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Abstract
Recently, Wong et al. (2020) showed that adver-
sarial training with single-step FGSM leads to a
characteristic failure mode named Catastrophic
Overfitting (CO), in which a model becomes sud-
denly vulnerable to multi-step attacks. Experi-
mentally they showed that simply adding a ran-
dom perturbation prior to FGSM (RS-FGSM)
could prevent CO. However, Andriushchenko &
Flammarion (2020) observed that RS-FGSM still
leads to CO for larger perturbations, and pro-
posed a computationally expensive regularizer
(GradAlign) to avoid it. In this work, we me-
thodically revisit the role of noise and clipping
in single-step adversarial training. Contrary to
previous intuitions, we find that using a stronger
noise around the clean sample combined with
not clipping is highly effective in avoiding CO
for large perturbation radii. We then propose
Noise-FGSM (N-FGSM) that, while providing
the benefits of single-step adversarial training,
does not suffer from CO. Empirical analyses on
a large suite of experiments show that N-FGSM
is able to match or surpass the performance of
previous state-of-the-art GradAlign, while achiev-
ing 3× speed-up. Code can be found in https:
//github.com/pdejorge/N-FGSM

1. Introduction
Deep neural networks have achieved remarkable perfor-
mance on a variety of tasks (He et al., 2015; Silver et al.,
2016; Devlin et al., 2019). However, it is well known
that they are vulnerable to small worst-case perturbations
around the input data – commonly referred to as adversarial
examples (Szegedy et al., 2014). The existence of such
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adversarial examples poses a security threat to deploying
models in sensitive environments (Biggio & Roli, 2018;
Boloor et al., 2019). This has motivated a large body of
work towards improving the adversarial robustness of neu-
ral networks (Goodfellow et al., 2015; Papernot et al., 2016;
Tramèr et al., 2018; Sanyal et al., 2018; Cisse et al., 2017).

The most popular family of methods for learning robust
neural networks is based on the concept of adversarial
training (Goodfellow et al., 2015; Madry et al., 2018). In
a nutshell, adversarial training can be posed as a min-max
problem where instead of minimizing some loss over a
dataset of clean samples, we augment the inputs with worst-
case perturbations that are generated online during training.
However, obtaining such perturbations is NP-hard (Weng
et al., 2018) and hence, different adversarial attacks have
been suggested that approximate them. In their seminal
work, Goodfellow et al. (2015) proposed the Fast Gradient
Sign Method (FGSM), that generates adversarial attacks by
performing a gradient ascent step on the loss function. Yet,
while FGSM-based adversarial training provides robustness
against single-step FGSM adversaries, Tramèr et al. (2018)
showed that these models are still vulnerable to multi-step
attacks, namely those allowed to perform multiple gradient
ascent steps. Given their better (robust) performance,
multi-step attacks such as Projected Gradient Descent
(PGD) (Madry et al., 2018) have now become the de facto
standard for adversarial training.

The main downside of multi-step adversarial training
is that the cost of these attacks increases linearly with
the number of steps, making their applicability often
computationally prohibitive. For this reason, several works
have focused on reducing the cost of adversarial training by
approximating the worst-case perturbations with single-step
attacks (Wong et al., 2020; Shafahi et al., 2019; Vivek
& Babu, 2020). In particular, Wong et al. (2020) studied
FGSM adversarial training and discovered that it suffers
from a characteristic failure mode, in which a model
suddenly becomes vulnerable to multi-step attacks despite
remaining robust to single-step attacks. This phenomenon
is referred to as Catastrophic Overfitting (CO). As a
solution, they argued that adding a random perturbation
prior to FGSM (RS-FGSM) seemed sufficient to prevent
CO and produce robust models. Yet, Andriushchenko &

https://github.com/pdejorge/N-FGSM
https://github.com/pdejorge/N-FGSM


Make Some Noise: Reliable and Efficient Single-Step Adversarial Training

ε

k

FGSM N-FGSM

RS-FGSM
2 4 6 8 10 12 14 16

 for training and evaluation (x / 255)

0

20

40

60

80

Ad
ve

rs
ar

ia
l A

cc
.

CIFAR10 Dataset

N-FGSM (ours)
GradAlign
MultiGrad
ZeroGrad

Free-AT
Kim et. al.
RS-FGSM
FGSM

N-
FG

SM
Gr

ad
Al

ig
n

M
ul

tiG
ra

d
Ze

ro
Gr

ad
Fr

ee
-A

T
Ki

m
 e

t. 
al

.
RS

-F
GS

M
FG

SM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n 
co

st
 re

la
tiv

e 
to

 F
GS

M

Figure 1. Left: Visualization of FGSM (Goodfellow et al., 2015), RS-FGSM (Wong et al., 2020) and N-FGSM (ours) attacks. While
RS-FGSM is limited to noise in the ϵ− l∞ ball, N-FGSM draws noise from an arbitrary k − l∞ ball. Moreover, N-FGSM does not clip
the perturbation around the clean sample. Middle: Comparison of single-step methods on CIFAR-10 with PreactResNet18 over different
perturbation radii (ϵ is divided by 255). Our method, N-FGSM, can match or surpass state-of-the-art results while reducing the cost by a
3× factor. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds. Right: Comparison of training costs
relative to FGSM baseline based on the number of Forward-Backward passes, see Appendix O for details.

Flammarion (2020) recently observed that RS-FGSM still
leads to CO as one increases the perturbation radii of the
attacks. They suggested a regularizer (GradAlign) that can
avoid CO in the settings they considered, but at the expense
of computing a double derivative – significantly increasing
the computational cost with respect to RS-FGSM.

In this paper, we revisit the idea of including noise in single-
step attacks. Differently from previous methods that con-
sider the noise as part of the attack, we propose an adversar-
ial training procedure where the noise is used as a form of
data augmentation. As we detail in Section 4, this motivates
us to introduce two main changes with respect to previous
methods: 1) We center adversarial perturbations with respect
to noise-augmented samples and therefore, unlike previous
RS-FGSM, we do not clip around the clean samples. 2) We
use noise perturbations larger than the ϵ−ball, since they
are not restricted by the strength of the attack anymore.

Our experiments show that performing data augmentation
with sufficiently strong noise and removing the clipping step
improves model robustness and prevents CO, even against
large perturbation radii. Our new method, termed N-FGSM,
matches, or even surpasses, the robust accuracy of the reg-
ularized FGSM introduced by Andriushchenko & Flammar-
ion (2020) (GradAlign), while providing a 3× speed-up.

To corroborate the effectiveness of our solution, we present
an experimental survey of recently proposed single-step
attacks and empirically demonstrate that N-FGSM trades-
off robustness and computational cost better than any other
single-step approach, evaluated over a large spectrum of
perturbation radii (see Figure 1, middle and right panels),
over several datasets (CIFAR-10, CIFAR-100, and SVHN)
and architectures (PreActResNet18 and WideResNet28-10).
We will release our code to reproduce the experiments.

2. Related Work
Since the discovery of adversarial examples, many defense
mechanisms have been proposed, adversarial training being
one of the most popular and empirically validated. We can
categorise adversarial training methods based on how they
approximate the perturbations applied to training samples.
Multi-step approaches approximate an inner maximization
problem to find the worst-case perturbation with several
gradient ascent steps (Zhang et al., 2019; Kurakin et al.,
2017; Madry et al., 2018). While this provides a better
approximation, it is also more expensive. At the other
end of the spectrum, single-step methods only use one
gradient step to approximate the worst case perturbation.
Goodfellow et al. (2015) first proposed FGSM; Tramèr et al.
(2018) proposed a new variant with an additional random
step (R+FGSM), but observed that both methods were vul-
nerable to multi-step attacks. Shafahi et al. (2019) proposed
Free Adversarial Training (Free-AT), which successfully
reduced the computational cost of training by using a single
backward pass to compute both weight update and attack.
Motivated by this, Wong et al. (2020) explored a variant
of R+FGSM, namely RS-FGSM, that uses a less restrictive
form of noise and showed this can improve robustness for
moderate perturbation radii at the same cost as FGSM. Re-
cently, Andriushchenko & Flammarion (2020) proposed the
GradAlign regularizer. Combining FGSM with GradAlign
results in robust models at even larger perturbation radii.
However, GradAlign suffers from a threefold increase in
the training cost to as compared to FGSM. The need for
more efficient solutions has motivated a growing body of
work whose goal is the design of computationally lighter
single-step methods (Golgooni et al., 2021; Kim et al., 2021;
Vivek & Babu, 2020; Park & Lee, 2021; Li et al., 2020).
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In this work, we revisit the idea of combining noise with
the FGSM attack. Our method builds upon FGSM and
intuitions from R+FGSM and RS-FGSM to combine it
with random perturbations, however, we consider the noise
step as data augmentation rather than part of the attack.
This motivates us to use a stronger noise without clipping.
As opposed to (Kang & Moosavi-Dezfooli, 2021), our
thorough study leads to a practically effective approach that
yields robustness also against large perturbation radii.

3. Preliminaries
Given a classifier fθ : X → Y parameterized by θ and a
perturbation set S, fθ is defined as robust at x ∈ X on the
set S if for all δ ∈ S we have fθ(x + δ) = fθ(x). One of
the most popular definitions for S is the ϵ − ℓ∞ ball, i.e.,
S = {δ : ∥δ∥∞ ≤ ϵ}. This is known as the l∞ threat model
which we adopt throughout this work.

To train networks that are robust against ℓ∞ threat
models, adversarial training modifies the classical training
procedure of minimizing a loss function over a dataset
D = {(xi, yi)}i=1:N of images xi ∈ X and labels yi ∈ Y .
In particular, adversarial training instead minimizes the
worst-case loss over the perturbation set S, i.e., training is
on the adversarially perturbed samples {(xi + δi, yi)}i=1:N .
Under the l∞ threat model, we can formalize adversarial
training as solving the following problem:

min
θ

N∑
i=1

max
δ

L(fθ(xi + δ), yi) s.t. ∥δ∥∞ ≤ ϵ, (1)

where L is typically the cross-entropy loss. Due to
the difficulty of finding the exact inner maximizer, the
most common procedure for adversarial training is to
approximate the worst-case perturbation through several
PGD steps (Madry et al., 2018). While PGD has been
shown to yield robust models, its cost increases linearly
with the number of steps. As a result, several works have
focused on reducing the cost of adversarial training by
approximating the inner maximization with a single-step.

If the loss function is linear with respect to the input, the
inner maximization of Equation (1) will enjoy a closed
form solution. Goodfellow et al. (2015) leveraged this to
propose FGSM, where the adversarial perturbation follows
the direction of the sign of the gradient. Tramèr et al. (2018)
proposed adding a random initialization prior to FGSM.
However, both methods were later shown to be vulnerable
against multi-step attacks, such as PGD. Contrary to prior
intuition, recent work from Wong et al. (2020) observed
that combining a random step with FGSM can actually lead
to a promising robustness performance. In particular, most
recent single-step methods approximate the worst-case

perturbation solving the inner maximization problem
in Equation (1) with the following general form:

δ = ψ
(
η + α · sign

(
∇xi

L(fθ(xi + η), yi)
))
, (2)

where η is drawn from a distribution Ω. For example,
when ψ is the projection operator onto the ℓ∞ ball and
Ω is the uniform distribution [−ϵ, ϵ]d, where d is the
dimension of X , this recovers RS-FGSM. Under a different
noise setting where Ω = (ϵ − α) · sign (N (0d, Id)) and
by choosing the step size α to be in [0, ϵ], we recover
R+FGSM by Tramèr et al. (2018). This was among the
first works to explore the application of noise to FGSM,
but did not report improvements over it. If we consider
Ω to be deterministically 0 and ψ to be the identity map,
we recover FGSM. Finally, if we take FGSM and add a
gradient alignment regularizer, this recovers GradAlign.

4. Noise and FGSM
Previous methods that combined noise with FGSM, e.g.,
R+FGSM (Tramèr et al., 2018) and RS-FGSM (Wong et al.,
2020), have considered the noise as a random step integrated
within the attack. Since it is a common practice to restrict
adversarial perturbations to the ϵ−ball, we argue that this
introduces a trade-off between the magnitude of the random
step and that of the attack. For illustration, consider the
purple lines corresponding to RS-FGSM in Figure 1 (left).
If the initial random step is significantly larger than the
ϵ−ball, then the final clipping step will have a noticeable
impact on the perturbation, possibly removing a consider-
able portion of the FGSM step (middle arrow). To prevent
this from happening, R+FGSM and RS-FGSM restrict the
random step to lie within the ϵ−ball, thereof implicitly
entangling the noise magnitude and the attack strength.

Contrary to previous methods, we note that adding noise to
the clean sample can be considered as a form of data aug-
mentation to be applied independently from the attack. We
make two considerations from this perspective 1) When one
performs data augmentation during adversarial training, the
input after the corresponding transformation is the starting
point to compute the adversarial perturbations, therefore,
we argue that adversarial attacks should be centered around
the noise-augmented samples. This motivates us to avoid
clipping around the clean sample. 2) We do not need to re-
strict the noise augmentation to lie inside an ϵ−ball, since its
strength is disentangled from that of the attack. Thus, we can
use stronger noise-augmentations than previous methods.

These modifications lead to a novel adversarial training
method that combines noise-based data augmentations
with FGSM. We denote it as Noise-FGSM (N-FGSM).
Following the notation introduced in Section 3, we define
the noise augmented sample as xaug = x + η where η is
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sampled from a uniform distribution on [−k, k]d (where we
can have k > ϵ). Then the adversarially perturbed samples
have the following form:

xN-FGSM = xaug + α · sign
(
∇xaugL(fθ(xaug), y)

)
. (3)

This construction corresponds to augmenting the clean sam-
ple x with the perturbation defined in Equation (2) where
ψ is the identity map and Ω is the uniform ditribution
spanning [−k, k]d. We detail our full adversarial training
procedure in Algorithm 1. In what follows, we analyse
the effect of treating the noise as data augmentation as
opposed to treating it as a random step within the attack. In
particular, we show that clipping around the clean sample x
(as done in RS-FGSM) can strongly degrade the robustness
of the network. Moreover, we show that as we increase
the ϵ radii of adversarial attacks, we need stronger noise
perturbations than previously used to prevent CO.

Clipping around clean sample x hinders the effectiveness
of perturbations. We analyse two variants, one where
perturbations are clipped around the clean sample x (as
done in previous methods) and another where no clipping
is applied. In Figure 2 (left), we report the robust accuracy
using PGD-50-10 (i.e., PGD attack with 50 iterations
and 10 restarts) with ϵ = 8/255 and observe that clipping
significantly degrades the effectiveness of FGSM training.
To understand this drop, consider the following perturba-
tions; (1) a baseline perturbation where we only use noise
δrandom = ψ(η) and (2) a perturbation that combines noise
with FGSM δfull = ψ(η + α · sign

(
∇xL(fθ(x + η), y)

)
).

Moreover, we consider two cases in which we either define
ψ as a clipping operator or as the identity. We define the
effective FGSM step size as the magnitude corresponding to
the ratio1 αeffective = ∥δfull−δrandom∥2/∥x∥2 which measures the
contribution of the FGSM step in the final perturbation com-
pared to simply following the noise direction η. In Figure 2
(middle), we observe that the clipping operator reduces the
effective magnitude of FGSM, thus, perturbations become
more similar to only using random noise. On the other
hand, without clipping we always take the full step in the
FGSM direction. This highlights the trade-off between
noise magnitude and attack strength discussed above.

Larger noise is also necessary to prevent CO. As
discussed above, previous work did not investigate the
effects of using noise perturbations potentially larger than
the attack strength. However, we empirically find that
increasing the noise magnitude is key to avoiding CO. In
particular, as seen in Figure 2 (right), when no clipping is
performed, it is crucial that we augment with larger noise
magnitude in order to prevent CO in all settings. We find
the noise magnitude of k = 2ϵ to work well in most of our

1The denominator ∥x∥2 is simply to normalize the ℓ2−norm
and be comparable to the FGSM step size α.

Algorithm 1 N-FGSM adversarial training

1: Inputs: epochs T , batches M , radius ϵ, step-size α
(default: ϵ), noise magnitude k (default: 2ϵ).

2: for t = 1, . . . , T do
3: for i = 1, . . . ,M do
4: // Augment sample with additive noise.
5: η ∼ Uniform[−k, k]d

6: xiaug = xi + η

7: // N-FGSM augmented sample.
8: xiN-FGSM = xiaug + α · sign

(
∇xi

aug
L(fθ(xiaug), y

i)
)

9: ∇θ = ∇θL(fθ(xiN-FGSM), yi)

10: θ = optimizer(θ,∇θ) // Standard weight update.

experiments, however, a more extensive hyperparameter
tuning might improve our results further.

Note that these results are contrary to previous intuitions:
Andriushchenko & Flammarion (2020) suggested that
the random step in RS-FGSM is not important per se,
arguing that its main role is reducing the ℓ2 norm of the
perturbations, so that the loss remains to be approximately
locally linear. In contrast, N-FGSM perturbations are
larger on expectation than those of RS-FGSM, while they
do not suffer from CO (refer Appendix L). We believe
that our findings will lead to a better understanding of the
role of noise in avoiding CO in future work. Moreover,
in Appendix C we conduct extensive analyses to show
that, despite N-FGSM obtains larger perturbations, clean
accuracy does not degrade and other methods do not benefit
from simply increasing the strength of their attacks.

Why does noise augmentation avoid CO? An-
driushchenko & Flammarion (2020) found that after
CO, the gradients of the loss with respect to the input
around clean samples became strongly misaligned, which
is a sign of non-linearity. Moreover, Kim et al. (2021)
showed that the loss surface of models suffering from CO
appears distorted, i.e., there is a sharp peak in the loss
surface along the FGSM direction, which seems to render
FGSM ineffective (observe from Figure 11 how after after
CO, visually, FGSM perturbations change drastically). In
order to prevent CO, GradAlign explicitly regularizes the
loss surface so it remains linear. To investigate further, we
plot the loss surface at the end of training for different
methods (see Figure 13 in Appendix) and find that, while
FGSM or RS-FGSM lead to a distorted loss, N-FGSM
obtains a non-distorted loss surface similar to that obtained
by GradAlign regularizer. Thus, it seems that adding
strong noise-augmentations implicitly regularizes the loss
landscape, leading to more effective single-step attacks.
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Figure 2. Left: Ablation of clipping vs not clipping around the clean sample x for ϵ = 8/255. Clipping leads to a significant drop in
robustness which increases with the strength of the noise augmentations. Middle: Analysis of the effective FGSM step size after clipping.
We observe that clipping leads to a decrease in the effective FGSM step size, thus, adversarial perturbations will be more similar to
random noise. Right: N-FGSM (ours) when varying the noise magnitude k (ϵ is divided by 255). Increasing the amount of noise is key to
avoiding CO. For (left) and (right) plots, adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds.
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Figure 3. Comparison of single-step methods on CIFAR-100 (left)
and SVHN (right) with PreactResNet18 over different perturbation
radius (ϵ is divided by 255). Our method, N-FGSM, can match
or surpass prior art results while reducing the cost by a 3× factor.
Adversarial accuracy is based on PGD-50-10 and experiments are
averaged over 3 seeds. Legend is shared among plots.

5. Robustness Evaluations and Comparisons
We compare N-FGSM against several adversarial training
methods, on a broad range of ϵ − l∞ radii. Following
Wong et al. (2020), we evaluate adversarial robustness on
CIFAR-10/100 and SVHN with PGD-50-10 attacks using
PreactResNet18 (He et al., 2016).

5.1. Comparison against Single-Step Methods

We start by comparing N-FGSM against other single-step
methods. Note that not all single-step methods are equally
expensive, since they may involve more or less computation-
ally demanding operations. For instance, GradAlign uses a
regularizer that is considerably expensive, while MultiGrad
requires evaluating input gradients on multiple random
points. For a comparison of training costs of different
single-step methods, we refer the reader to Figure 1 (right).

We use RS-FGSM and Free-AT with the settings recom-
mended by Wong et al. (2020). We apply GradAlign with
hyperparameters reported in the official repository2. Zero-
Grad and Kim et al. (2021) do not have a recommended set

2https://github.com/tml-epfl/understanding-fast-adv-training/

of hyperparameters; for a fair comparison we ablate them
and select the ones with highest adversarial accuracy (for ev-
ery ϵ and dataset). We train on CIFAR-10/100 for 30 epochs
and on SVHN for 15 epochs with a cyclic learning rate. Only
for Free-AT, we use 96 and 48 epochs for CIFAR-10/100
and SVHN, respectively, to obtain comparable results fol-
lowing Wong et al. (2020). CIFAR-10 results are in Figure 1
(middle), whereas CIFAR-100 and SVHN are in Figure 3.

As observed in Figure 1 and Figure 3, FGSM and RS-FGSM
suffer from CO for larger ϵ attacks on all reported datasets.
For instance, RS-FGSM fails against attacks with ϵ = 8/255
on CIFAR-10 and CIFAR-100 and against ϵ = 6/255 on
SVHN. With appropriate hyperparameters, ZeroGrad
is able to consistently avoid CO. However, it obtains
sub-par robustness compared to N-FGSM and GradAlign,
especially against large ϵ attacks. Neither MultiGrad nor
Kim et al. (2021) avoid CO in all settings despite being
more expensive. Free-AT also suffers from CO on all
three datasets as also observed by Andriushchenko &
Flammarion (2020). In contrast, N-FGSM avoids CO on
all datasets, achieving comparable or superior robustness
to GradAlign while being 3 times faster.

5.2. Comparison against Multi-Step Attacks

In Section 5.1, we compared the performance of single-step
methods and observed that N-FGSM is able to match or
surpass the state-of-the-art method, i.e., GradAlign, while
reducing the computational cost by a factor of 3. In this
section, we compare the performance of N-FGSM against
multi-step attacks. In particular, we compare against PGD-2
with α = ϵ/2 and PGD-10 with α = 2/255, keeping the same
training settings as described in Section 5.1. PGD-x denotes
x iterations and no restarts.

In Figure 4, we observe that PGD-2, despite being a multi-
step method, still suffers from CO for larger ϵ as opposed to
our proposed N-FGSM. On the other hand, despite achiev-
ing comparable clean accuracies, there is a gap in adver-

https://github.com/tml-epfl/understanding-fast-adv-training/
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50-10 and experiments are averaged over 3 seeds.
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Figure 5. Left: Mean ℓ2 norm of per-sample-gradients across all
test set samples. After CO, both FGSM and RS-FGSM gradients
increase by several orders of magnitude. Right: Effective rank
of perturbations (δ) across three training intervals Ep 2-8 before
CO for all methods; Ep 16-22: after FGSM presents CO but not
RS-FGSM; Ep 24-30: after both FGSM and RS-FGSM had CO.

sarial accuracies between PGD-10, and other single-step
methods that grows with perturbation size. This can be
partially expected since the search space for adversaries
grows exponentially with ϵ; and PGD, with more iterations,
can explore it more thoroughly. Nevertheless, computing
a PGD-10 attack is 10× more expensive to N-FGSM. An
important direction for future work would be addressing
this gap and analysing, both theoretically and empirically,
whether single-step methods can match the performance of
their multi-step counterparts.

5.3. Analysis of Gradients and Adversarial
Perturbations

To gain further insights into CO, we visually explore the
perturbations generated with FGSM, RS-FGSM, N-FGSM,
and PGD-10 attacks. We show that N-FGSM generates
perturbations that exhibit behavior similar to PGD-10.
In particular, for a given test sample, we average the
adversarial perturbations (δ) and gradients across several
epochs at the beginning of training (Epoch 2 to 8) and at

the end (Epoch 24 to 30) and visualise them in Figure 11
in Appendix. We observe that early in training all methods
generate consistent and interpretable δ. However, after CO,
FGSM and RS-FGSM generate δ that are harder to interpret,
idem for their gradients. On the other hand, we observe
that N-FGSM provides consistent and interpretable δ
throughout training, similar to those generated by PGD-10.
This provides further evidence that N-FGSM enjoys similar
properties to the more expensive PGD-10 training.

Figure 5 analyzes the gradients and δ throughout the test set.
Aside from loosing interpretability, post-CO the gradient
norm increases by several orders of magnitude for FGSM
and RS-FGSM while it remains low for N-FGSM and PGD-
10. We also compute the effective rank (number of singular
vectors required to explain 90% of the variance.) of δ for
each example before and after CO to measure the consis-
tency of δ before and after CO. We consider three training
intervals, (Epoch 2 to 8): before CO for all methods; (Epoch
16 to 22): after FGSM suffers CO but not RS-FGSM; (Epoch
24 to 30): after both FGSM and RS-FGSM suffer CO. Prior
to CO, PGD-10 has a larger effective rank (i.e., the pertur-
bations span a larger subspace) than FGSM and RS-FGSM.
N-FGSM has the highest effective rank, arguably due to the
higher noise magnitude. Note that RS-FGSM, which has
a smaller noise magnitude and clipping, also has a larger
effective rank than FGSM, however, the difference is much
lower. When either FGSM or RS-FGSM suffer from CO,
the effective rank of their δ increases significantly above that
of PGD-10 and N-FGSM. This would suggest that δ loose
consistency after CO and is aligned with our visualizations
in Figure 5. All of these show properties of δ and gradients
that are consistent across methods (N-FGSM and PGD) that
avoid CO and different from methods like RS-FGSM and
FGSM, which suffer from CO.

6. Conclusion

In this work, we explore the role of noise and clipping
in single-step adversarial training. Contrary to previous
intuitions, we show that increasing the noise magnitude and
removing the ϵ − ℓ∞ constraint leads to an improvement
in adversarial robustness while maintaining a competitive
clean accuracy. These findings led us to propose N-FGSM, a
simple and effective approach that can match or surpass the
performance of GradAlign (Andriushchenko & Flammarion,
2020), while achieving a 3× speed-up.

We perform an extensive comparison with other relevant
single-step methods, observing that all of them achieve sub-
optimal performance and most of them are not able to avoid
CO for larger ϵ attacks. Moreover, we also analyze gradients
and adversarial perturbations during training and observe
that they have a similar behaviour for N-FGSM and PGD-10
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as opposed to other methods that present CO such as FGSM
and RS-FGSM. However, despite impressive improvements
of single-step adversarial training methods, there is still a
gap between single-step and multi-step methods such as
PGD-10 as we increase the ϵ radius. Therefore, future
work should put an emphasis on formally understanding the
limitations of single-step adversarial training and explore
how, if possible, this gap can be reduced.
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cussions and feedback. This work is supported by the
UKRI grant: Turing AI Fellowship EP/W002981/1 and
EPSRC/MURI grant: EP/N019474/1. We would also like
to thank the Royal Academy of Engineering and FiveAI.
A. Sanyal acknowledges support from the ETH AI Center
postdoctoral fellowship.

References
Andriushchenko, M. and Flammarion, N. Understanding

and improving fast adversarial training. In Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Biggio, B. and Roli, F. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recognition,
2018.

Boloor, A., He, X., Gill, C. D., Vorobeychik, Y., and Zhang,
X. Simple physical adversarial examples against end-
to-end autonomous driving models. arxiv:1903.05157,
2019.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness
to adversarial examples. In International Conference on
Machine Learning (ICML), 2017.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free at-
tacks. In International Conference on Machine Learning
(ICML), 2020.

Devlin, J., Changm, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL
HLT), 2019.

Fawzi, A., Moosavi-Dezfooli, S.-M., Frossard, P., and
Soatto, S. Empirical study of the topology and geom-
etry of deep networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Gilmer, J., Ford, N., Carlini, N., and Cubuk, E. Adversar-
ial examples are a natural consequence of test error in
noise. In International Conference on Machine Learning
(ICML), 2019.

Golgooni, Z., Saberi, M., Eskandar, M., and Rohban, M. H.
Zerograd: Mitigating and explaining catastrophic over-
fitting in fgsm adversarial training. arXiv:2103.15476,
2021.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. International Confer-
ence on Learning Representations (ICLR), 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In IEEE International Conference
on Computer Vision (ICCV), 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European Conference on
Computer Vision (ECCV), 2016.

Kang, P. and Moosavi-Dezfooli, S.-M. Understand-
ing catastrophic overfitting in adversarial training.
arXiv:2105.02942, 2021.

Kim, H., Lee, W., and Lee, J. Understanding catastrophic
overfitting in single-step adversarial training. In AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial
machine learning at scale. In International Conference
on Learning Representations (ICLR), 2017.

Li, B., Wang, S., Jana, S., and Carin, L. Towards understand-
ing fast adversarial training. arXiv:2006.03089, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE symposium on
security and privacy (SP), 2016.

Park, G. Y. and Lee, S. W. Reliably fast adversarial training
via latent adversarial perturbation. In International Con-
ference on Learning Representations (ICLR), Workshops,
2021.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversari-
ally robust deep learning. In International Conference on
Machine Learning (ICML), 2020.

Sanyal, A., Kanade, V., and Torr, P. H. S. Robustness via
deep low-rank representations. arxiv:1804.07090, 2018.



Make Some Noise: Reliable and Efficient Single-Step Adversarial Training

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! Neural Information
Processing Systems (NeurIPS), 2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 2016.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.
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A. Additional plots for PreActResNet18 experiments
In the main paper we compare N-FGSM with other single-step methods and multi-step methods separately and remove
clean accuracies for better visualization. In this section we present the curves for all methods with both the clean and robust
accuracy. The tendency in the three datasets is for N-FGSM PGD-50-10 accuracy to be slightly above that of GradAlign,
while the opposite happens to the clean accuracy. We also observe that clean accuracy becomes significantly more noisy
when catastrophic overfitting happens. Exact numbers for all the curves are in Appendix Q.
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Figure 6. Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with PreactResNet18 over different perturbation radius (ϵ is
divided by 255). We plot both the robust (solid line) and the clean (dashed line) accuracy for each method. Our method, N-FGSM, is able
to match or surpass the state-of-the-art single-step method GradAlign while reducing the cost by a 3× factor. Adversarial accuracy is
based on PGD-50-10 and experiments are averaged over 3 seeds. Legend is shared among all plots.

B. Experiments with WideResNet28-10 architecture
In this section we present the plots of our experiments with WideResNet28-10. We report the results in two figures.
In Figure 7 we compare all single-step methods and we do not plot the clean accuracy for better visualization. In Figure 8
we plot all methods, including multi-step methods, and report the clean accuracy as well with dashed lines. Since we
observed that our baseline, RandAlpha, outperformed (Kim et al., 2021) in all settings for PreActResNet18, we only report
RandAlpha for WideResNet. As mentioned in the main paper, we observe that catastrophic overfitting seems to be more
difficult to prevent for WideResNet. In particular, for GradAlign we observed the regularizer hyperparameter settings
proposed by (Andriushchenko & Flammarion, 2020) for CIFAR-10 (searched for a PreActResNet18) worked well. However,
those parameters led to catastrophic overfitting for 6 ≤ ϵ ≤ 12 in CIFAR-100. Since ϵ = 14, 16 did not show catastrophic
overfitting, we increased the GradAlign regularizer hyperparameter λ for CIFAR-100 so that each 6 ≤ ϵ ≤ 12 would have
the default value corresponding to ϵ+2, for instance, λ for ϵ = 6 would be the default λ in (Andriushchenko & Flammarion,
2020) for ϵ = 8.

For SVHN we observed that the default values for λ led to models close to a constant classifier for ϵ ≥ 6. We tried to increase
the lambda for those ϵ values to 1.25λ but observed the same result. Since the model did not show typical catastrophic
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Figure 7. Comparison of single-step methods on CIFAR-10, CIFAR-100 and SVHN with WideResNet28-10 over different perturbation
radius (ϵ is divided by 255). Our method, N-FGSM, is able to match or surpass the state-of-the-art single-step method GradAlign while
reducing the cost by a 3× factor. Moreover, we could not find any competitive hyperparameter setting for GradAlign for ϵ ≥ 6 in SVHN
dataset. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds. Legend is shared among all plots.
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Figure 8. Comparison of all methods on CIFAR-10, CIFAR-100 and SVHN with WideResNet28-10 over different perturbation radius (ϵ
is divided by 255). We plot both the robust (solid line) and the clean (dashed line) accuracy for each method. Legend is shared among all
plots.

overfitting but rather it seemed as it was underfitting, we tried to reduce the step-size to α = 0.75ϵ and also both decreasing
α and increasing λ. When reducing the step size we obtain accuracies above those of a constant classifier for some radii,
however, some or all seeds converge to a constant classifier for each setting, hence the large standard deviations. For
N-FGSM, the default configuration of N-FGSM (α = ϵ, k = 2ϵ) works well in all settings except for ϵ = 16 on CIFAR-10
and ϵ = 10, 12 on SVHN. For CIFAR-10, we increase the noise magnitude to k = 4ϵ. For SVHN we find that decreasing α
as we tried for GradAlign works better than increasing the noise. We use α = 8 for both ϵ radii. Exact numbers for all the
curves are in Appendix Q

C. Increasing Adversarial Perturbations
In Section 4, we observed that removing clipping and increasing the noise magnitude were both necessary for the improved
performance of N-FGSM. However, as discussed in Theorem L.2 this will result in an increase of the squared norm of the train-
ing perturbation δN−FGSM as compared to FGSM. In this section, we perform further ablations to corroborate that it is indeed
the increase in noise magnitude – and not the mere increase of the perturbation’s magnitude – that helps to stabilize N-FGSM.

Increasing α alone is not sufficient. N-FGSM combines a noise perturbation with an FGSM step. Thus, we can increase
the perturbation magnitude by increasing any of the two. This begs the question: Is it sufficient to increase the N-FGSM
step-size α to avoid CO without adding any noise? We observe in Figure 9 (A) that training without noise (essentially,
FGSM) leads to CO, with robust accuracy equal to zero, even for large values of α. This indicates that it is not an increase
in the perturbation norm, but the combination with noise which plays an essential role in circumventing CO for N-FGSM.

Increasing α requires adjusting the noise magnitude. As observed in Figure 9 (A), increasing α for N-FGSM leads
to CO if the noise magnitude is not large enough. For example, while a noise magnitude k = 1ϵ and an adversarial step
size α = 1.25ϵ yield a robust accuracy of 49.68%, increasing α to 1.5ϵ while keeping the same noise magnitude results
in CO – with robust accuracy equal to zero. This further suggests that an increase in the adversarial step-size α requires a
commensurate increase in the noise magnitude. We find that setting the noise magnitude k = 2ϵ works well for most settings.

Larger noise perturbations preserve clean accuracy. Increasing the norm of training perturbations by increasing α
results in a drop in the clean accuracy (discussed later in Appendix D). This has also been observed in prior works (Wong
et al., 2020). However, we show in Figure 4 that the clean accuracy for N-FGSM is similar to that of GradAlign, despite
the magnitude of the perturbations being larger. We ablate the effects of adversarial and noise perturbations on the clean
accuracy in Figure 9 (B): we observe that augmenting training samples with noise alone (i.e., α = 0) has a much milder
effect on the clean accuracy than augmenting in an adversarial direction. In general, increasing noise is more forgiving on the
clean accuracy than increasing the adversarial step size. This is not surprising, considering that moving in random directions
along the input space has a significantly lower impact on the loss than moving along the FGSM direction (see Figure 13 in
the Appendix) and that training with noise alone does not provide any significant robustness against larger attacks (for a
more detailed ablation, see Appendix Figure 15).

Other methods do not benefit from larger training ϵ. As previously mentioned, N-FGSM perturbations have ℓ∞−norm
larger than ϵ. We have seen that the benefits of N-FGSM can not be reproduced by simply increasing α without increasing the
noise. However, for the sake of completeness, we also ablate other single-step baselines by using a larger ϵ during training,



Make Some Noise: Reliable and Efficient Single-Step Adversarial Training

0 0.5 0.75 1 1.25 1.5
Step size  for N-FGSM attack

0

10

20

30

40

50

Ad
ve

rs
ar

ia
l A

cc
.

Noise 0
Noise 0.5
Noise 1
Noise 2

0 2 4 5 6
Radius of perturbation (x / 255)

86

88

90

92

94

Cl
ea

n 
Ac

c.

Uniform
Adversarial

4 6 8 10 12 14
N-FGSM step size  ( = 8)

40

50

60

70

80

90

Cl
ea

n 
an

d 
Ad

v.
 A

cc
.

N-FGSM robust
N-FGSM clean

Comparison of Training Schedules
Clean Acc Robust Acc

Long schedule: Final model
83.18 ± 0.11 36.56 ± 0.26

Long schedule: Best model
80.8 ± 0.36 48.48 ± 0.27

Fast schedule: Final model
80.58 ± 0.22 48.12 ± 0.07

Figure 9. Different ablations on N-FGSM parameters and training schedule. From left to right: A: Adversarial accuracy when varying
step-size α and noise magnitude k (ϵ = 8). Increasing α does not suffice to prevent CO, we must also increase the noise magnitude.
B: Clean accuracy after training with random or adversarial perturbations. With comparable radius, random perturbations have a much
milder effect than adversarial. C: Ablation of step size α in N-FGSM ϵ = 8, k = 2ϵ. As we increase the magnitude of the FGSM
perturbation we observe an increase in robustness coupled with a drop on the clean accuracy. D: Comparison of the “fast” training
schedule from (Wong et al., 2020) and “long” training schedule described in (Rice et al., 2020). N-FGSM shows robust oberfitting but not
CO with the long schedule. Adversarial accuracy is based on PGD-50-10 and experiments are averaged over 3 seeds.

while testing with a fixed ϵ = 8/255 on CIFAR10. We observe that increasing ϵtrain seems to lead to a decrease in robustness
for most methods; for instance, PGD-50-10 accuracy for RS-FGSM drops from 46.08±0.18 when training with ϵ = 8/255 to
0.0±0.0 with ϵ = 12/255. In two cases (GradAlign and MultiGrad), we observe a small increase, with the highest increase be-
ing for GradAlign, which improves from 48.14±0.15 to 50.6±0.45; yet, the clean accuracy drops from 81.9±0.22 to 73.29±
0.23. This is similar to increasing α for N-FGSM (see Figure 9 (C)). However, this is tied to a significant degradation of clean
accuracy. All in all, taking into account both clean and robust accuracy, we conclude that all single-step baselines suffer from
either CO or a severe degradation in their clean accuracy when increasing the training ϵ. Full results are presented in Table 1.

Table 1. Ablation of the PGD-50-10 accuracy for single-step methods when increasing the ϵtrain. All models are evaluated with PGD-50-10
attack and ϵtest = 8/255. Note that considering the trade-off between clean and robust accuracy, all methods perform best when training
with the same epsilon to be applied at test time.

ϵtrain = 1ϵtest ϵtrain = 1.5ϵtest ϵtrain = 2ϵtest

Method Clean acc. PGD acc. Clean acc. PGD acc. Clean acc. PGD acc. Rel. Cost

GradAlign 81.9 ± 0.22 48.14 ± 0.15 73.29 ± 0.23 50.6 ± 0.45 61.3 ± 0.15 46.67 ± 0.29 3
MultiGrad 82.33 ± 0.14 47.29 ± 0.07 75.28 ± 0.2 50.0 ± 0.79 71.42 ± 5.63 0.0 ± 0.0 2
AT Free 78.41 ± 0.18 46.03 ± 0.36 73.91 ± 4.19 32.4 ± 22.91 71.64 ± 3.89 0.0 ± 0.0 1.6

Kim et. al. 89.02 ± 0.1 33.01 ± 0.09 88.35 ± 0.31 27.36±0.31 90.45 ± 0.08 9.28 ± 0.12 1.5

FGSM 86.41 ± 0.7 0.0 ± 0.0 80.6 ± 2.59 0.0 ± 0.0 77.14 ± 2.46 0.0 ± 0.0 1
RS-FGSM 84.05 ± 0.13 46.08 ± 0.18 65.22 ± 23.23 0.0 ± 0.0 76.66 ± 0.38 0.0 ± 0.0 1
ZeroGrad 82.62 ± 0.05 47.08 ± 0.1 78.11 ± 0.2 46.43 ± 0.37 75.42 ± 0.13 45.63 ± 0.39 1
N-FGSM 80.58 ± 0.22 48.12 ± 0.07 71.46 ± 0.14 50.23 ± 0.31 63.18 ± 0.49 46.46 ± 0.1 1

D. Ablations on hyperparameters and training schedules
Hyperparameter selection. While FGSM relies on a fixed step-size (i.e., α = ϵ), Wong et al. (2020) explored different
values of α for RS-FGSM, finding that an increase of the step-size improves the adversarial accuracy – up to a point where
CO occurs. We also ablate the value of α for N-FGSM in Figure 9 (C). We find that by increasing the noise magnitude,
N-FGSM can use larger α values than RS-FGSM, without suffering from CO. This leads to an increase in the adversarial
accuracy at the expense of a decrease in the clean accuracy. In light of this trade-off, we also use α = ϵ for N-FGSM.
Regarding the noise hyperparameter k, we find that k = 2ϵ works in all but one SVHN experiment (ϵ = 12, in which we
set k = 3ϵ). In comparison, GradAlign regularizer hyperparameter or ZeroGrad quantile value need to be modified for
every radius with a noticeable shift between CIFAR-10 and SVHN hyperparameters, suggesting they may require additional
tuning when applied to novel datasets.

Long vs fast training schedules. Throughout our experiments, we used the RS-FGSM training setting introduced in (Wong
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et al., 2020). However, Rice et al. (2020) suggest that a longer training schedule coupled with early stopping may lead to a
boost in performance. Kim et al. (2021) and Li et al. (2020) report that longer training schedules increase the chances of CO
for RS-FGSM and that this limits its performance. We test the longer training schedule with N-FGSM and find that it does
not suffer from CO. However, it does suffer from robust overfitting, i.e., adversarial accuracy on the training set is larger
than on the test set as described in (Rice et al., 2020) for PGD-10. Notice the difference between the robust accuracy of
the final and best models in Figure 9 (D). Interestingly, although we observe a slight increase in performance when using
the long training schedule with early stopping, we find the fast training schedule to be remarkably competitive. In Table 2
we compare the performance of N-FGSM and GradAlign for the long training schedule. We observe that GradAlign does
not seem to benefit from the long training schedule. It is worth mentioning that for GradAlign, the default regularizer
hyperparameter for ϵ = 8/255 and CIFAR-10 (λ = 0.2) does not prevent catastrophic overfitting. We do a hyperparameter
search and keep the value with the largest final robust accuracy (λ = 0.632).

N-FGSM Grad Align

Clean Acc Robust Acc Clean Acc Robust Acc

Long schedule: Final model

83.18 ± 0.11 36.56 ± 0.26 84.13 ± 0.24 36.17 ± 0.19

Long schedule: Best model

80.8 ± 0.36 48.48 ± 0.27 81.57 ± 0.44 47.86 ± 0.1

fast schedule: Final model

80.58 ± 0.22 48.12 ± 0.07 81.9 ± 0.22 48.14 ± 0.15

Table 2. Comparison of “long” (Rice et al., 2020) and “fast” (Wong et al., 2020) training schedules for N-FGSM and GradAlign. GradAlign
does not seem to benefit from the long training schedule. Although N-FGSM seems to obtain a slight increase in performance, the “fast”
schedule provides comparable performance.

E. Randomized Alpha
Kim et al. (2021) evaluate intermediate points along the RS-FGSM direction in order to pick the “optimal” perturbation
size. However, we find that increasing the number of intermediate evaluated points does not necessarily lead to increased
adversarial accuracy. Moreover, for large perturbations we could not prevent CO even with twice the number of evaluations
tested by (Kim et al., 2021). This motivates us to test a very simple baseline where instead of evaluating intermediate steps,
the RS-FGSM perturbation size is randomly selected as: δ = t · δRS-FGSM where t ∼ U [0, 1]d. Interestingly, as reported in
Figure 10, we find that this very simple baseline, dubbed RandAlpha, is able to avoid CO for all values of ϵ and outperforms
(Kim et al., 2021) on CIFAR-10, CIFAR-100 and SVHN. This is aligned with our main finding that combining noise with
adversarial attacks is indeed a powerful tool that should be explored more thoroughly before developing more expensive
solutions.
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Figure 10. Comparison of (Kim et al., 2021) with RandomAlpha, our baseline where we multiply the RS-FGSM perturbation by a scalar
uniformly sampled in [0, 1]. We present results on CIFAR-10 (Left), CIFAR-100 (Middle) and SVHN (Right) with PreActResNet18.
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F. Further visualizations of adversarial perturbations and gradients
In this section we present an extension of Figure 5 with further examples. As observed in the main paper, early in training
adversarial perturbations (δ) and gradients are consistent across epochs, however, after CO they become hard to interpret.
Note that although we label rows as either pre-CO or post-CO we only observe CO for FGSM and RS-FGSM. Both PGD-10
and N-FGSM obtain robust models as shown in detail in the paper.
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Figure 11. Visualization of adversarial perturbations (δ’s) and gradients averaged across several epochs before CO (pre-CO) and after
(post-CO). Note that only FGSM and RS-FGSM present CO, PGD-10 and N-FGSM do not. Post-CO, FGSM and RS-FGSM obtain δ’s
that are hard to interpret, idem for their gradients.

G. Robust evaluations with autoattack

Table 3. Clean (top) and robust accuracy (bottom) for CIFAR-10 and PreacResNet18 evaluated with autoattack (Croce & Hein, 2020). As
observed when evaluating with PGD50-10, N-FGSM is able to prevent CO in all tested perturbation radii. Note k = 0 would correspond
to FGSM while k = 2 is our default noise hyperparameter for N-FGSM.

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

k = 0
91.52 ± 0.08

78.99 ± 0.19

88.59 ± 0.08

65.99 ± 0.24

85.17 ± 0.03

54.0 ± 0.32

86.62 ± 0.08

0.0 ± 0.0

83.35 ± 2.03

0.0 ± 0.0

78.51 ± 3.3

0.0 ± 0.0

77.31 ± 1.9

0.0 ± 0.0

75.88 ± 1.49

0.0 ± 0.0

k = 2ϵ
91.44 ± 0.09

78.99 ± 0.17

88.36 ± 0.04

66.06 ± 0.25

84.56 ± 0.12

53.94 ± 0.3

80.36 ± 0.03

44.36 ± 0.26

75.81 ± 0.22

36.73 ± 0.27

71.03 ± 0.16

30.45 ± 0.2

66.49 ± 0.36

25.08 ± 0.15

62.86 ± 0.88

19.0 ± 1.08

Following previous work, (Andriushchenko & Flammarion, 2020; Goodfellow et al., 2015) we have evaluated robustness
with PGD50-10, i.e. PGD with 50 iterations and 10 restarts. However, for the sake of completeness, we also present results
of robust accuracy evaluated with autoattack (Croce & Hein, 2020). In Table 3 we evaluate models adversarially trained
with our proposed method N-FGSM (corresponding to k = 2) and FGSM (k = 0). As observed with PGD50-10, FGSM
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suffers CO for ϵ ≥ 8/255 while N-FGSM is able to prevent it for all tested ϵ.

H. Catastrophic Overfitting outside the ResNet family
Previous work focusing on CO has only used architectures from the ResNet family. In Table 4 we present results for
adversarial training with a VGG-16 architecture (Simonyan & Zisserman, 2015). Similarly to other studied models we
observe that FGSM leads to CO while N-FGSM is able to prevent it. However, it seems that FGSM presents CO for slighly
larger ϵ radii, indicating that the architecture might play a role in CO. We consider investigating this further a promising
direction of future work.

Table 4. Clean (top) and robust accuracy (bottom) for CIFAR-10 and VGG-16 (Simonyan & Zisserman, 2015) evaluated with PGD50-10.
We also observe CO for VGG architecture when trained with FGSM, moreover, N-FGSM is able to prevent CO. Interestingly, for VGG
CO happens for slighly large ϵ values indicating that the architecture might play a role in CO.

ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

k = 0
85.04 ± 0.1

62.94 ± 0.07

79.34 ± 0.11

52.72 ± 0.12

73.39 ± 0.0

44.0 ± 0.02

82.6 ± 0.0

0.07 ± 0.0

83.04 ± 0.0

0.8 ± 0.0

81.4 ± 0.0

0.25 ± 0.0

80.41 ± 0.21

0.31 ± 0.15

k = 2ϵ
84.53 ± 0.0

63.32 ± 0.0

79.42 ± 0.0

53.0 ± 0.0

72.01 ± 0.28

44.3 ± 0.09

66.81 ± 0.54

38.25 ± 0.1

61.19 ± 0.0

33.36 ± 0.0

56.97 ± 0.0

29.23 ± 0.0

53.1 ± 1.19

25.72 ± 0.22

I. Further increasing the attack radii
Following previous work (Andriushchenko & Flammarion, 2020) we have studied ϵ attack radii up to epsilon = 16/255.
Indeed, the performance at these radius is already significantly degraded and thus it would not be very practical for most
applications. However, to show that N-FGSM can prevent CO at even larger radii we test two additional radii, ϵ = 20/255
and ϵ = 24/255. In both cases N-FGSM is able to prevent CO. For ϵ = 20/255 we obtain a clean accuracy of 51.63 ± 0.38
and robust of 20.62 ± 0.37 while for ϵ = 24/255 we obtain a clean accuracy of 40.16 ± 0.96 and robust of 15.3 ± 1.49. We
argue that it is of little interest to try even larger perturbations unless more effective methods to improve both the clean and
robust performance are found.

J. Testing other norms
Following previous work, we have focused on the ℓ∞ threat model. Although this is where works studying CO have mainly
focused, we observe that CO is also present in other norms such as ℓ1 and ℓ2. Moreover, in both cases we observe that
N-FGSM is able to prevent CO. Interestingly, the range of norms in which we observe CO is usually much higher than
normally tested for these norms which would explain why the ℓ∞ norm has been the main focus of study in related works.
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Figure 12. Robust accuracy after training with FGSM or N-FGSM using ℓ1 (left) and ℓ2 (right) perturbations. As observed for ℓ∞
perturbations FGSM leads to CO, while N-FGSM is able to prevent it. Note that the strength of the perturbations is indicated to be
equivalent to ℓ∞ perturbations where all pixels have maximum magnitude i.e. ϵ = 8/255 indicates perturbations were restricted to an ℓp
norm of a vector where all components are in {−ϵ,+ϵ}. Which would correspond to an ℓ1 norm of nϵ and an ℓ2 norm of ϵ

√
n where n

indicates the dimensionality of the input.
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K. Visualization of the loss surface
In this section we present a visualization of the loss surface. We adapted the code from (Kim et al., 2021) to analyse the
shape of the loss surface at the end of training for different methods. (Kim et al., 2021) reported that after adversarial
training CO, the loss surface would become non-linear. In particular, they found that the FGSM perturbation seems to be
misguided by local maxima very close to the clean image that result in ineffective attacks. We note this was already reported
by (Tramèr et al., 2018) which proposed to perform a random step to escape those maxima. We argue that adding noise to
the random step, when properly implemented, actually prevents those maxima to appear in the first place.
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Figure 13. Visualization of the loss surface for models trained using different methods. Given a clean sample from the test set in coordinate
(0, 0), we compute the FGSM perturbation and evaluate the loss on the subspace generated by the FGSM perturbation direction and a
random direction. That is, we evaluate xclean + t1 · δFGSM + t2 · δrandom, where t1, t2 ∈ [0, 1]. Note that FGSM and RS-FGSM both have
CO and the final models present a highly non-linear loss surface, on the other hand, both N-FGSM and GradAlign produce final models
with a very linear loss surface which is key to obtain meaningful perturbations.
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L. Magnitude of N-FGSM perturbations
Lemma L.1 (Expected perturbation). Consider the N-FGSM perturbation as defined in Equation (3)

δN-FGSM = η + α · sign (∇xℓ(f(x+ η), y)) , where η ∼ Ω.

Let the distribution Ω be the uniform distribution U
(
[−kϵ, kϵ]d

)
and α > 0. Then,

Eη

[
∥δN-FGSM∥|22

]
= d

(
k2ϵ2

3
+ α2

)
and Eη [∥δN-FGSM∥|2] ≤

√
d

(
k2ϵ2

3
+ α2

)
Proof. By Jensen’s inequality, we have

Eη [∥δN-FGSM∥2] ≤
√
Eη [∥δN-FGSM∥22]

Then let us consider the term Eη

[
∥δN-FGSM∥22

]
and use the shorthand ∇(η)i = (∇xℓ(f(x+ η), y))i.

Eη

[
∥δN-FGSM∥22

]
=Eη∥η + α · sign (∇xℓ(f(x+ η), y)) ∥22

=Eη

[
d∑

i=1

(ηi + α · sign(∇(η)i))
2

]

=

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2
]

=

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2 |sign(∇(η)i) = 1
]
Pη [sign(∇(η)i) = 1]

+

d∑
i=1

Eη

[
(ηi + α · sign(∇(η)i))

2 |sign(∇(η)i) = −1
]
Pη [sign(∇(η)i) = −1]

=

d∑
i=1

1

2kϵ

∫ kϵ

−kϵ

(ηi + α)
2
dηi · Pη [sign(∇(η)i) = 1]

+
1

2kϵ
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−kϵ
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2
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=
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1

2kϵ

∫ α+kϵ
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1
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(Pη [sign(∇(η)i) = 1] + Pη [sign(∇(η)i) = −1])
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6kϵ

[
(α+ kϵ)3 − (α− kϵ)3
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=
dk2ϵ2
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+ dα2
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Therefore,

Eη [∥δN-FGSM∥|2] ≤

√
d

(
k2ϵ2

3
+ α2

)
.

Theorem L.2. Let δN-FGSM be our proposed single-step method defined by Equation (3), δFGSM be the FGSM method (Good-
fellow et al., 2015) and δRS-FGSM be the RS-FGSM method (Wong et al., 2020). Then, with default hyperparameter values
and for any ϵ > 0, we have that

Eη

[
∥δN-FGSM∥22

]
> Eη

[
∥δFGSM∥22

]
> Eη

[
∥δRS-FGSM∥22

]
.

Proof. From Lemma L.1 we have that

Eη

[
∥δN-FGSM∥|22

]
= d

(
k2ϵ2

3
+ α2

)
.

On the other hand, (Andriushchenko & Flammarion, 2020) showed that

Eη

[
∥δRS-FGSM∥22

]
= d

(
− 1

6ϵ
α3 +

1

2
α2 +

1

3
ϵ2
)
.

Finally, we note that
Eη

[
∥δFGSM∥22

]
= ∥δFGSM∥22 = dϵ2.

The default hyperparameters for N-FGSM are k = 2, α = ϵ and RS-FGSM uses α = 5ϵ/4. With these hyperparameters
and any ϵ > 0 we have

Eη

[
∥δN-FGSM∥|22

]
=

7

3
dϵ2 > Eη

[
∥δFGSM∥|22

]
= dϵ2 > Eη

[
∥δRS-FGSM∥|22

]
=

101

128
dϵ2

In Lemma L.1 we compute the expected value of the squared ℓ2 norm of N-FGSM perturbations and by Jensen’s inequality
we obtain an upper bound for the expected ℓ2 norm of N-FGSM perturbations. However, obtaining the exact expected
magnitude is more complex. To compliment our analytic results, we approximate the ℓ2 norm of FGSM, RS-FGSM and
N-FGSM via Monte Carlo sampling. Results are presented in Figure 14. We observe that the empirical estimations are
very close to the analytical upper bounds and that indeed, N-FGSM has a magnitude significantly above that of FGSM or
RS-FGSM.

M. N-FGSM with Gaussian noise
In the main paper we have only explored noise sources coming from a Uniform distribution. Since we are measuring
robustness against l∞− attacks, the Uniform distribution is a natural choice because the random perturbations will be
bounded to the l∞ ball defined by the span of the distribution. However, for the sake of completeness, we also explore the
performance of augmenting the samples from a Gaussian distribution where we choose its standard deviation to match that
of the uniform distribution. In Table 5 we present a comparison of the clean (top) and PGD-50-10 (bottom) accuracy for
different values of α and noise magnitude with ϵ = 8/255. Recall that by default we use Uniform distribution U [−k, k],
therefore hyperparameter k sets the noise magnitude.

Increasing the FGSM step size without increasing the amount of noise leads to CO. Note results for k = 0.5ϵ. More
importantly, results are very similar when the two noise distributions share the same standard deviation. Thus, using
Gaussian instead of Uniform noise does not seem to alter the results. Although this might be expected, we remark that the
Gaussian is an unbounded noise distribution and the common practice in adversarial training is to always restrict the norm
of the perturbations.
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Figure 14. Monte Carlo estimations of the expected l2−norm of perturbations from different methods and corresponding analytical upper
bounds. As mentioned in (Andriushchenko & Flammarion, 2020), we observe that RS-FGSM perturbations have lower l2 norm than
FGSM. However, N-FGSM perturbations have a significantly higher l2−norm than both RS-FGSM and FGSM. This seems to indicate
that the role of random step is not simply to lower the l2 norm as previously suggested (Andriushchenko & Flammarion, 2020).

Table 5. Comparison of the clean (top) and PGD-50-10 (bottom) accuracy across different values of step-size α and noise magnitude for
the Uniform and Gaussian distributions with ϵ = 8/255. For every value of k, we use a Gaussian with matching standard deviation. We
observe that when we match the standard deviation, both distribution perform similarly.

Uniform Noise Gaussian Noise

α = 6/255 (0.75ϵ) α = 8/255 (1ϵ) α = 10/255 (1.25ϵ) α = 6/255 (0.75ϵ) α = 8/255 (1ϵ) α = 10/255 (1.25ϵ)

k = 0.5ϵ
85.52 ± 0.23

44.14 ± 0.24

81.54 ± 0.19

47.93 ± 0.11

82.81 ± 1.11

0.0 ± 0.0

85.27 ± 0.11

44.23 ± 0.17

81.71 ± 0.27

47.98 ± 0.14

83.34 ± 1.48

0.0 ± 0.0

k = 1ϵ
85.03 ± 0.09

44.44 ± 0.13

81.57 ± 0.07

48.16 ± 0.21

77.32 ± 0.14

49.68 ± 0.25

85.01 ± 0.17

44.41 ± 0.04

81.35 ± 0.14

48.21 ± 0.11

77.22 ± 0.32

49.83 ± 0.1

k = 2ϵ
84.49 ± 0.1

44.44 ± 0.15

80.58 ± 0.22

48.12 ± 0.07

76.49 ± 0.14

49.77 ± 0.37

84.35 ± 0.24

44.59 ± 0.22

80.44 ± 0.31

48.34 ± 0.1

76.33 ± 0.37

49.77 ± 0.23

N. Training with noise augmented samples
Gilmer et al. (2019) and Fawzi et al. (2018) report a close link between robustness to adversarial attacks and robustness to
random noise. Actually, (Gilmer et al., 2019) report that training with noise-augmented samples can improve adversarial
accuracy and vice-versa. We note that N-FGSM can actually be seen as a combination of noise-augmentation and adversarial
attacks. Here we perform an ablation where we train models with samples augmented with uniform noise U [−k, k] and then
test the PGD-50-10 accuracy. We observe, that indeed random noise can increase the robustness to worst-case perturbations
for small ϵ− l∞ balls. However, as we increase ϵ, noise augmentation is no longer very effective. With N-FGSM, we apply
a weak attack to these noise-augmented samples and this seems to be enough to make them effective for adversarial training.

O. Comparison of adversarial training cost
In this section we describe how we compute the relative training cost for single-step methods shown in Figure 1 (right). We
approximate the cost based on the number of forward/backward passes each method uses, disregarding the cost of other
additional operations such as adding a random step for RS-FGSM or N-FGSM. We understand these operations have a
negligible cost compared to a full forward or backward pass.

FGSM: FGSM is the cheapest of all methods since it only uses one forward/backward to compute the attack and an
additional forward/backward to compute the weight update. Hence, Cost FGSM = 2 F/B.

RS-FGSM: As previously mentioned, we do not take into account the cost of random steps or clipping, hence we consider
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Figure 15. Training with uniform noise augmented samples improves adversarial accuracy for small perturbations but is not effective to
protect against larger l∞ radius ϵ. This motivates us to further augment the noisy samples with FGSM. All experiments are averaged over
3 runs.

RS-FGSM to have the same cost as standard FGSM. Cost RS-FGSM = 2 F/B.

N-FGSM: Idem as before, cost of N-FGSM = 2 F/B.

ZeroGrad: For ZeroGrad they need to do an additional sorting operation to find the smallest gradient components. This
could be potentially expensive, however, since the size of the input image is several orders of magnitude smaller than that of
the network, we also ignore this cost. Cost ZeroGrad = 2 F/B.

MultiGrad: MultiGrad computes 3 random steps and evaluates the gradient in all of them. Therefore, it needs to do 3 F/B
to compute the attack and an additional one to update the weights. Cost MultiGrad = 4 F/B.

(Kim et al., 2021): (Kim et al., 2021) compute the RS-FGSM perturbation and evaluate the model on c points along this
direction. Therefore, they will spend 1F/B on the RS-FGSM attack, c− 1 F on the evaluations since the clean image has
already been evaluated; and 1 F/B for the weight update. In our plot, we used c = 3 since it was the most chosen setting.
(Kim et al., 2021) assume the cost of a forward is similar to that of a backward pass, following this assumption, cost of (Kim
et al., 2021) is 1 F/B + 2 F + 1 F/B = 3 F/B

Free-AT: (Shafahi et al., 2019) re-use the gradient from the previous backward pass to compute the FGSM perturbation of
the current iteration. Hence, the cost of their training is only 1 F/B per iteration. However, (Wong et al., 2020) observed they
needed a longer training schedule to produce comparable results. Therefore, the total training cost per iteration (1 F/B) is
scaled by 96 in the case of Free-AT, while it is only scaled by 30 for other methods. Relative cost Free = (96 · 1 F/B) / (30 ·
2 F/B).

GradAlign: Finally, GradAlign uses FGSM with a regularizer. However, this regularizer needs to compute second-order
derivatives via double backpropagation, which does not have the same cost as regular backpropagation. (Andriushchenko &
Flammarion, 2020) report that the cost of using GradAlign regularizer increased the cost of FGSM by 3.

P. Infrastructure details and GPU hours
All our training runs have been conducted on either NVIDIA GPU V-100 or P-100 from an internal cluster. The total
compute for the results presented in this work is roughly 2500 hours.

Q. Detailed results for Section 5.1 and Appendix B
In this section we present the tables with the exact numbers used in plots comparing adversarial training methods. For each
method and ϵ− l∞ radius, the top number is the clean accuracy while the bottom number is the PGD-50-10 accuracy. We
separate single-step from multi-step methods with a double line.
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PreActResNet18 – CIFAR-10 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
91.48 ± 0.17

79.43 ± 0.21

88.44 ± 0.09

67.09 ± 0.31

84.72 ± 0.04

56.62 ± 0.26

80.58 ± 0.22

48.12 ± 0.07

75.98 ± 0.1

41.56 ± 0.16

71.46 ± 0.14

36.43 ± 0.16

67.11 ± 0.37

32.11 ± 0.2

63.18 ± 0.49

27.67 ± 0.93

Grad Align
91.73 ± 0.04

79.16 ± 0.03

88.76 ± 0.0

67.13 ± 0.26

85.67 ± 0.02

56.27 ± 0.31

81.9 ± 0.22

48.14 ± 0.15

77.54 ± 0.06

40.75 ± 0.28

73.29 ± 0.23

34.51 ± 0.63

68.01 ± 0.32

30.36 ± 0.27

61.3 ± 0.15

26.64 ± 0.27

FGSM
91.6 ± 0.1

79.35 ± 0.06

88.77 ± 0.04

67.11 ± 0.09

85.58 ± 0.11

56.33 ± 0.41

86.41 ± 0.7

0.0 ± 0.0

82.08 ± 1.62

0.0 ± 0.0

80.6 ± 2.59

0.0 ± 0.0

76.04 ± 2.37

0.0 ± 0.0

77.14 ± 2.46

0.0 ± 0.0

RS-FGSM
92.09 ± 0.05

78.64 ± 0.08

89.69 ± 0.01

66.12 ± 0.22

87.0 ± 0.12

54.87 ± 0.22

84.05 ± 0.13

46.08 ± 0.18

85.21 ± 0.51

0.0 ± 0.0

65.22 ± 23.23

0.0 ± 0.0

43.59 ± 25.01

0.0 ± 0.0

76.66 ± 0.38

0.0 ± 0.0

Kim et. al.
92.85 ± 0.11

74.74 ± 0.35

91.1 ± 0.04

60.51 ± 0.4

89.34 ± 0.05

48.95 ± 0.45

89.02 ± 0.1

33.01 ± 0.09

88.27 ± 0.14

24.43 ± 0.84

88.35 ± 0.31

13.11 ± 0.63

90.01 ± 0.25

5.86 ± 0.57

90.45 ± 0.08

1.88 ± 0.05

AT Free
87.99 ± 0.16

74.27 ± 0.33

84.98 ± 0.13

62.47 ± 0.25

81.77 ± 0.11

53.18 ± 0.15

78.41 ± 0.18

46.03 ± 0.36

74.79 ± 0.22

39.87 ± 0.07

73.91 ± 4.19

22.99 ± 16.26

61.92 ± 14.94

0.0 ± 0.0

71.64 ± 3.89

0.0 ± 0.0

ZeroGrad
91.71 ± 0.08

79.36 ± 0.05

88.8 ± 0.11

67.32 ± 0.02

85.71 ± 0.1

56.14 ± 0.21

82.62 ± 0.05

47.08 ± 0.1

79.91 ± 0.12

37.58 ± 0.2

78.11 ± 0.2

27.41 ± 0.27

75.66 ± 0.46

21.29 ± 0.97

75.42 ± 0.13

13.06 ± 0.22

MultiGrad
91.57 ± 0.16

79.34 ± 0.02

88.74 ± 0.12

66.81 ± 0.02

85.75 ± 0.05

56.02 ± 0.3

82.33 ± 0.14

47.29 ± 0.07

78.73 ± 0.16

40.11 ± 0.24

75.28 ± 0.2

33.87 ± 0.17

80.94 ± 5.94

9.55 ± 13.5

71.42 ± 5.63

16.35 ± 11.57

PGD-2
91.4 ± 0.07

79.55 ± 0.15

88.46 ± 0.13

67.62 ± 0.03

85.14 ± 0.13

57.39 ± 0.13

81.41 ± 0.05

49.58 ± 0.08

77.18 ± 0.15

43.3 ± 0.11

72.9 ± 0.26

38.13 ± 0.15

70.39 ± 2.71

22.89 ± 15.26

64.81 ± 11.58

9.6 ± 13.37

PGD-10
91.25 ± 0.04

79.47 ± 0.13

88.34 ± 0.11

68.29 ± 0.24

84.79 ± 0.11

58.85 ± 0.18

80.71 ± 0.14

51.33 ± 0.31

76.13 ± 0.35

45.02 ± 0.49

71.24 ± 0.3

39.93 ± 0.5

66.7 ± 0.39

36.02 ± 0.67

62.11 ± 0.62

32.22 ± 0.64

PreActResNet18 – CIFAR-100 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
69.12 ± 0.27

51.02 ± 0.34

64.0 ± 0.06

39.5 ± 0.12

59.53 ± 0.02

32.06 ± 0.37

54.9 ± 0.2

26.46 ± 0.22

50.6 ± 0.16

22.23 ± 0.17

46.06 ± 0.14

18.95 ± 0.15

41.67 ± 0.25

16.33 ± 0.15

37.91 ± 0.11

14.34 ± 0.07

Grad Align
68.96 ± 0.15

51.31 ± 0.12

64.71 ± 0.16

39.37 ± 0.25

60.42 ± 0.23

31.91 ± 0.28

56.53 ± 0.31

25.8 ± 0.14

54.06 ± 0.44

18.7 ± 1.92

48.87 ± 0.32

17.86 ± 0.04

43.84 ± 0.14

15.51 ± 0.16

38.93 ± 0.21

13.62 ± 0.19

FGSM
69.01 ± 0.13

51.3 ± 0.19

64.47 ± 0.15

39.7 ± 0.16

63.85 ± 2.18

10.93 ± 14.64

53.42 ± 0.65

0.0 ± 0.0

45.06 ± 2.29

0.0 ± 0.0

46.14 ± 2.58

0.0 ± 0.0

41.66 ± 0.88

0.0 ± 0.0

44.68 ± 1.74

0.0 ± 0.0

RS-FGSM
69.83 ± 0.29

50.13 ± 0.32

65.9 ± 0.36

38.36 ± 0.19

62.15 ± 0.23

30.82 ± 0.08

55.26 ± 6.86

0.01 ± 0.01

32.33 ± 12.12

0.0 ± 0.0

36.07 ± 2.59

0.0 ± 0.0

21.52 ± 5.56

0.0 ± 0.0

20.38 ± 6.15

0.0 ± 0.0

Kim et. al.
72.92 ± 0.41

44.19 ± 0.25

70.16 ± 0.07

30.63 ± 0.28

67.98 ± 0.19

22.0 ± 0.02

68.07 ± 0.1

12.75 ± 0.21

68.37 ± 0.21

6.98 ± 0.23

74.09 ± 0.06

0.0 ± 0.0

74.06 ± 0.34

0.0 ± 0.0

74.01 ± 0.36

0.0 ± 0.0

AT Free
63.01 ± 0.19

45.7 ± 0.33

59.41 ± 0.27

35.95 ± 0.09

55.43 ± 0.37

29.37 ± 0.21

51.91 ± 0.08

24.32 ± 0.4

48.11 ± 0.09

20.64 ± 0.22

43.48 ± 1.25

5.71 ± 8.05

18.33 ± 4.86

0.0 ± 0.0

20.43 ± 11.25

0.0 ± 0.0

ZeroGrad
69.35 ± 0.36

51.1 ± 0.09

64.59 ± 0.32

39.38 ± 0.15

60.69 ± 0.09

31.72 ± 0.21

56.94 ± 0.13

25.87 ± 0.09

54.55 ± 0.17

19.49 ± 0.08

52.97 ± 0.34

14.32 ± 0.08

50.87 ± 0.26

10.92 ± 0.59

50.73 ± 0.3

7.3 ± 0.16

MultiGrad
69.01 ± 0.16

51.15 ± 0.03

64.44 ± 0.11

39.16 ± 0.03

60.65 ± 0.26

31.73 ± 0.09

56.84 ± 0.2

25.96 ± 0.11

53.62 ± 0.25

21.37 ± 0.16

53.05 ± 1.85

9.57 ± 7.32

48.28 ± 0.66

3.2 ± 4.49

45.28 ± 11.14

0.0 ± 0.0

PGD-2
69.18 ± 0.1

51.36 ± 0.03

64.32 ± 0.14

40.06 ± 0.14

60.21 ± 0.13

32.99 ± 0.24

55.8 ± 0.16

27.38 ± 0.16

51.68 ± 0.1

23.39 ± 0.19

48.2 ± 0.1

19.83 ± 0.29

46.14 ± 1.24

10.55 ± 7.51

37.97 ± 10.52

4.79 ± 6.75

PGD-10
68.83 ± 0.07

51.51 ± 0.27

63.87 ± 0.09

40.59 ± 0.36

59.37 ± 0.07

33.65 ± 0.02

54.79 ± 0.38

28.55 ± 0.27

50.53 ± 0.15

24.17 ± 0.12

46.05 ± 0.21

21.2 ± 0.12

41.76 ± 0.07

18.72 ± 0.06

37.81 ± 0.14

16.59 ± 0.16



Make Some Noise: Reliable and Efficient Single-Step Adversarial Training

PreActResNet18 – SVHN Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255

N-FGSM
96.01 ± 0.04

86.44 ± 0.1

94.54 ± 0.15

72.53 ± 0.19

92.25 ± 0.33

58.42 ± 0.14

89.56 ± 0.49

45.63 ± 0.11

86.74 ± 0.86

33.96 ± 0.49

81.48 ± 1.64

26.13 ± 0.81

Grad Align
96.02 ± 0.05

86.43 ± 0.1

94.56 ± 0.21

72.12 ± 0.19

92.53 ± 0.24

57.34 ± 0.24

90.1 ± 0.34

43.85 ± 0.14

87.23 ± 0.75

32.87 ± 0.33

84.01 ± 0.46

23.62 ± 0.41

FGSM
96.04 ± 0.07

86.5 ± 0.05

95.67 ± 0.07

13.61 ± 5.83

93.73 ± 0.68

0.56 ± 0.72

91.74 ± 0.86

0.26 ± 0.36

90.76 ± 0.63

0.07 ± 0.1

87.17 ± 0.43

0.0 ± 0.0

RS-FGSM
96.18 ± 0.11

86.16 ± 0.14

95.09 ± 0.09

71.28 ± 0.4

95.11 ± 0.44

0.11 ± 0.08

94.46 ± 0.16

0.0 ± 0.0

93.88 ± 0.24

0.0 ± 0.0

92.74 ± 0.5

0.0 ± 0.0

Kim et. al.
96.35 ± 0.02

83.26 ± 0.24

95.25 ± 0.08

66.32 ± 0.63

94.83 ± 0.02

48.27 ± 0.52

94.88 ± 0.29

31.8 ± 1.1

96.61 ± 0.09

0.18 ± 0.21

96.61 ± 0.01

0.0 ± 0.0

AT Free
95.01 ± 0.09

84.55 ± 0.27

93.66 ± 0.12

71.61 ± 0.75

91.72 ± 0.29

59.31 ± 1.0

91.29 ± 4.07

0.01 ± 0.0

91.86 ± 3.66

0.0 ± 0.0

92.36 ± 1.0

0.0 ± 0.0

ZeroGrad
96.06 ± 0.03

86.43 ± 0.1

94.81 ± 0.16

71.59 ± 0.22

93.53 ± 0.26

51.72 ± 0.53

92.42 ± 1.29

35.93 ± 2.73

90.34 ± 0.32

21.34 ± 0.31

88.09 ± 0.4

14.14 ± 0.32

MultiGrad
96.01 ± 0.08

86.4 ± 0.08

94.71 ± 0.17

71.98 ± 0.26

95.75 ± 0.58

28.1 ± 18.85

94.86 ± 0.97

11.49 ± 16.19

94.7 ± 0.12

0.0 ± 0.0

94.48 ± 0.19

0.0 ± 0.0

PGD-2
96.03 ± 0.14

86.72 ± 0.06

94.66 ± 0.1

73.29 ± 0.29

93.77 ± 0.61

60.53 ± 0.73

94.63 ± 1.29

20.68 ± 18.56

84.09 ± 14.99

0.41 ± 0.29

94.16 ± 0.54

0.02 ± 0.03

PGD-10
95.92 ± 0.08

86.94 ± 0.14

94.37 ± 0.13

74.76 ± 0.19

92.46 ± 0.25

63.9 ± 0.48

89.67 ± 0.34

53.95 ± 0.55

85.75 ± 0.65

44.91 ± 0.45

80.08 ± 0.93

37.65 ± 0.53

WideResNet28-10 – CIFAR-10 Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
92.51 ± 0.11

81.43 ± 0.3

89.65 ± 0.09

69.11 ± 0.24

85.8 ± 0.23

58.29 ± 0.14

81.59 ± 0.32

49.53 ± 0.25

76.92 ± 0.04

42.37 ± 0.36

72.13 ± 0.15

36.85 ± 0.2

67.82 ± 0.43

31.66 ± 0.6

56.73 ± 0.42

25.01 ± 0.23

Grad Align
92.59 ± 0.05

81.33 ± 0.4

89.95 ± 0.3

69.81 ± 0.47

86.98 ± 0.06

59.0 ± 0.13

83.19 ± 0.26

50.0 ± 0.05

79.35 ± 0.26

41.48 ± 0.51

73.79 ± 0.72

35.06 ± 0.74

66.38 ± 0.53

30.83 ± 0.39

57.75 ± 0.75

26.26 ± 0.13

FGSM
92.65 ± 0.17

81.38 ± 0.22

90.06 ± 0.18

69.59 ± 0.25

87.99 ± 1.3

38.69 ± 26.54

86.46 ± 0.45

0.0 ± 0.0

82.67 ± 1.78

0.0 ± 0.0

80.14 ± 1.2

0.0 ± 0.0

74.54 ± 4.01

0.0 ± 0.0

71.56 ± 3.78

0.0 ± 0.0

RS-FGSM
92.85 ± 0.1

80.9 ± 0.13

90.73 ± 0.2

68.23 ± 0.17

88.24 ± 0.19

57.21 ± 0.17

83.64 ± 1.74

0.0 ± 0.0

82.1 ± 1.45

0.0 ± 0.0

78.62 ± 0.7

0.0 ± 0.0

73.25 ± 8.16

0.0 ± 0.0

68.64 ± 4.3

0.0 ± 0.0

RandAlpha
93.37 ± 0.22

77.67 ± 0.66

92.17 ± 0.21

63.73 ± 0.31

90.71 ± 0.14

50.4 ± 0.14

89.16 ± 0.19

39.37 ± 0.42

87.44 ± 0.31

30.13 ± 0.9

85.69 ± 0.28

23.13 ± 0.33

83.98 ± 0.24

16.0 ± 0.22

83.23 ± 0.46

8.47 ± 0.66

AT Free
90.66 ± 0.25

77.0 ± 0.27

88.37 ± 0.15

64.25 ± 0.33

86.11 ± 0.29

53.76 ± 0.48

83.5 ± 0.27

44.85 ± 0.39

80.52 ± 0.32

31.87 ± 5.53

83.59 ± 1.35

0.0 ± 0.0

39.58 ± 15.8

0.0 ± 0.0

42.59 ± 27.96

0.0 ± 0.0

ZeroGrad
92.62 ± 0.11

81.42 ± 0.28

90.17 ± 0.05

69.28 ± 0.29

86.98 ± 0.28

58.4 ± 0.14

84.25 ± 0.28

48.29 ± 0.16

81.72 ± 0.29

36.08 ± 0.29

79.24 ± 0.82

28.24 ± 1.79

78.14 ± 0.46

18.54 ± 0.31

75.34 ± 0.12

14.6 ± 0.12

MultiGrad
92.64 ± 0.1

81.19 ± 0.28

90.18 ± 0.13

69.3 ± 0.2

87.11 ± 0.36

57.98 ± 0.08

83.87 ± 0.46

48.74 ± 0.09

80.89 ± 0.14

41.22 ± 0.57

82.88 ± 2.85

4.46 ± 6.09

86.6 ± 1.52

0.0 ± 0.0

85.46 ± 3.73

0.0 ± 0.0

PGD-2
92.69 ± 0.14

81.54 ± 0.18

90.18 ± 0.19

69.87 ± 0.26

86.87 ± 0.18

59.4 ± 0.19

83.31 ± 0.16

50.88 ± 0.16

79.61 ± 0.47

43.94 ± 0.24

75.81 ± 0.24

37.77 ± 0.57

71.41 ± 1.38

21.06 ± 13.39

67.2 ± 14.94

0.0 ± 0.0

PGD-10
92.24 ± 0.31

81.18 ± 0.57

89.65 ± 0.33

70.34 ± 0.26

86.91 ± 0.51

60.59 ± 0.21

82.82 ± 0.7

52.58 ± 0.2

78.63 ± 0.66

45.92 ± 0.38

74.0 ± 0.67

40.44 ± 0.17

68.6 ± 0.58

35.98 ± 0.56

64.17 ± 0.72

32.5 ± 0.61



Make Some Noise: Reliable and Efficient Single-Step Adversarial Training

WideResNet28-10 – CIFAR-100 Dataset

ϵ = 2/255 ϵ = 5/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255 ϵ = 14/255 ϵ = 16/255

N-FGSM
71.56 ± 0.13

52.23 ± 0.33

66.49 ± 0.46

39.93 ± 0.37

61.38 ± 0.68

30.97 ± 0.21

56.23 ± 0.59

26.77 ± 0.65

51.54 ± 0.63

23.03 ± 0.54

46.43 ± 0.61

19.3 ± 0.59

42.11 ± 0.32

16.67 ± 0.4

38.34 ± 0.47

14.27 ± 0.33

Grad Align
71.68 ± 0.33

51.5 ± 0.45

67.09 ± 0.19

39.9 ± 0.42

62.86 ± 0.1

32.0 ± 0.22

58.55 ± 0.41

26.9 ± 0.62

53.85 ± 0.73

22.63 ± 0.62

46.94 ± 0.86

19.9 ± 0.65

42.63 ± 0.5

16.93 ± 0.12

36.17 ± 0.45

14.03 ± 0.24

FGSM
71.92 ± 0.33

52.83 ± 0.37

67.34 ± 0.36

39.83 ± 0.31

64.72 ± 1.12

0.0 ± 0.0

56.87 ± 1.24

0.03 ± 0.05

52.31 ± 2.11

0.0 ± 0.0

48.99 ± 1.17

0.0 ± 0.0

44.27 ± 1.4

0.0 ± 0.0

42.05 ± 1.03

0.0 ± 0.0

RS-FGSM
72.65 ± 0.28

51.63 ± 0.52

68.26 ± 0.2

39.57 ± 0.09

65.58 ± 0.69

26.63 ± 2.8

54.25 ± 5.85

0.0 ± 0.0

46.08 ± 4.87

0.0 ± 0.0

35.84 ± 0.17

0.0 ± 0.0

24.4 ± 1.25

0.0 ± 0.0

21.37 ± 5.04

0.0 ± 0.0

RandAlpha
73.9 ± 0.15

49.13 ± 0.91

71.17 ± 0.12

34.3 ± 0.54

68.65 ± 0.22

25.5 ± 0.33

66.42 ± 0.13

20.27 ± 0.98

64.05 ± 0.5

16.3 ± 0.14

61.99 ± 0.6

12.4 ± 0.29

59.74 ± 0.57

6.93 ± 0.19

58.9 ± 0.78

3.63 ± 0.12

AT Free
67.62 ± 0.24

48.07 ± 0.31

63.27 ± 0.72

37.93 ± 0.69

59.53 ± 0.31

29.7 ± 0.51

55.77 ± 0.28

24.43 ± 0.37

47.02 ± 3.83

3.23 ± 4.43

33.52 ± 9.24

0.0 ± 0.0

7.87 ± 1.78

0.0 ± 0.0

20.92 ± 21.48

0.0 ± 0.0

ZeroGrad
71.68 ± 0.07

52.63 ± 0.61

67.2 ± 0.14

39.57 ± 0.33

63.69 ± 0.14

30.27 ± 0.54

60.77 ± 0.26

23.7 ± 0.08

61.05 ± 0.38

15.1 ± 0.49

58.39 ± 0.16

11.13 ± 0.68

56.19 ± 0.11

8.8 ± 0.36

56.38 ± 0.18

4.9 ± 0.36

MultiGrad
71.8 ± 0.15

51.9 ± 0.29

67.73 ± 0.48

39.7 ± 0.37

63.24 ± 0.33

31.5 ± 0.62

60.05 ± 0.79

26.03 ± 0.09

56.39 ± 0.49

20.8 ± 0.29

56.79 ± 8.27

0.0 ± 0.0

59.8 ± 3.77

0.0 ± 0.0

52.96 ± 5.58

0.0 ± 0.0

PGD-2
71.62 ± 0.15

51.73 ± 0.48

67.25 ± 0.43

40.27 ± 0.7

63.18 ± 0.36

32.23 ± 0.19

59.02 ± 0.4

27.13 ± 0.37

54.47 ± 0.45

23.43 ± 0.31

50.91 ± 0.35

20.23 ± 0.39

41.03 ± 3.18

0.03 ± 0.05

40.13 ± 3.66

0.0 ± 0.0

PGD-10
71.11 ± 0.62

52.5 ± 0.59

66.9 ± 0.57

40.73 ± 0.56

62.05 ± 0.47

32.8 ± 0.29

57.64 ± 0.81

27.97 ± 0.59

52.84 ± 0.88

24.7 ± 0.36

48.14 ± 0.73

21.8 ± 0.57

43.14 ± 0.87

18.87 ± 0.6

39.2 ± 0.62

16.8 ± 0.57

WideResNet28-10 – SVHN Dataset

ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 ϵ = 12/255

N-FGSM
95.64 ± 0.09

84.1 ± 0.73

93.66 ± 0.41

66.9 ± 0.86

91.77 ± 0.42

53.0 ± 0.36

88.89 ± 0.58

40.5 ± 0.37

88.07 ± 0.59

30.47 ± 0.76

87.52 ± 0.49

22.43 ± 0.53

Grad Align
95.41 ± 0.06

84.57 ± 0.56

93.9 ± 0.48

67.27 ± 0.54

68.36 ± 34.49

39.53 ± 14.89

42.62 ± 32.73

24.7 ± 9.34

19.3 ± 0.21

17.63 ± 0.62

19.53 ± 0.08

18.13 ± 0.52

FGSM
95.83 ± 0.1

85.03 ± 0.37

95.0 ± 0.24

31.53 ± 6.57

94.23 ± 0.79

1.7 ± 1.36

91.11 ± 1.36

0.13 ± 0.19

88.83 ± 1.71

0.0 ± 0.0

86.74 ± 0.7

0.0 ± 0.0

RS-FGSM
95.81 ± 0.25

83.8 ± 0.43

94.53 ± 0.4

66.67 ± 0.65

95.23 ± 0.26

0.53 ± 0.26

94.68 ± 0.62

0.0 ± 0.0

93.9 ± 0.52

0.0 ± 0.0

91.64 ± 2.98

0.0 ± 0.0

RandAlpha
96.02 ± 0.23

82.5 ± 0.45

95.47 ± 0.18

63.33 ± 0.53

94.69 ± 0.26

47.7 ± 0.99

93.72 ± 0.44

35.73 ± 0.34

93.08 ± 1.45

23.17 ± 1.97

93.96 ± 0.68

11.1 ± 3.05

AT Free
94.85 ± 0.39

83.13 ± 0.17

92.95 ± 0.65

68.67 ± 0.53

91.62 ± 1.93

54.93 ± 2.58

93.74 ± 0.69

0.03 ± 0.05

92.47 ± 0.97

0.0 ± 0.0

90.5 ± 1.41

0.0 ± 0.0

ZeroGrad
95.78 ± 0.21

84.47 ± 0.83

94.06 ± 0.52

66.1 ± 0.37

92.13 ± 0.98

47.3 ± 0.62

91.04 ± 0.4

29.33 ± 0.56

88.85 ± 0.92

20.77 ± 0.63

89.8 ± 1.36

9.33 ± 0.76

MultiGrad
95.63 ± 0.16

84.37 ± 0.59

94.27 ± 0.38

67.27 ± 0.31

93.64 ± 1.21

50.1 ± 0.9

94.83 ± 1.55

1.77 ± 1.72

95.26 ± 0.34

0.0 ± 0.0

95.22 ± 0.15

0.0 ± 0.0

PGD-2
95.88 ± 0.35

86.25 ± 0.7

94.66 ± 0.1

73.29 ± 0.25

93.77 ± 0.61

60.53 ± 0.72

92.99 ± 1.11

40.77 ± 4.39

88.81 ± 0.93

34.33 ± 2.76

83.17 ± 4.78

26.8 ± 3.31

PGD-10
95.92 ± 0.08

86.94 ± 0.13

94.36 ± 0.13

74.46 ± 0.54

92.46 ± 0.25

63.87 ± 0.49

89.67 ± 0.34

53.95 ± 0.55

85.98 ± 0.59

44.59 ± 0.14

80.08 ± 0.93

37.64 ± 0.49


