethnicity
accuracy is better than a random guess by 30.8%, i.e., the
generated Xr hides gender information well while maintain-
ing ethnicity, illustrating that distortion constrained FRs Xr

can guarantee utility for this task.

Figure 4b illustrates the tradeoff between the utility measure
and ∆DemP of the generated Xr in ethnicity classification.
We observe that while achieving about 86% of the baseline
classification accuracy, the ∆DemP is reduced to 0.03, which
is 20% of the ∆DemP =0.14 in the original test data. Table
2 in the Appendix shows the decrease of ∆DemP for every
ethnicity as the distortion increases. Finally, we visually
illustrate the FR images in Figure 9 in the Appendix and
discuss the effect of distortion on learning FRs.

(a) Ethnicity vs. gender classification accuracy

(b) Ethnicity classification accuracy vs. ∆DemP

Figure 4. Ethnicity classification accuracy vs. gender classification
and ∆DemP for the UTKFace dataset. In Fig. 4b, the x-axis is the
maximal value of DemP in (11) over the four ethnicities and ‘dist’
indicates the per pixel distortion.

5. Conclusion
We have introduced an adversarial learning framework with
verifiable guarantees for learning generative models that
can create censored and fair universal representations for
datasets with known sensitive features. The novelty of our
approach is in producing representations that are fair with
respect to the sensitive features for any a priori unknown
downstream learning task. We have shown that our FUR
framework allows the data holder to learn the fair encoding
scheme (a randomized mapping that decorrelates the sen-
sitive and non-sensitive features) directly from the dataset
without requiring access to dataset statistics. A promising
area to expand and explore this framework is for healthcare
data; the challenge here is in learning FRs when sensitive
features such as race may need to be both censored and used
appropriately in predictive tasks.
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A. Proof of Theorem 3.3
A demographically fair encoder g(X,S) ensures that Xr ⊥S, i.e., the mutual information I(S;Xr)= 0. Further, the
downstream learning algorithm acts only on Xr to predict Ŷ ; thus, (S,X)−Xr − Ŷ form a Markov chain. From the data
processing inequality and non-negativity of mutual information, we have 0≤ I(S; Ŷ )≤ I(S;Xr)= 0, i.e., S is independent
of Ŷ ; thus, from Definition 2.1, Ŷ satisfies DemP w.r.t. S. Finally, from the chain rule and non-negativity of mutual
information, we have I(Xr;St)= 0 for any St ⊂S, i.e., Ŷ satisfies DemP w.r.t. any subset of sensitive features St.

B. Alternate Minimax Algorithm

Algorithm 1 Alternating minimax FUR algorithm

Input: dataset D, distortion parameter D, # of decorrelator iterations T , # of adversary iterations J for each round of
decorrelator update, minibatch size M
Output: Optimal generative decorrelator parameter θp
function ALTERNATE MINIMAX(D, D, T, J,M )

Initialize decorrelator parameter θ1p, adversary parameter θ1a, and step size η1
for t=1, ..., T do

Random minibatch of M datapoints {x(1), ..., x(M)} drawn from full dataset
Generate {x̂(1), ..., x̂(M)} via x̂(i) = g(x(i); θ

t
p)

Apply update rule for step size ηt
Set ω1

a = θta
for j=1, ..., J do

Update the adversary parameter θt+1
a by stochastic gradient ascent for epoch j

ωj+1
a =ωj

a + ηt∇ωj
a

1

M

M∑
i=1

−ℓ(h(x̂(i);ω
j
a), s(i)), ηt > 0

end for
Set θt+1

a = ωJ+1
a

Compute the descent direction ∇θt
p
Lm(θtp, θ

t+1
a ), where Lm(θtp, θ

t+1
a ) is defined in (9) for n=m

Perform line search along ∇θt
p
Lm(θtp, θ

t+1
a ) and, for ℓ(θtp, θ

t+1
a ) set as the objective in (13) for n=m, update

θt+1
p = θtp − ηt∇θt

p
ℓ(θtp, θ

t+1
a )

end for
return θT+1

p

end function

Algorithm 1 details the steps used to learn the FUR model in a data-driven manner. To incorporate the distortion constraint,
we use the penalty method (Lillo et al., 1993) to replace the constrained optimization problem by adding a penalty to the
objective function. This is done via a penalty parameter ρt that captures a measure of violation of the constraint at the
tth iteration. The constrained optimization problem of g is then approximated by a series of unconstrained optimization
problems with an objective

−Ln(θp, θa) + ρt(max{0, 1
n

n∑
i=1

d(g(x(i); θp), x(i))−D})2, (13)

where the penalty coefficient ρt decreases with the number of iterations t. We start with a large value of ρt to enforce
distortion from the outset and decrease ρt in exponential steps with respect to the number of training epochs. Such a decrease
allows enforcing a smaller penalty when the model is closer to convergence. We also vary the learning rate ηt over training
epochs as follows: we pick a small value of ηt at the beginning and compare the relative values of the adversarial loss and
the average distortion. We adjust the initial ηt so that the adversarial loss and the distortion penalty values are on a similar
scale in the first few epochs during training. When the algorithm terminates, we check the average distortion and manually
fine tune the initial ηt and the update rule to make sure the distortion is within bounds after termination.We note that both
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Figure 5. Different architectures of the decorrelator/encoder in the FUR framework.

the augmented Lagrangian and the penalty methods have similar performance in practice; we chose the penalty method but
our results can also be obtained with the augmented Lagrangian method (Eckstein & Yao, 2012). Finally, we note that one
can easily generalize (9) to the multi-class setting (non-binary S) using the softmax function.

C. Experimental Details and Additional Results
This section contains additional results for and the architectural details of the UCI Adult and UTKFace dataset experiments
presented in the main paper. For the two publicly available datasets, the FUR architectures we consider capture two of the
four possible approaches to decorrelating the data (X,S). These approaches are illustrated in Figure 5 and include: the
feedforward neural network decorrelator (FNND) in Figure 5-(a), the transposed convolution neural network decorrelator
(TCNND) in Figure 5-(b), the noisy autoencoder decorrelator (NAED) in Figure 5-(c), and the probability matrix model
(PMM) in Figure 5-(d).

The FNND architecture uses a feedforward multi-layer neural network to combine the low-dimensional random noise and
the original data (i.e., X or (X,S)) together. The TCNND generates high-dimensional noise from low-dimensional random
noise by using a multi-layer transposed convolution neural network, and then, adds it to the original data to produce the
representation Xr. The NAED uses the encoder of an autoencoder to generate a lower-dimensional feature vector of the
original data and adds independent random noise to each element of the feature vector. The decoder of the autoencoder
reconverts the noisy feature vector to generate the processed data Xr. Finally, for purely discrete X and S, Xr can be
generated using a probability transition matrix; such a matrix can be learned from the data and is then used to map the
entries of the original data to any one of the other entries using the corresponding row of the probability matrix.

For the UCI Adult dataset, we use the FNND architecture, while for the UTKFace dataset, we consider the NAED
architecture. Given that the datasets we consider are either continuous valued or have a mix of continuous and discrete
valued features (UCI), we do not use the PMM approach in our experiments. Finally, we train our models based on the
data-driven version of the FUR formulation presented in Section 3.2 using TensorFlow (Abadi et al., 2016).

C.1. UCI Adult Dataset Details

Each sample in the UCI Adult dataset has both continuous and categorical features. Table 1 lists all the considered features.
We perform a one-hot encoding on each categorical feature in (S,X) and store the mapping function from the one-hot
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Table 1. Features of the UCI Adult dataset.

Case I Feature Description Case II
Y salary 2-salary intervals: > 50K and ≤ 50K Y
S gender 2 classes: male and female

S

X

relationship 6 classes of family relationships (e.g., wife and husband)
age 9-age intervals: 18− 25, 25− 30, 30− 35, ...,60− 65

X

workclass 8 types of employer + unknown
education 16 levels of the highest achieved education
marital-status 7 classes of marital status
occupation 14 types of occupation + unknown
race 5 classes
native-country 41 countries of origin + unknown
capital-gain Recorded capital gain; (continuous)
capital-loss Recorded capital loss; (continuous)
hours-per-week Worked hours per week; (continuous)
education-num Numerical version of education; (continuous)

(a) Gender (b) Relationship (c) (Gender, Relationship)

Figure 6. Tradeoff between classification accuracy of non-sensitive feature (salary) and sensitive features (gender and/or relationship)
under Case II for the UCI Adult dataset. Note that we use the classification accuracy obtained from the original testing dataset as the
baseline performance, which is denoted by the green and red lines for the target variable (salary) and the sensitive variable (gender or/and
relationship), respectively. In every plot, each point corresponds to a specific value of achieved test distortion (over all features except
gender and relationship) ranging over (0.58, 2.1), with distortion decreasing from the left to the right for each plot.

encoding to the categorical data. We restrict the continuous features in X to the interval (0, 1) using normalization.

C.1.1. ADDITIONAL RESULTS

Case II: Non-binary Sensitive Feature.

Figures 6 and 7 illustrate the censoring and fairness performances of the generated Xr in hiding ‘gender’ and ‘relationship’,
respectively, while preserving ‘salary’ information. Figure 6 illustrates the tradeoff between salary and sensitive feature S
accuracies when S is either gender, or relationship, or both. From Figure 6, we observe that while the salary accuracy is
above 79%, the classification accuracies of gender and/or relationship are about 66% (Figure 6a), 45% (Figure 6b) and 41%
(Figure 6c), respectively. Note that the probabilities of male, husband, and the combination (male, husband) are 66%, 40%
and 40%, respectively, in the original test data. Therefore, while the salary accuracy is preserved at 79%, the inferences of
gender, relationship, and combination (gender, relationship) approach random guessing with these priors. Thus, our FUR
framework can effectively hide one or more sensitive features. However, suppressing multiple correlated sensitive features
comes at a cost of a reduction in salary accuracy. Thus, comparing Figures 2a and 6a, we see a maximal reduction of 3% in
salary accuracy for a given gender accuracy6.

For Case II, Figures 7a and 7b illustrate the tradeoffs between the salary accuracy and ∆DemP for S chosen as gender or

6In Figures 2a and 6a, the baseline performances are different because for Case II, the feature variable X does not contain ‘relationship’.
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(a) Gender (b) Relationship (or) (Relationship, Gender)

Figure 7. Case II for UCI Adult: Tradeoffs between salary accuracy and the ∆DemP of gender and/or relationship. For the original test
data, ∆DemP for gender, relationship and the pair (gender, relationship) is 0.2, 0.438 and 0.443, respectively. In every plot, each point
corresponds to a specific value of achieved test distortion (over all features except gender and relationship) ranging over (0.58, 2.1), with
distortion decreasing from the left to the right for each plot.

relationship or both. We observe that while salary accuracy is above 94% of the baseline performance, the value of ∆DemP
is dropped to 25% for gender and to about 34% for both relationship and their combination. In short, Xr works well in
decorrelating gender and relationship both separately and jointly without affecting downstream classifier performance. From
Figure 7b, we observe that the value of ∆DemP for the combination is almost the same as that for relationship. In addition,
comparing the results in Figures 2b and 7a, for any given ∆DemP for gender, the salary accuracy in Case II is about 1% lower
than that in Case I; this can be viewed as the cost of eliminating a potentially sensitive feature (relationship) that is also
correlated with the target feature (see also, footnote 6). Finally, comparing the results in Figures 2b and 7b, for any given
salary accuracy, ∆DemP for gender in Case II is about 0.25 higher than that in Case I; this can be viewed as the effect of
using non-binary sensitive features on ∆DemP, now defined as the maximum over all values taken by the non-binary sensitive
feature.

C.1.2. ARCHITECTURE

The two architectures used are shown in Figure 8. We concatenate the pre-processed data with a same-size standard Gaussian
random vector and feed the entire vector to the encoder. The encoder consists of two fully-connected (FC) hidden layers, the
first with 170 neurons and the second with 130 neurons. Since the output representation Xr has the same dimension as the
feature variable X , the output layer of the encoder has 113 (as shown in Figure 8a) and 107 (as shown in Figure 8b) neurons
for Case I and Case II, respectively. We use a ReLU activation function in the encoder.

We recall the two cases considered for this dataset: Case I with binary sensitive feature S (gender) and Case II with
non-binary S (gender and relationship). For Case I, the inputs can be either X only or both X and S. With only X as input
to the encoder, the length of the input vector is 226, and when both X and S (binary) are inputs, the input vector length is
230. In both scenarios, the length of the encoder’s output vector is 113. For Case II, since both X and S are inputs, the
length of the input vector is 230. The length of the encoder’s output vector is 107, since S is non-binary in this case.

For Case I, the adversarial classifier in Figure 8a consists of three fully-connected (FC) layers 1 to 3 with 10, 5 and 2
neurons, respectively, and it takes Xr as the input and outputs a probability distribution for the binary sensitive variable S
(i.e., gender). Here, ReLU is used as the activation function in the two hidden layers and soft-max is used in the output layer
to generate the probability distribution for gender. The same architecture is used for the downstream application of salary
classification. For Case II, the adversarial classifier in Figure 8b consists of three fully-connected (FC) layers 1 to 3 with 50,
30 and 12 neurons, respectively. Leaky ReLU is used as the activation function in the two hidden layers and soft-max is
used in the output layer. All of the above models use log-loss as the loss function and are optimized using Adam optimizer
(Kingma & Ba, 2017).
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(a) UCI Dataset: The architecture for Case I (S is the binary gender
variable)

(b) UCI Dataset: The architecture for Case II (S is non-binary and
includes both gender and relationship)

Figure 8. The architectures of the encoder and adversary for the UCI Adult dataset for both Cases I and II.

C.2. UTKFace Dataset Details

The UTKFace dataset (Zhang et al., 2017) consists of more than 20k 200 × 200 color images of faces labeled by age,
ethnicity, and gender. Individuals in the dataset have ages from 0 to 116 years and are divided into 5 ethnicities: White,
Black, Asian, s. Asian (Indian), and others including Hispanic, Latino and Middle Eastern. We take gender as S, the
image as X , and age and ethnicity as two target labels Y . We reshape the original 200× 200 color images (of faces) in the
UTKFace dataset to color images of size 64× 64 and we restrict the data to contain images for ages between 10 and 65.

C.2.1. ADDITIONAL RESULTS

Figure 9 illustrates the output Xr for 16 typical7 faces in the UTKFace dataset for increasing per-pixel distortion. From
Figure 9, we observe that: (i) for a small per-pixel distortion (e.g., 0.003), gender-distinguishing features such as lip color
are smoothed out; and (ii) at higher per-pixel distortion (e.g., 0.006), the FUR framework can generate a face with an
opposite gender (see the highlighted examples in Figure 9) thereby completely obfuscating this sensitive feature; (iii) when
the average per-pixel distortion is too large (e.g., 0.01), the representations generated are often too blurred. Table 2 shows
the decrease of ∆DemP for each of the four ethnicities as the distortion increases.

For the downstream task of age regression, we use the mean absolute error (MAE), i.e., the average absolute difference
between the predicted age and the true age, as the utility measure. Figure 10 shows the tradeoff between gender classification
accuracy and the MAE for age regression. In Figure 10a, we observe that while the classification accuracy for gender is
about 62%, which is a 35% decrease from the baseline performance of 94%, the increase in the MAE is 1.5 which is about a
20% increase from the baseline performance of 7.2 years. Figure 10b shows the cumulative distribution function (CDF)
of the difference between the true and predicted age for various distortions, from which we can see that the drop of the
cumulative probability is at most 1%. Thus, the generated FUR guarantees reliable performance for both age and ethnicity
prediction; thus, constraining the distortion of the generated Xr can be effective in guaranteeing utility for multiple tasks.

In Figure 11, we illustrate the tradeoff between the MAE and ∆DemP of the generated Xr in age regression. In Figure 11a,
while preserving 86% of the utility baseline performance, the ∆DemP, i.e., the maximal value of demographic parity
measure over the 56 age values, decreases to 0.015, which is less than 33% of the ∆DemP =0.046 in the original test data.
Figure 11b shows the demographic measure ∆DemP(y) , y ∈ [10, 65], for various distortions; we observe that when the pixel
distortion is 0.01, even while ∆DemP =0.015, ∆DemP(y)= 0 for 17 distinct ages. That is, the predictions of these 17 ages
are completely independent of gender and DemP is achieved for those predictions.

C.2.2. ARCHITECTURE

The architectures used are shown in Figures 12 to 14. Figure 12 illustrates the architecture of the FUR model, which
consists of an encoder and an adversarial classifier. The encoder is implemented using a noisy autoencoder, whose encoder
transforms the original 64× 64 RGB-images into a 4096-dimensional feature vector. This feature vector is mixed with a

7The 16 typical faces covers the 8 possible combination of 2 genders (male and female) and 4 ethnicities (White, Black, Asian and
Indian) and includes young, adult and old faces.
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Figure 9. The encoded face images for different values of per-pixel distortions for the UTKFace dataset. Set of vertical faces highlighted
in boxes makes explicit how the sensitive feature (gender) is changed with increasing distortion. The ground truth gender values for the
images are shown in the top-most row.

4096-dimensional standard normal random vector8 and then fed into a decoder to reconstruct a 64 × 64 colorful image,
which is the universal representation Xr. This differs from a standard autoencoder, in which the feature vector is directly
fed into the decoder. Specifically, the encoder part of the noisy autoencoder consists of four convolution layers 1 to 4 with
128, 64, 64 and 64 output channels, respectively, and three 2× 2-max pooling layers following the first three convolution
layers. The encoder part is followed by two fully-connected layers, each with 4096 neurons, which mix the noise and the
output feature vector. The following decoder part consists of five convolution layers 1-5 with 64, 64, 64, 128 and 3 output
channels, respectively, and three 2 × 2-up-sampling layers following the first three convolution layers. The adversarial
classifier takes in the representation Xr and outputs the prediction of the sensitive S (gender). It consists of two convolution
layers, the first with 20 output channels and the second with 40 output channels, two 2× 2-max pooling layers following
each of the convolution layers, and two fully-connected layers, the first with 40 neurons and the second with 2 neurons. The
kernels in the convolution layers are of size 3× 3. All convolution and fully-connected layers use ReLU as the activation
function, except the last layers of the decoder and the adversary, which use sigmoid and softmax, respectively. The encoder
and adversarial classifier use the square-loss and log-loss as the loss functions, respectively, and both are optimized using
the Adam optimizer.

Figure 13 illustrates the architecture of the downstream non-binary classifier for ethnicity. The classifier is built by changing
the top (last) 3 fully-connected layers of the VGG 16 model9 pre-trained on ImageNet. The first layer has 256 neurons with

8A random vector is a standard normal random vector if all of its components are independent and identically distributed following the
standard normal distribution.

9https://keras.io/applications/#vgg16
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Table 2. Demographic parity fairness (indicated by ∆DemP(·)) of ethnicity classification on the UTKFace dataset.

Distortion 0 0.003 0.0045 0.005 0.006 0.007 0.008 0.01
∆DemP(White) 0.061 0.055 0.04 0.03 0.03 0.02 0.02 0.01
∆DemP(Black) 0.109 0.021 0.02 0.05 0.03 0.05 0.03 0.03
∆DemP(Asian) 0.14 0.082 0.07 0.07 0.06 0.07 0.06 0.03
∆DemP(Indian) 0.031 0.006 0.01 0 0.01 0 0.01 0.01

(a) Mean absolute error of age prediction vs. gender classification
accuracy

(b) The CDF of the difference between the true and predicted age

Figure 10. Utility of age regression on the UTKFace dataset. Note that ‘dist’ indicates the per pixel distortion.

ReLU as the activation function and is followed by a dropout layer with the rate 0.5; the second layer has 4 neurons with
softmax as the activation function. The classifier uses log-loss and is optimized by a stochastic gradient descent optimizer.

Figure 14 illustrates the architecture of the neural network used in the downstream application of age regression. The neural
network consists of three 3× 3 convolution layers 1 to 3 with 128, 64 and 32 output channels, respectively, three 2× 2-max
pooling layers following each of the convolution layers, and three fully-connected layers 1 to 3 with 512, 128 and 1 neurons,
respectively. All layers use ReLU as the activation function, except the last layer, which uses linear activation. The model
uses the squared loss as the loss function and is optimized using Adam optimizer.
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(a) Mean absolute error of age prediction vs. ∆DemP (b) The demographic parity measure for various distortions

Figure 11. Achieved demographic parity for the age regression task on the UTKFace dataset. Note that in Fig. 11a, the x-axis is the
maximal value of DemP in (11) over the chosen age range (10-65) and ‘dist’ indicates the per pixel distortion.

Figure 12. The architectures of the encoder and adversary for the UTKFace dataset.

Figure 13. The architecture of the neural network for ethnicity classification for the UTKFace dataset.
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Figure 14. The architecture of the neural network for age regression for the UTKFace dataset.


