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Abstract
Despite clear computational advantages in build-
ing robust neural networks, adversarial training
(AT) using single-step methods is unstable as
it suffers from catastrophic overfitting (CO):
Networks gain non-trivial robustness during the
first stages of adversarial training, but suddenly
reach a breaking point where they quickly lose all
robustness in just a few iterations. Although some
works have succeeded at preventing CO, the
different mechanisms that lead to this remarkable
failure mode are still poorly understood. In this
work, however, we find that the interplay between
the structure of the data and the dynamics of
AT plays a fundamental role in CO. Specifically,
through active interventions on typical datasets
of natural images, we establish a causal link
between the structure of the data and the onset
of CO in single-step AT methods. This new
perspective provides important insights into the
mechanisms that lead to CO and paves the way
towards a better understanding of the general
dynamics of robust model construction.

1. Introduction
Let fθ : Rd → Y denote a neural network architecture
parameterized by a set of weights θ ∈ Rn which maps input
samples x ∈ Rd to y ∈ Y = {1, . . . , c}. The objective of
adversarial training (AT) is to find the network parameters
θ ∈ Rn that optimize the following min-max problem:

min
θ

E(x,y)∼D

[
max

∥δ∥p≤ϵ
L(fθ(x+ δ), y)

]
, (1)
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where D is some underlying data distribution and δ ∈ Rd

represents an adversarial perturbation (Szegedy et al.,
2014; Boloor et al., 2019). This is typically solved by
alternately minimizing the outer objective and maximizing
the inner one via first-order optimization procedures. The
outer minimization is tackled via some standard neural
network optimizer, e.g., SGD, while the inner maximization
problem is approximated with adversarial attacks like Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2015)
and Projected Gradient Descent (PGD) (Madry et al., 2018).
Single-step AT methods are built on top of the FGSM
attack. In particular, FGSM solves the linearized version
of the inner maximization objective. In the ℓ∞ case, this
leads to the following attack:

δFGSM = ϵ sign (∇xL(fθ(x), y)) . (2)

Note that FGSM is very efficient computationally as it only
requires a single forward-backward step. However, the use
of the computationally efficient single-step attacks within
AT comes with concerns regarding its stability. While
training, although there is an initial increase in robustness,
the networks often reach a breaking point where they
lose all gained robustness in just a few iterations (Wong
et al., 2020). This phenomenon is known as catastrophic
overfitting (CO) (Wong et al., 2020; Andriushchenko
and Flammarion, 2020). Nevertheless, given the clear
computational advantage of using single-step attacks during
AT, a significant body of work has been dedicated to
finding ways to circumvent CO via regularization and data
augmentation (Andriushchenko and Flammarion, 2020;
de Jorge et al., 2022; Kim et al., 2021; Park and Lee, 2021;
Vivek and Babu, 2020; Golgooni et al., 2021).

Despite the recent methodological advances in this front,
however, the root cause of CO, experienced by single
step AT methods, remains poorly understood. We show,
in this paper, that CO is connected to properties of the
data, the effectiveness of the adversarial attacks, and
the training dynamics. However, due to the inherent
complexity of this problem, it is difficult to disentangle
these factors of variation. Hence, we argue that identifying
the causal mechanisms behind this failure mode cannot
be done through observations alone and requires active
interventions (Pearl and Mackenzie, 2018). That is, we
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Figure 1: Left: Depiction of our data intervention to introduce easy-to-learn, discriminative features. Right: Clean and
robust performance after FGSM-AT on intervened datasets D̃β . We vary the strength of the injected features β (β = 0
corresponds to the original CIFAR-10) and the robustness budget ϵ (train and test). We observe that for ϵ ∈ {4/255, 6/255}
our intervention can induce CO when the injected features have strength β slightly larger than ϵ while training on the
original data does not suffer CO. Results are averaged over 3 seeds and shaded areas report minimum and maximum values.

need to be able to synthetically induce CO in a training
context where it would not naturally happen otherwise.

In this work, we identify one such type of intervention that
allows to perform abundant in-silico experiments to explain
multiple aspects of CO. Specifically the main contributions
of our work are: (i) We show that CO can be induced by
injecting easy-to-learn features that, despite being strongly
discriminative, are not sufficient for robust classification by
themselves (see Figure 1). (ii) Through extensive empirical
analysis, we discover that CO is connected to the preference
of the network to learn different features in a dataset, an
increase in non-linearity of the loss, and the existence
of a learning shortcut that the network exploits to break
single-step attacks. (iii) Building upon these insights, we
describe and analyse a causal chain of events that can lead
to CO. Overall, in this paper we show that:

Catastrophic overfitting can be a consequence of the
interaction between easy- and hard-to-learn features in a
dataset that can cause single-step AT methods to fail.

Our findings can improve our understanding of CO as they
shift focus to the study of how the data influences AT. They
can help circumvent the potential pitfalls of single-step AT
and design effective and efficient AT methods. Moreover,
they also pave the way to gain further insights in the intricate
dynamics of robust model construction, where the interac-
tion between robust and non-robust features plays a key role.

2. Why does catastrophic overfitting happen?
We first formulate our arguments by describing three key
mechanisms, which together provide a plausible explanation
for CO. In the rest of the paper, we provide extensive
supporting evidence for our argument. Our starting point
is a well known observation: while robust solutions
can be attained with non-trivial changes to the standard

training procedure, e.g., using AT, they are not the default
consequence of standard training. To that end, our first
mechanism is concerned with the order at which features are
learnt in a dataset (Kalimeris et al., 2019; Rahaman et al.,
2019) during AT and how robustly separating the data may
require additional information with respect to the one used
in standard training (Sanyal et al., 2021; Montasser et al.,
2019). More specifically, consider the setting where the data
is comprised of easy-to-learn, discriminative, but non-robust
features along with other harder-to-learn features that are
necessary for robust classification. In the following, we will
refer to them as simple or complex features, respectively,
to reflect the intrinsic preferences of the network.

Mechanism 1 (Preference of the network – M1). In the con-
text of adversarial training in the setting described above,
the network first learns the easy-to-learn features and then
combines them with the other (more complex) features in
an effort to increase its robustness. When the robustness
requirement is lifted, the network defaults back to using just
the initial non-robust features.

Mechanism M1 conjectures that, during adversarial train-
ing, networks are biased towards first learning easy-to-learn
features (Kalimeris et al., 2019; Shah et al., 2020) and then
combining them with additional information, present in the
complex features, in order to robustly separate the data.
Note that this is a different phenomenon than the one ob-
served in Shah et al. (2020), who only argue that during
standard training, networks learn easy features and ignore
complex features altogether even when trained for a large
number of epochs. Moreover, Mechanism 1 is also imply-
ing that this is a forced behaviour of the network, i.e., the
network tends to forget this additional information as soon
as robustness constraints are removed. Furthemore, in Ap-
pendix A we provide a rigorous proof showing that such a
dichotomoy between clean and robust solutions can exist in
certain learning problems.
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Prior work (Andriushchenko and Flammarion, 2020; Kim
et al., 2021) has observed that, when a network suffers from
CO, the loss landscape becomes highly non-linear with
respect to the input. In addition, some works (Fawzi et al.,
2018; Jetley et al., 2018; Moosavi-Dezfooli et al., 2018)
have also observed that the main curvature directions of the
loss landscape are strongly correlated with the directions
used to discriminate the data, at least on standard networks.
Based on these facts, our second mechanism suggests that
this increase in non-linearity is a consequence of the need
for the network to fit the additional complex information
required for robustness.

Mechanism 2 (Non-linear feature extraction – M2). When
combining different features to gain robustness, the network
increases its non-linearity in order to learn representations
that can exploit both features.

Combining M1 and M2 provides an explanation for the
increase of non-linearity AT, giving rise to a possible trigger
for CO. However, it does not explain why this increase in
non-linearity is worse for single-step AT than multi-step
AT. Our final mechanism provides a plausible answer: It
explains how the network exploits this trigger to identify a
shortcut (Geirhos et al., 2020) which allows it to ignore the
additional (complex) information needed for robustness.

Mechanism 3 (Non-linear shortcut – M3). Catastrophic
overfitting occurs when the increased non-linearity of
the network hinders the single-step attacks from reliably
approximating the inner maximization in Equation (1).
With the single step attack rendered ineffective, the network
creates a shortcut to focus only on the clean objective
as long as it remains highly non-linear. This allows the
network to only use the easy, non-robust features and ignore
the additional robust information.

Linking the three mechanisms mentioned above provides a
plausible explanation for CO, in short:

Catastrophic overfitting is a consequence of the interaction
between different features in a dataset (M1) which leads
to an increase in non-linearity (M2) that causes single-step
AT to fail (M3).

3. Inducing catastrophic overfitting
In Section 2, we argued that the root cause of CO stems
from the bias of the network towards combining easy-to-
learn features with other (more complex) features. However,
directly identifying these two sets of features in a vision
dataset is a difficult, if not impossible, task. Instead, as
is standard practice in the field (Ilyas et al., 2019; Ortiz-
Jimenez et al., 2020b; Arpit et al., 2017; Shah et al., 2020;
Sanyal et al., 2021; Ortiz-Jimenez et al., 2020a), we rely on
synthetic interventions that manipulate the data in order to
make claims about its structure. In particular, we show that

we can induce CO for FGSM-AT on a dataset that is synthet-
ically intervened on and in a training regime that does not
exhibit CO without the intervention e.g., ϵ < 8/255 during
AT. Specifically, let (x, y) ∼ D be an image-label pair sam-
ple from a distribution D. In order to synthetically induce
the conditions in M1, we modify the original data x by
adding an injected feature y that is strongly discriminative
and easy-to-learn. Thus, we construct a family of intervened
datasets D̃β such that

(x̃, y) ∼ D̃β : x̃ = x+β v(y) with (x, y) ∼ D, (3)

where v(y) is a label-dependent additive signal from a prede-
fined set of linearly separable vectors V = {v(y) | y ∈ Y}
such that ∥v(y)∥p = 1 for all y ∈ Y and β > 0.

Properties of intervened dataset This construction has
some interesting properties. Specifically, note that β
controls the relative strength of the original and injected
features, i.e., x and y, respectively. Since the injected fea-
tures are linearly separable and perfectly correlated with the
labels, a linear classifier can separate D̃β for a large enough
β. Moreover, as β also controls the classification margin, if
β ≫ ϵ this classifier is also robust. However, if x has some
components in span(V), the interaction between x and y
may decrease the robustness of a linear classifier for some
β. We rigorously illustrate such a behaviour for linear clas-
sifiers in Appendix B. In short, although y is easy-to-learn
in general, the amount of additional information needed
from x to achieve robustness will strongly depend on β.

With the aim to control such feature interactions, we design
V by selecting vectors from the low-frequency components
of the 2D Discrete Cosine Transform (DCT) (Ahmed et al.,
1974) as these have a large alignment with the space of natu-
ral images that we use for our experiments (e.g., CIFAR-10).
Besides, and since CO has primarily been observed for ℓ∞
perturbations, we binarize these vectors so that they only
take values in ±1, ensuring a maximal per-pixel perturba-
tion that satisfies ∥v(y)∥∞ = 1. The set V is illustrated
in Figure 1(left). These two design constraints also help to
visually identify the alignment of adversarial perturbations δ
with y as these patterns are visually distinctive (see Fig. 2).

Injection strength (β) drives CO To test the hypotheses
in Section 2, we train a PreActResNet18 (He et al., 2016)
on different intervened versions of CIFAR-10 (Krizhevsky
and Hinton, 2009) using FGSM-AT for different robustness
budgets ϵ and different β. Fig. 1 (right) shows a summary
of these experiments both in terms of clean accuracy and
robustness1. For clean accuracy, Fig. 1 (right) shows two
distinct regimes. First, when β < ϵ, the network achieves
roughly the same accuracy by training and testing on D̃β

as by training and testing on D (corresponding to β = 0).
This is expected as FGSM does not suffer from CO in

1Meeasured using PGD with 50 iterations and 10 restarts.
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Figure 2: Different samples of the intervened dataset D̃β ,
and FGSM perturbations before and after CO. While prior
to CO perturbations focus on the injected features, after CO
they become noisy.

this setting (see Figure 1 (right)) and effectively ignores
the added feature y. Meanwhile, when β > ϵ, the clean
test accuracy is almost 100% indicating that the network
heavily relies on the injected features.

The behaviour with respect to robust accuracy is more
diverse. For small ϵ (ϵ = 2/255) the robust accuracy shows
the same trend as the clean accuracy, albeit with lower
values. For large ϵ (ϵ = 8/255), the model incurs CO for
most values of β. This is not surprising as CO has already
been reported for this value of ϵ on the original CIFAR-10
dataset (Wong et al., 2020). However, the interesting setting
is for intermediate values of ϵ (ϵ ∈ {4/255, 6/255}). For these
settings, Figure 1 (right) distinguishes between three distinct
regimes. The first two regimes are the same as for ϵ = 2/255:
(i) when the strength of the injected features is weak
(β ≪ ϵ), the robust accuracy is similar to that trained on
the original data (β = 0) and (ii) when it is strong (β ≫ ϵ),
the robust accuracy is high as the network can use only y
to classify x̃ robustly. Nevertheless, there is a third regime
where the injected features are mildly robust, i.e., β ≈ ϵ.
Strikingly, in this regime, the training suffers from CO and
the robust accuracy drops to zero. This is significant, since
training on the original dataset D (β = 0) does not suffer
from CO for this value of ϵ; but it does so when β ≈ ϵ.
This observation aligns with the intuitions laid in the three
mechanisms in Section 2 indicating that the interaction
between the data and AT plays a big role in triggering CO.

We replicate these results for different V’s and for ℓ2 per-
turbations with similar findings in Appendix D. Results for
other datasets and further details of the training protocol
are given in Appendices C and D respectively. In the next
section, we build upon these observations and show that
the mechanisms in Section 2 indeed provide a plausible
explanation for the dynamics that induce CO.

0 20
0%

100%

C
le

an
ac

cu
ra

cy

PGD-10 training

0 20
0%

100%
Standard training

0 20
0%

100%
FGSM training

0 20
Epoch

0%

50%

R
ob

u
st

ac
cu

ra
cy

0 20
Epoch

0%

50%

Injected (D̃β) CIFAR10 (D) Shuffled (D̃π(β))

0 20
Epoch

0%

50%

Figure 3: Clean (top) and robust (bottom) accuracy on
3 different test sets: (i) the original CIFAR-10 (D), (ii)
the dataset with injected features D̃β and (iii) the dataset
with shuffled injected features D̃π(β). All training runs use
β = 8/255 and ϵ = 6/255 (where FGSM-AT suffers CO).

4. Analysis of induced catastrophic overfitting
Since we now have a method to intervene in the data using
Equation (3) and induce CO, we can use it to validate
our explanations for CO. In particular, we explore how
the structure of the dataset features can lead to CO for
FGSM-AT. First, we show that, indeed, the network
combines information from both the easy-to-learn and the
more complex features in order to improve robustness as
described in M1. Then, we study the non-linearity of the
network during AT and show how it leads to CO following
M3; this chain of events is driven by the interaction between
the features as per M2.

4.1. Robust solutions use simple and complex features

We now show that, in the regime where β ≈ ϵ, to achieve
a high robust accuracy on the intervened dataset D̃β , the
network uses information from both the original dataset
D and the injected features in V . However, when trained
without any adversarial constraints i.e., for standard training,
the network only uses the features in V and achieves close
to perfect clean accuracy.

Testing the preference for different features In order to
demonstrate this empirically, we perform standard, FGSM-
AT, and PGD-AT training of a PreActResNet18 on the inter-
vened dataset D̃β (as described in Section 3) with β = 8/255
and ϵ = 6/255. First, note that Figure 1 (right) shows that
an FGSM-AT model suffers from CO when trained on this
intervened dataset. Next, we construct three different tests
sets and evaluate the clean and robust accuracy of the net-
works on them in Figure 3. The three different test sets are:
(i) CIFAR-10 test set with injected features (D̃β), (ii) origi-
nal CIFAR-10 test set (D), and (iii) CIFAR-10 test set with
shuffled injected features (D̃π(β)) where the additive signals
are correlated with a permuted set of labels, i.e.,

(x̃(π), y) ∼ D̃π(β) : x̃(π) = x+ β v(π(y))

with (x, y) ∼ D and v ∈ V . Here, π : Y → Y is a fixed
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permutation operator that shuffles the labels. Note that
evaluating these networks (trained on D̃β) on data from
D̃π(β) exposes them to contradictory information, since
x and v(π(y)) are correlated with different labels. Thus,
depending on which feature the networks relies on more,
their performance will vary among the three datasets as
discussed below.

Standard training and PGD Figure 3(left) shows that the
PGD-trained network uses features from both D and V .
This is clear as the PGD-trained network achieves better
than trivial accuracy on both D, where there is no informa-
tion coming from V , as well as D̃π(β) where, by construc-
tion (see Section 4.1), the features from V are correlated
with an incorrect label. Besides, the fact that the network
achieves higher accuracy on samples from D̃β than on those
of D implies that it also leverages V for classification. This
provides evidence for mechanism M1. On the other hand,
standard training shows a completely different behaviour
(see Figure 3 (center)). In this case, even though the network
achieves excellent clean accuracy on D̃β , its accuracy on D
is nearly trivial. Moreover, when asked to classify D̃π(β), its
accuracy is almost zero. This clearly indicates that the net-
work, obtained from standard training, ignores the informa-
tion present in D and only uses the non-robust features from
V for classification. As a result, the classifier, in this case, is
non-robust. These two observations align with the idea that
the network has a preference for easy-to-learn solutions e.g.,
features in V (as shown by standard training) which, when
not sufficient to classify robustly, are combined with more
complex features e.g., in D (as shown by PGD-AT).

FGSM training The behaviour of the FGSM training in Fig-
ure 3 (right) highlights this preference even further. First,
note that FGSM-AT undergoes CO around epoch 10 when
the robust accuracy on D̃β suddenly drops to zero despite a
high clean accuracy on D̃β . Next, as seen in Figure 3 (top
right), FGSM-AT presents two distinct phases during train-
ing: (i) Prior to CO, when the robust accuracy on D̃β is
non-zero, the network leverages features from both D and
V , as observed for PGD. (ii) However, with the onset of
CO, both the clean and robust accuracy on D and D̃π(β)

drops, exhibiting behavior similar to standard training. This
indicates that, post-CO, the network forgets the information
from D and solely relies on features in V . To understand
this behavior, recall mechanism M3. It suggests that when
CO occurs, FGSM attacks are rendered ineffective thus ef-
fectively eliminating the robustness constraints. At that
moment, as shown in Figure 3(right), around epoch 10, the
network defaults back to using only the easy-to-learn fea-
tures (y ∈ V) and performance on the original D drops.
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Figure 4: Different metrics on FGSM-AT and PGD-AT on 2
datasets: (i) with injected features (D̃β) and (ii) with orthog-
onally projected features, i.e. with no interaction between
the original and injected features (D̃⊥

β ). AT is performed
for β = 8/255 and ϵ = 6/255 (where FGSM suffers CO).

4.2. Curvature explosion drives catastrophic overfitting

We further investigate the mechanisms formulated in Sec-
tion 2, and move on to the study of the non-linearity of
the loss. In particular, we track the local curvature of the
loss landscape during training as a strong proxy for non-
linearity and show that, in line with mechanism M3, the
non-linearity explodes during CO. Inspired by Moosavi-
Dezfooli et al. (2019), we use the average maximum eigen-
value of the Hessian on N = 100 fixed training points
λ̄max = 1

N

∑N
n=1 λmax

(
∇2

x̃L(fθ(x̃n), yn)
)

to estimate cur-
vature and record it throughout training. Fig. 4(left) shows
the result of this experiment for FGSM-AT (orange line)
and PGD-AT (green line) training on D̃β with β = 8/255
and ϵ = 6/255. Recall that this training regime exhibits CO
with FGSM-AT around epoch 10 (see Figure 3 (left)).

Curvature increase Interestingly, we observe that even
before the onset of CO, both FGSM-AT and PGD-AT show
a steep increase in curvature (the y-axis is in logarithmic
scale). While the PGD-AT curvature increases rapidly
before the 10th epoch, it stabilizes soon after. Prior
work has observed that PGD-AT acts as a regularizer on
the curvature (Moosavi-Dezfooli et al., 2019; Qin et al.,
2019) which explains why we observe that this curvature
increase is eventually dampened in the PGD-AT run.
Unlike PGD-AT, FGSM-AT is based on a linear (first
order) approximation of the loss, which means that it
is not effective at regularising the curvature, which is a
second-order property of the loss surface. Indeed, we see
that FGSM-AT cannot contain the curvature increase, which
eventually explodes around the 10th epoch and saturates
at the moment that the training attack accuracy reaches
its maximum. Quite remarkably, the final curvature of the
FGSM-AT model is 100 times that of the PGD-AT model.

Meaningless perturbations The fact that the curvature
increases rapidly during CO, when the attack accuracy also
increases, agrees with the findings of Andriushchenko and
Flammarion (2020), who claimed that CO happens as a re-
sult of gradient misalignment, i.e., , the loss becomes highly
non-linear and thus reduces the success rate of FGSM. To
show that CO indeed occurs due to the increased curvature
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Figure 5: Clean (left) and robust (right) accuracy for FGSM-
AT on a dataset with orthogonally injected features (D̃⊥

β ) i.e.
no interaction between original and injected features.

breaking FGSM, we visualise the adversarial perturbations
before and after CO. As observed in Figure 2, before CO,
the adversarial perturbations point in the direction of V , al-
beit with some corruptions originating from x. Nonetheless,
after CO, the new adversarial perturbations point towards
meaningless directions; they do not align with V even
though the network is heavily reliant on this information
for classifying the data (cf. Section 4.1). This reinforces the
idea that the increase in curvature indeed causes a breaking
point after which FGSM is no longer an effective adversarial
attack. We would like to highlight that this behaviour of the
adversarial perturbations after CO is radically different from
the behaviour on standard and robust networks (in the ab-
sence of CO) where adversarial perturbations and curvature
are strongly aligned with discriminative directions (Ilyas
et al., 2019; Jetley et al., 2018; Fawzi et al., 2018).

4.3. Curvature increase due to feature interaction

Why does the network increase the curvature in the first
place? In Section 4.1, we observed that this is a shared
behaviour of PGD-AT and FGSM-AT, at least during the
stage before CO. Therefore, it should not be a mere “bug".
As presented in mechanisms M1 and M2, we conjecture that
the curvature increases as a result of the interaction between
features of the dataset which forces the network to increase
its non-linearity in order to combine them effectively to
obtain a robust model.

To demonstrate this, we perform a new experiment in which
we again intervene on the dataset D (as in Section 3). How-
ever, this time, we ensure that there is no interaction, i.e.,
correlation, between the injected features v(y) and the fea-
tures from D. We do so by creating D̃⊥

β such that:

(x̃⊥, y) ∼ D̃⊥
β : x̃⊥ = PV⊥(x) + βv(y)

with (x, y) ∼ D and v ∈ V , and where PV⊥ denotes the
projection operator onto the orthogonal complement of
V . Since the injected features v(y) are orthogonal to D, a
simple linear classifier relying only on v(y) can robustly
separate the data up to a radius that depends solely on β.

Interestingly, we find that, in this dataset, none of the (β, ϵ)
configurations used in Figure 5 induce CO. Here, we ob-

serve only two regimes: one that ignores V (when β < ϵ)
and the one that ignores D (when β > ϵ). This supports our
conjecture that the interaction between the features of x and
v(y) is the true cause of CO in D̃β . Moreover, Figure 4 (left)
shows that, when performing either FGSM-AT (light blue)
or PGD-AT (dark blue) on D̃⊥

β , the curvature is consistently
low. This agrees with the fact that in this case there is no
need for the network to combine the injected and the original
features to achieve robustness and hence the network does
not need to increase its non-linearity to separate the data.

Non-linear feature extraction Finally, we perform an ex-
periment to gauge the connection between the quality of
feature representations and the network’s curvature: We
train multiple logistic regression models to classify D using
the feature representations (output of the penultimate layer)
of networks trained on D̃β . Note that the accuracy of these
simple classifiers strictly depends on how well the network
(trained on D̃β) has learned to combine information from
both D and V , as explained in M2. We will call this metric
feature accuracy. Figure 4(right) shows the evolution of
the feature accuracy of the networks during training. Ob-
serve that, for PGD-AT (green), the feature accuracy on
D progressively grows during training. High feature accu-
racy indicates that this network has learned to meaningfully
extract information from D, even if it was trained on D̃β .
Moreover, note that the feature accuracy closely matches
the curvature trajectory in Figure 4 (left). On the other hand,
for FGSM-AT the feature accuracy has two phases: First,
it grows at the same rate as for PGD-AT, but after CO it
starts to decrease. Nonetheless, when CO happens the cur-
vature does not decrease. We argue this happens because
the network has learned a shortcut in order to ignore D. As
described in mechanism M3, if the curvature is very high,
FGSM is rendered ineffective and allows the network to
focus only on the easy-to-learn, non-robust, features. On
the other hand, if we use the features from networks trained
on D̃⊥

β we observe that the accuracy on D is always low.
This reinforces the view that the network is increasing the
curvature in order to improve its feature representation: In
D̃⊥

β the network does not need to combine information from
both D and V to become robust, and hence it does not learn
to disentangle D using mechanism M2.

5. Concluding remarks
In this work, we have presented a thorough empirical
study to establish a causal link between the features of
the data and the onset of CO in FGSM-AT. Specifically,
using controlled data interventions we have seen that,
(i) when imposed with robustness contraints, networks have
a preference to combine easy-to-learn, discriminative, but
non-robust features with other (complex) features to achieve
robustness. (ii) Moreover, if there is an interaction between
these features the network tends to increase its non-linearity.
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(iii) If unchecked, this increase in non-linearity can trigger
CO. This new perspective has allowed us to shed new light
on the mechanisms that trigger CO, as it shifted our focus
towards studying the way the data structure influences
the learning algorithm. We believe this opens the door to
promising future work focused on understanding the intrica-
cies of these learning mechanisms. In general, we consider
that deriving methods that allow to inspect the data and
identify how different features of a dataset interact within
each other is another interesting avenue for future work.
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A. Robust classification can require non-linear features
Given some p ∈ N, let Rp+1 be the input domain. A concept class, defined over Rp+1 is a set of functions from Rp+1 to
{0, 1}. We next define two properties of concepts in H:

• A hypothesis h is s-non-linear if the polynomial with the smallest degree that can represent h has a degree (largest
order polynomial term) of s.

• A hypothesis h is said to be r-junta if it depends on at most r coordinates of the input space.

Theorem 1. For any p, k ∈ N, ϵ < 0.5 such that k < p, there exits a family of distributions Dk over Rp+1 and a concept
class H defined over Rp+1 such that

1. H is PAC learnable (with respect to the clean error) with a 1-junta linear (degree 1) classifier.

2. There exists an efficient learning algorithm, that given a dataset sampled i.i.d. from a distribution D ∈ Dk robustly
learns H. In particular, the algorithm returns a k-non-linear, k-junta classifier.

Proof. We now define the construction of the distributions in Dk. Every distribution D in the family of distribution Dk

is uniquely defined by three parameters: a threshold parameter ρ ∈ {4tϵ : t ∈ {0, · · · , k}} (one can think of this as the
non-robust, easy-to-learn feature) and a p dimensional bit vector c ∈ {0, 1}p such that ∥c∥1 = k (this is the non-linear but
robust feature) and epsilon. Therefore, given ρ and c (and ϵ which we discuss when necessary and ignore from the notation
for simplicity), we can define the distribution Dc,ρ. For brevity, we eliminate ρ and c from the notation of the distribution.

To sample a point (x, y) ∈ Rp+1 from the distribution Dc,ρ, first, sample a random bit vector x̂ ∈ Rp from the uniform
distribution over the boolean hypercube {0, 1}p. Let ŷ =

∑p
i=1 x̂i · ci (mod 2) be the label of the parity function with

respect to c evaluated on x̂. The marginal distribution over ŷ, if sampled this way, is equivalent to the Bernoulli distribution
with parameter 1

2 . To see why, fix all bits in the input except one (chosen arbitrarily from the variables of the parity function),
which is distributed uniformly over {0, 1}. It is easy to see that this forces the output of the parity function to be distributed
uniformly over 0, 1 as well. Intuitively, x̂ constitutes the robust non-linear feature of this distribution.

Next, we sample the non-robust simple feature x1. To ensure that x̂ is not perfectly correlated with the true label, we sample
the true label y from a Bernoulli distribution with parameter 1

2 . Then we sample the non-robust feature x1 as follows

x1 ∼


Unif

(
X−

1

)
y = 0 ∧ ŷ = 0

Unif
(
X+

1

)
y = 1 ∧ ŷ = 1

Unif
(
X−

2

)
y = 0 ∧ ŷ = 1

Unif
(
X+

2

)
y = 1 ∧ ŷ = 0

where

X+
1 = [ρ, ρ+ ϵ] and X+

2 = [(ρ+ 2ϵ, ρ+ 3ϵ)] , X−
1 = [ρ− ϵ, ρ] and X−

2 = [(ρ− 3ϵ, ρ− 2ϵ)] .

Finally, we return (x, y) where x = (x1; x̂) is the concatenation of x1 and x̂ and y is already defined.

Linear non-robust solution It is simple to see that there is a linear, accurate, but non-robust solution to this problem. To
obtain this solution, simply sample m points from the distribution Dc,ρ to form a dataset Sm = {(x1, y1) , . . . , (xm, ym)} ∈
Rp+1 × {−1, 1}. Then, sort Sm on the basis of the first index of the covariates. In the sorted list, let the largest element
whose label is 0 be (xj , 0) and let ρ̂ = xj [0] be the first coordinate of xj . Define flin,ρ̂as the linear threshold function on
the first coordinate i.e. flin,ρ̂ (x) = I {x[0] ≥ ρ̂}. Then, using standard VC arguments about linear threshold functions in

one dimension, if m ≥ κ0

(
1
α log

(
1
β

)
+ 1

α log
(
1
α

))
, where κ0 is some universal constant, we have that with probability at

least 1− β,
Err (flin,ρ̂;Dc,ρ) ≤ α,

where the bound follows from standard VC arguments on the linear threshold function.
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Non-linear robust solution Next, we propose an algorithm to find a robust solution and show that this solution has a
non-linearity of degree k. First sample m points from the distribution as before to create the dataset Sm, then use the
method described above to find ρ̂. We then create a modified dataset by first removing all points x from Sm such that
|x [0]− ρ̂| ≥ ϵ

16 and then we remove the first coordinate of the remaining points to create a p dimensional dataset.

In this p dimensional dataset, the algorithm, then, learns the parity function using Gaussian elimination to obtain the parity
bit vector ĉ and, consequently, the parity classifier fpar,ĉ =

∑p
i=1 xici (mod 2).

Finally, the algorithm returns the classifier gρ̂,ĉ, which acts as follows:

gρ̂,ĉ (x) =


1 I

{
x[0] ≥ ρ+ ϵ+ ϵ

8

}
0 I

{
x[0] ≤ ρ− ϵ− ϵ

8

}
fpar,ĉ (x̃) o.w.

(4)

where x̃ = round (x [1, . . . , p+ 1]) is obtained by rounding off x starting from the second index till the last. For example, if
x = [0.99, 0.4, 0.9, 0.4, 0.8], ϵ = 0.2, and c = [0, 0, 1, 1] then x̃ = [0, 1, 0, 1] and g0.5,ĉ [x̃] = 1. Finally, it is easy to verify
that the algorithm is accurate on all training points and as it has finite VC dimension, by standard VC arguments, as long as
m ≥ κ0

(
1
α log

(
1
β

)
+ 1

α log
(
1
α

))
, where κ1 is some universal constant, we have that with probability at least 1− β,

Err (gρ̂,ĉ;Dc,ρ) ≤ α.

As long as α ≤ ϵ
16 , due to the uniform distribution of x [1] in the interval [ρ, ρ+ ϵ] ∪ [ρ, ρ− ϵ], we have that |ρ̂− ρ| ≤ ϵ

8 .
Intuitively, this guarantees that gρ̂,ĉ uses x [0] in [ρ, ρ+ ϵ] ∪ [ρ, ρ− ϵ] and fpar,ĉ in the [ρ+ 2ϵ, ρ+ 3ϵ] ∪ [ρ− 2ϵ, ρ− 3ϵ].

A crucial property of gρ̂,ĉ is that for all x ∈ Supp (Dc,ρ), the classifier gρ̂,ĉ does not alter its prediction in an ℓ∞-ball of
radius ϵ. When |x[0]− ρ| ≥ ϵ+ ϵ

8 , due to (4), we have that gρ̂,ĉ is invariant to all x [i] for all i > 1. When |x[0]− ρ| < ϵ+ ϵ
8 ,

due to Equation (4), we have that gρ̂,ĉ = fpar,ĉ (x̃) where x̃ = round (x [1, . . . , p+ 1]) is obtained by rounding off all
indices of x except the first. As the rounding operation on the boolean hypercube is robust to any ℓ∞ perturbation of radius
less than 0.5, we have that gρ̂,ĉ is robust to all ℓ∞ perturbations of radius less than 0.5 on the support of the distribution Dc,ρ.
Next, we prove the robustness along the first coordinate. Let 0 < δ < 0.5 represent an adversarial perturbation. Without loss
of generality, assume that x [0] > 0 as similar arguments apply for when it is negative. When |x[0]− ρ| ≤ ϵ+ ϵ

8 , we also
have that |x− δ| ≤ ϵ+ ϵ

8 and hence, gρ̂,ĉ (x) = gρ̂,ĉ (x− δ). On the other hand, for all δ, we have that gρ̂,ĉ (x+ δ) = 1 if
gρ̂,ĉ (x+ δ) = 1. This completes the proof of robustness of gρ̂,ĉ along all dimensions to ℓ∞ perturbations of radius less than
ϵ. Combining this with its error bound, we have that Advϵ,∞ (gρ̂,ĉ;Dc,ρ) ≤ α.

To show that the parity function is non-linear, we use a classical result from Aspnes et al. (1994). Theorem 2.2 in Aspnes et al.

(1994) shows that approximating the parity function in k bits using a polynomial of degree ℓ incurs at least
(∑⌊k−ℓ−1/2⌋

i=0
ki

)
mistakes. Therefore, the lowest degree polynomial that can do the approximation accurately is at least k.

This completes our proof of showing that the robust classifier is of non-linear degree k while the accurate classifier is a
linear.

B. Analysis of the separability of the intervened data

With the aim to illustrate how the interaction between D and V can influence the robustness of a classifier trained on D̃β

we now provide a toy theoretical example in which we discuss this interaction. Specifically, without loss of generality,
consider the binary classification setting on the dataset (x, y) ∼ D where y ∈ {−1,+1} and ∥x∥2 = 1, for ease. Let’s now
consider the injected dataset D̃β and further assume that v(+1) = u and v(−1) = −u with u ∈ Rd and ∥u∥2 = 1, such
that x̃ = x+ βyu. Moreover, let γ ∈ [0, 1] denote the interaction coefficient between D and V , such that −γ ≤ x⊤u ≤ γ.

We are interested in characterizing the robustness of a classifier that only uses information in V when classifying D̃β

depending on the strength of the interaction coefficient. In particular, as we are dealing with the binary setting, we will
characterize the robustness of a linear classifier h : Rd → {−1,+1} that discriminates the data based only on V , i.e.,
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h(x̃) = sign(u⊤x̃). In our setting, we have

u⊤x̃ = u⊤x+ βu⊤u = u⊤x+ β if y = +1

u⊤x̃ = u⊤x− βu⊤u = u⊤x− β if y = −1

Proposition B.1 (Clean performance). If β > γ, then h achieves perfect classification accuracy on D̃β .

Proof. Observe that if γ = 0, i.e. the features from original dataset D do not interact with the injected features V , the
dataset is perfectly linearly separable. However, if the data x from D interacts with the injected signal u, i.e. non zero
projection, then the dataset is still perfectly separable but for a sufficiently larger β, such that u⊤x+ β > 0 when y = +1
and u⊤x+ β < 0 when y = −1. Because −γ ≤ x⊤u ≤ γ this is achieved for β > γ.

Proposition B.2 (Robustness). If β > γ, the linear classifier h is perfectly accurate and robust to adversarial perturbations
in an ℓ2-ball of radius ϵ ≤ β− γ. Or, equivalently, for h to be ϵ-robust, the injected features must have a strength β ≥ ϵ+ γ.

Proof. Given x̃, we seek to find the minimum distance to the decision boundary of such a classifier. A minimum distance
problem can be cast as solving the following optimization problem:

ϵ⋆(x̃) = min
r∈Rd

∥r − x̃∥22 subject to r⊤u = 0,

which can be solved in closed form

ϵ⋆(x̃) =
|u⊤x̃|
∥u∥ = |u⊤x+ yβ|.

The robustness radius of the classifier h will therefore be ϵ = inf x̃∈supp(D̃β)
ϵ⋆(x̃), which in our case can be bounded by

ϵ = inf
(x̃,y)∈supp(D̃β)

ϵ⋆(x̃) ≤ min
|u⊤x|≤γ,y=±1

|u⊤x+ yβ| = | ∓ γ ± β| = β − γ.

Based on these propositions, we can clearly see that the interaction coefficient γ reduces the robustness of the additive
features V . In this regard, if ϵ ≥ β−γ, robust classification at a radius ϵ can only be achieved by also leveraging information
within D.

C. Experimental details
In this section we provide the experimental details for all results presented in the paper. Adversarial training for all methods
and datasets follows the fast training schedules with a cyclic learning rate introduced in (Wong et al., 2020). We train for 30
epochs on CIFAR (Krizhevsky and Hinton, 2009) and 15 epochs for SVHN (Netzer et al., 2011) following (Andriushchenko
and Flammarion, 2020). When we perform PGD-AT we use 10 steps and a step size α = 2/255; FGSM uses a step size of
α = ϵ. Regularization parameters for GradAlign (Andriushchenko and Flammarion, 2020) and N-FGSM (de Jorge et al.,
2022) will vary and are stated when relevant in the paper. The architecture employed is a PreactResNet18 (He et al., 2016).
Robust accuracy is evaluated by attacking the trained models with PGD-50-10. That is PGD with 50 iterations and 10
restarts. In this case we also employ a step size of 2/255 as in (Wong et al., 2020). All accuracies are averaged after training
and evaluating with 3 random seeds.

The curvature computation is performed following the procedure described in Moosavi-Dezfooli et al. (2019). As they
propose, we use finite differences to estimate the directional second derivative of the loss with respect to the input, i.e.,

w⊤∇2
xL(fθ(x), y) ≈

∇xL(fθ(x+ tw), y)−∇xL(fθ(x− tw), y)

2t
,
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with t > 0 and use the Lanczos algorithm to perform a partial eigendecomposition of the Hessian without the need to
compute the full matrix. In particular, we pick t = 0.1.

All our experiments were performed using a cluster equipped with GPUs of various architectures. The estimated compute
budget required to produce all results in this work is around 2, 000 GPU hours (in terms of NVIDIA V100 GPUs).

D. Inducing catastrophic overfitting with other settings
In Section 3 we have shown that CO can be induced with data interventions for CIFAR-10 and ℓ∞ perturbations. Here
we present similar results when using other datasets (i.e. CIFAR-100 and SVHN) and other types of perturbations (i.e.
ℓ2 attacks). Moreover, we also report results when the injected features y follow random directions (as opposed to
low-frequency DCT components). Overall, we find similar findings to those reported the main text.

D.1. Other datasets

Similarly to Section 3 we intervene the SVHN and CIFAR-100 datasets to inject highly discriminative features y. Since
SVHN also has 10 classes, we use the exact same settings as in CIFAR-10 and we train and evaluate with ϵ = 4 where
training on the original data does not lead to CO (recall β = 0 corresponds to the unmodified dataset). On the other hand,
for CIFAR-100 we select y to be the 100 DCT components with lowest frequency and we present results with ϵ = 5. In
both datasets we can observe similar trends as with CIFAR-10. For small values of β the injected features are not very
discriminative due to their interaction with the dataset images and the model largely ignores them. As we increase β, there
is a range in which they become more discriminative but not yet robust and we observe CO. Finally for large values of β the
injected features become robust and the models can achieve very good performance focusing only on those.

0 2 4 6 8 10 12 14
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60%
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80%

90%
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ε = 5/255

0 2 4 6 8 10 12 14
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20%
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60%

80%
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Figure 6: Clean and robust performance after FGSM-AT on intervened datasets D̃β constructed from CIFAR-100. As
FGSM-AT already suffers CO on CIFAR-100 at ϵ = 6/255 we use ϵ = 5/255 in this experiment where FGSM-AT does not
suffer from CO as seen for β = 0. In this setting, we observe CO happening when β is slightly smaller than ϵ. Results are
averaged over 3 seeds and shaded areas report minimum and maximum values.

D.2. Other norms

Catastrophic overfitting has been mainly studied for ℓ∞ perturbations and thus we presented experiments with ℓ∞ attacks
following related work. However, in this section we also present results where we induce CO with ℓ2 perturbation which are
also widely used in adversarial robustness. In Figure 8 we show the clean (left) and robust (right) accuracy after FGM-AT2

on our intervened dataset from CIFAR-10 (D̃β). Similarly to our results with ℓ∞ attacks, we also observe CO as the injected
features become more discriminative (increased β). It is worth mentioning that the ℓ2 norm we use (ϵ = 1.5) is noticeably
larger than typically used in the literature, however, it would roughly match the magnitude of an ℓ∞ perturbation with
ϵ = 7/255. Interestingly, we did not observe CO for this range of β with ϵ = 1.

2FGM is the ℓ2 version of FGSM where we do not take the sign of the gradient.
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Figure 7: Clean and robust performance after FGSM-AT on intervened datasets D̃β constructed from SVHN. As FGSM-AT
already suffers CO on SVHN at ϵ = 6/255 we use ϵ = 4/255 in this experiment where FGSM-AT does not suffer from CO as
seen for β = 0. In this setting, we observe CO happening when β ≈ ϵ. Results are averaged over 3 seeds and shaded areas
report minimum and maximum values.
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Figure 8: Clean and ℓ2 robust performance after FGSM-AT on intervened datasets D̃β constructed from CIFAR-10. FGM-AT
suffers CO on CIFAR-10 around ϵ = 2, so we use ϵ = 1.5 in this experiment where FGM-AT does not suffer from CO as
seen for β = 0. In this setting, we observe CO happening when β ≈ ϵ. Results are averaged over 3 seeds and shaded areas
report minimum and maximum values.

D.3. Other injected features

We selected the injected features for our intervened dataset from the low frequency components of the DCT to ensure an
interaction with the features present on natural images (Ahmed et al., 1974). However, this does not mean that other types
of features could not induce CO. In order to understand how unique was our choice of features we also created another
family of intervened datasets but this time using a set of 10 randomly generated vectors as features. As in the main text, we
take the sign of each random vector to ensure they take values in {−1,+1} and assign one vector per class. In Figure 9 we
observe that using random vectors as injected features we can also induce CO. Note that since our results are averaged over
3 random seeds, each seed uses a different set of random vectors.

E. Learned features at different β
In Section 3 we discussed how, based on the strength of the injected features β, our intervened datasets seem to have 3
distinct regimes: (i) When β is small we argued that the network would not use the injected features as these would not be
very helpful. (ii) When β would have a very large value then the network would only look at these features since they would
be easy-to-learn and provide enough margin to classify robustly. (iii) Finally, there was a middle range of β usually when
β ∼ ϵ where the injected features would be strongly discriminative but not enough to provide robustness on their own. This
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Figure 9: Clean and robust performance after FGSM-AT on intervened datasets D̃β constructed from CIFAR-10 using
random signals in V . We perform this experiments at ϵ = 6/255 where we saw intervening the dataset with the DCT basis
vectors did induce CO. In the random V setting, we observe the same behaviour, with CO happening when β ≈ ϵ. Results
are averaged over 3 seeds and shaded areas report minimum and maximum values.

regime is where we observe CO.

In this section we present an extension of Figure 3 where we take FGSM trained models on the intervened datasets (D̃β) and
evaluate them on three test sets: (i) The injected test set (D̃β) with the same features as the training set. (ii) The original
dataset (D) where the images are unmodified. (iii) The shuffled dataset (D̃π(β)) where the injected features are permuted.
That is, the set of injected features is the same but the class assignments are shuffled. Therefore, the injected features will
provide conflicting information with the features present on the original image.

In Figure 10 we show the performance on the aforementioned datasets for three different values of β. For β = 2/255 we are
in regime (i) : we observe that the tree datasets have the same performance, i.e. the information of the injected features
does not seem to alter the result. Therefore, we can conclude the network is mainly using the features from the original
dataset D. When β = 20/255 we are in regime (ii) : the clean and robust performance of the network is almost perfect on the
injected test set D̃β while it is close to 0% (note this is worse than random classifier) for the shuffled dataset. So when the
injected and original features present conflicting information the network aligns with the injected features. Moreover, the
performance on the original dataset is also very low. Therefore, the network is mainly using the injected features. Lastly,
β = 8/255 corresponds to regime (iii) : as discussed in Section 4.1, in this regime the network initially learns to combine
information from both the original and injected features. However, after CO, the network seems to focus only on the injected
features and discards the information from the original features.

F. Analysis of curvature in different settings
In Figure 4 (left) we track the curvature of the loss surface while training on different intervened datasets with either PGD-AT
or FGSM-AT. We observe that (i) Curvature rapidly increases both for PGD-AT and FGSM-AT during the initial epochs of
training. (ii) In those runs that presented CO, the curvature explodes around the 10th epoch along with the training accuracy.
(iii) When training with the dataset with orthogonally injected features (D̃⊥

β ) the curvature does not increase. This is aligned
with our proposed mechanisms to induce CO whereby the network increases the curvature in order to combine different
features to learn better representations. In this section we extend this analysis to the original CIFAR-10 dataset (as opposed
to our intervened datasets) and to different values of feature strength β on the intervened dataset (D̃β). For details on how
we estimate the curvature refer to Appendix C.

In Figure 11 we show the curvature when training on the original CIFAR-10 dataset with ϵ = 8/255 (where CO happens for
FGSM-AT). Similarly to our observations on the intervened datasets, the curvature during FGSM-AT explodes along with
the training accuracy while for PGD-AT the curvature increases at a very similar rate than FGSM-AT during the first epochs
and later stabilizes. This indicates that our described mechanisms may as well apply to induce CO on natural image datasets.

On the other hand, Figure 12 presents the curvature for different values of feature strength β on the intervened dataset (D̃β).
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Figure 10: Clean (top) and robust (bottom) accuracy of FGSM-AT on D̃β at different β values on 3 different test sets: (i)
the original CIFAR-10 (D), (ii) the dataset with injected features D̃β and (iii) the dataset with shuffled injected features
D̃π(β). All training runs use ϵ = 6/255. Left: β = 2/255 Center: β = 8/255 Right: β = 20/255.

We show three different values of β representative of the three regimes discussed in Appendix E. Recall that when β is small
(β = 2/255) we observe that the model seems to focus only on CIFAR-10 features. Thus, we observe a curvature increase
aligned with (CIFAR-10) feature combination. However, since for the chosen robustness radii ϵ = 6/255 there is no CO,
we observe that the curvature increase remains stable. When β is quite large (β = 20/255) then the model largely ignores
CIFAR-10 information and focuses on the easy-to-learn injected features. Since these features are already robust, there is no
need to combine them and the curvature does not need to increase. In the middle range when CO happens (β = 8/255) we
observe again the initial curvature increase and then curvature explosion.
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Figure 11: Evolution of curvature and training attack accuracy of FGSM-AT and PGD-AT trained on the original CIFAR-10
with ϵ = 8/255. When CO happens the curvature explodes according to mechanism M3.

G. Adversarial perturbations before and after CO
In order to further understand the change in behaviour after CO we presented visualizations of the FGSM perturbations
before and after CO in Figure 2. We observed that while prior to CO, the injected feature components y were clearly
identifiable, after CO the perturbations do not seem to point in those directions although the network is strongly relying on
them to classify. In Figure 13 and Figure 14 we show further visualizations of the perturbations obtained both with FGSM
or PGD attacks on networks trained with either PGD-AT or FGSM-AT respectively.
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Figure 12: Evolution of curvature and training attack accuracy of FGSM-AT and PGD-AT trained on D̃β at different β
and for ϵ = 6/255. Only when CO happens (for β = 8/255) the curvature explodes according to mechanism M3. For the
other two interventions, because the network does not need to disentangle D from V , as it ignores either one of them, the
curvature does not increase so much.

We observe that when training with PGD-AT, i.e. the training does not suffer from CO, both PGD and FGSM attacks
produce qualitatively similar results. In particular, all attacks seem to target the injected features with some noise due to
the interaction with the features from CIFAR-10. For FGSM-AT, we observe that at the initial epochs (prior to CO) the
pertubations are similar to those of PGD-AT, however, after CO perturbations change dramatically both for FGSM and
PGD attacks. This aligns with the fact that the loss landscape of the network has dramatically changed, becoming strongly
non-linear. This change yields single-step FGSM ineffective, however, the network remains vulnerable and multi-step attacks
such as PGD are still able to find adversarial examples, which in this case do not point in the direction of discriminative
features Jetley et al. (2018); Ilyas et al. (2019).
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Figure 13: Different samples of the intervened dataset D̃β , and adversarial perturbations at epoch 4 and 22 of PGD-AT on
D̃β at ϵ = 6/255 and β = 8/255 (where FGSM-AT suffers CO). The adversarial perturbations remain qualitatively similar
throughout training and align significantly with V .
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Figure 14: Different samples of the intervened dataset D̃β , and adversarial perturbations at epoch 4 (before CO) and 22
(after CO) of FGSM-AT on D̃β at ϵ = 6/255 and β = 8/255 (where FGSM-AT suffers CO). The adversarial perturbations
change completely before and after CO. Prior to CO, they align significantly with V , but after CO they point to meaningless
directions.


