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Abstract
Methods for model explainability have become
increasingly critical for testing the fairness and
soundness of deep learning. Concept-based in-
terpretability techniques, which use a small set
of human-interpretable concept exemplars in or-
der to measure the influence of a concept on a
model’s internal representation of input, are an
important thread in this line of research. In this
work we show that these explainability methods
can suffer the same vulnerability to adversarial at-
tacks as the models they are meant to analyze. We
demonstrate this phenomenon on two well-known
concept-based interpretability methods: TCAV
and faceted feature visualization. We show that
by carefully perturbing the examples of the con-
cept that is being investigated, we can radically
change the output of the interpretability method.
The attacks that we propose can either induce pos-
itive interpretations (polka dots are an important
concept for a model when classifying zebras) or
negative interpretations (stripes are not an impor-
tant factor in identifying images of a zebra). Our
work highlights the fact that in safety-critical ap-
plications, there is need for security around not
only the machine learning pipeline but also the
model interpretation process.

1. Introduction
Deep learning models have achieved superhuman perfor-
mance in a range of activities from image recognition to
complex games (LeCun et al., 2015; Silver et al., 2017). Un-
fortunately, these gains have come at the expense of model
interpretability, with massive, overparametrized models be-
ing used to achieve state-of-the-art results. This is a major
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limitation when deep learning is applied to domains such as
healthcare (Miotto et al., 2018), criminal justice (Li et al.,
2018), and finance (Huang et al., 2020), where a prediction
needs to be explainable to the user in order to be trusted.
This has led to a surge of interest in tools that can illuminate
the underlying decision making process of deep learning
models.

Concept-based interpretability methods (CBIMs) are a fam-
ily of explainability techniques that are increasingly popular.
The critical observation underlying these methods is that
in many scenarios, low-level statistics such as the impor-
tance of individual pixels in an input image (as provided by
saliency methods for example), cannot deliver the depth of
insight that a user needs in complex, real-world situations.
CBIMs instead rely on a user provided collection of positive
examples (tokens) of a human-interpretable concept which
are then used to probe a model. CBIMs have now been
successfully applied to a range of applications, from health-
care tasks (Graziani et al., 2018b; Mincu et al., 2021) to
understanding the strategies of a deep learning-based chess
engine (McGrath et al., 2021). In this paper we focus on
two examples of CBIMs that capture both the diversity and
power of these methods: Testing with Concept Activation
Vectors (TCAV) (Kim et al., 2018) and Faceted Feature
Visualization (FFV) (Goh et al., 2021).

Besides being inherently black-box in nature, deep learning
models have also been shown to be vulnerable to adversarial
attacks where small perturbations to model input result in
dramatic changes to model output (Szegedy et al., 2013).
This phenomenon is concerning when deep learning tools
are deployed in safety-critical environments. But if explain-
ability methods are an important component in a machine
learning system, then the robustness of these methods them-
selves is nearly as important as the robustness of the model.
In this paper we explore the vulnerability of CBIMs to ad-
versarial attacks.

Our analysis identifies the small number of concept tokens
used in CBIM methods as a single point of failure in the
entire interpretability pipeline. Indeed, subtle changes to a
few centralized tokens representing a concept could result
in dramatic misinterpretation of many subsequent input. In
the case where the reasoning behind a model’s predictions is



almost as important as the model’s predictions themselves,
this could result in a model being taken out of deployment.
Despite the fact that CBIM methods can take a variety of
forms, our proposed attack which we call a token pushing
(TP) attack is applicable to many of them since it targets the
linear probe mechanism that is common to nearly all.

We evaluate TP attacks against both TCAV and FFV on
pretrained ImageNet models (Deng et al., 2009; Marcel &
Rodriguez, 2010) using the Describable Textures Dataset
(Cimpoi et al., 2014) as a source of concept tokens and on
models trained on Caltech-UCSD Birds 200 (Welinder et al.,
2010b) using images with specific attributes as concept to-
kens. Through our experiments we show that, provided that
it uses a linear probe, the TP attack does not even require
the adversary to know what interpretability method is being
used. The same perturbations that cause TCAV to fail also
cause FFV to fail. Finally, our TP attack possesses moderate
transferability between different model architectures, mean-
ing that a TP attack can be developed via a surrogate model
even when the defender model architecture is unknown.

Our contributions in this paper include the following.

• Formalization of an adversarial threat model for post-
hoc concept-based interpretability methods that identi-
fies concept tokens as a single point of failure.

• Introduction of TP attacks which cause deliberate mis-
interpretation by disrupting the linear probe mecha-
nism underlying many concept-based interpretability
methods.

• Demonstration of the effectiveness of TP attacks on
TCAV and FFV.

• Introduction of the first (to our knowledge) adversarial
attack on feature visualization.

2. TCAV and linear interpretability
In this section we describe the method of testing with con-
cept activation vectors (TCAV) (Kim et al., 2018). TCAV
has become a popular interpretability technique that has
been used in a range of applications (Lucieri et al., 2020;
Janik et al., 2021; Thakoor et al., 2020). Let f : X → Rd

be a neural network which is composed of n layers and
designed for the task of classifying whether a given in-
put x ∈ X belongs to one of d different classes. Write
fℓ : X → Rdℓ for the composition of the first ℓ layers so
that fn = f and dn = d and let hℓ : Rdℓ → Rd be the
composition of the last n− ℓ layers of the network so that
f = hℓ ◦ fℓ for any 1 ≤ ℓ ≤ n − 1. Let C be a con-
cept for which we have a set of positive examples (tokens)
PC = {xC

i }i and negative examples NC = {xN
i }i, both

belonging to X . These are represented in the ℓth layer of
f as the points fℓ(PC) and fℓ(NC) respectively. One can
apply a binary linear classifier to separate these two sets

of points, resulting in a hyperplane in Rdℓ . We represent
this hyperplane by the normal vector vℓC ∈ Rdℓ that points
into the region corresponding to the points fℓ(PC). vℓC is
called the concept activation vector in layer ℓ associated
with concept C. One can think of vℓC as the vector that
points toward C-ness in the ℓth layer of the network.

Let hℓ,k denote the kth output coordinate of hℓ correspond-
ing to class k. In the classification setting, hℓ,k then repre-
sents the model’s confidence that input belongs to class k.
To better understand the extent to which concept C influ-
ences the model’s confidence of x ∈ X belonging to class
k we compute:

SC,k,l = ∇hℓ,k (fℓ(x)) · vlC . (1)

A positive value of SC,k,l indicates that increasing C-ness of
x makes the model more confident that x belongs to class k.
The magnitude TCAV score for a dataset D is defined as the
sum of SC,k,l(x) over all x ∈ Dk, where Dk is the subset
of D consisting of all instances predicted as belonging to
class k, divided by |Dk|. We compare the TCAV magnitude
of the positive concept images with the TCAV magnitude
for random images in the layer, and use a standard two-
sided t-test to test for significance. We can also compute
the relative TCAV score, which replaces the set of negative
natural images in NC with images representing a specific
concept.

2.1. Faceted Feature Visualization

(Goh et al., 2021) introduced a new concept-based fea-
ture visualization objective for neuron-level interpretability,
Faceted Feature Visualization (FFV). The objective disam-
biguates polysemantic neurons by imposing a prior towards
a linear concept C in the optimization objective. Goh et al.
(2021) also utilizes the linear probe framework with sets
of positive and negative examples of a concept C (PC and
NC respectively). Similar to the TCAV method, one trains
a binary linear classifier on fℓ(PC) and fℓ(NC) to obtain
CAV vlC . To visualize output that tends to activate a neuron
at layer ℓ, position i, while at the same time steering the
visualization toward a specific concept, the authors optimize
for the objective function:

argmax
x∈X

fℓ,i(x) + vlC · (fℓ(x)⊙∇fℓ,i(x)), (2)

where ⊙ is the Hadamard product.

3. An Attack on the Tokens of Concept
Traditionally, an adversarial attack (Szegedy et al., 2013) on
a model f is a small perturbation δ that, when applied to a
specific input x, results in large changes to model prediction
f(x). The meaning of ‘small’ is usually specified by a
metric such as an ℓp-norm and can either be a hard or soft



Figure 1. A schematic of the targeted TP attack. PC is the original set of positive examples of concept ‘bubbly’ C (green), NC is the
set of negative examples of concept C (grey), PC′ is the set of positive examples for target concept ‘striped’ C′ (purple), and P̂C is PC

after being perturbed by the TP attack. When PC is perturbed to P̂C , it shifts CAV vℓC so that it is more closely aligned to the CAV for
‘striped’. The result is that input that is intended to be interpreted in terms of concept ‘bubbly’ is actually interpreted with respect to the
concept ‘striped’.

constraint. In this work we use projected gradient descent
(PGD) (Madry et al., 2018) to construct our attacks, since
it is widely used and straightforward to implement. The
novelty of the attack that we propose in this paper is (i)
the class of methods that the attack targets and (ii) the way
it targets them. Optimization approaches other than PGD
could doubtless be used for the same effect.

The threat model for the token pushing (TP) attack that we
describe below, as well as a general framework for adver-
sarial attacks on CBIMs, can be found in Section A.4. At
a high-level though, the attack has targeted and untargeted
version.

Untargeted attack: The adversary attempts to modify ex-
emplars for concept C so as to maximally change the inter-
pretation of input with respect to C.

Targeted attack: The adversary attempts to modify exem-
plars for concept C so that interpretations of any input with
respect to C now resemble interpretations with respect to a
different target concept C ′.

The basic idea is simple; we find perturbations to alter a
model’s internal representation of the concept tokens PC =
{xC

i }i. Using the notation developed in A.4, let f : X →
Rd be a copy of the defender’s model or a surrogate. Let ℓ
be the layer of f that the attack is optimized for.

In the untargeted version, perturbations ∆ℓ = {δℓi}i added
to each element in PC shift their hidden representations in
layer ℓ so that they no longer correlate with concept C. In

order to find a point that can guide this shift, the adversary
chooses some collection of images that are unrelated to
C, UC := {xU

i }i. The adversary calculates the centroid
of fℓ(UC), which we denote by µU . This will serve as a
representative of “unrelatedness” to C in layer ℓ. Then for
each xC

i ∈ PC , the adversary uses PGD to compute

δℓi := argmin
∥δℓ∥∞≤ϵ

||fℓ(xC
i + δℓ)− µU ||, (3)

where ϵ > 0 is chosen based on how visible the attack is
allowed to be. The targeted version of the attack is analo-
gous except that the adversary chooses a target concept C ′,
calculates the centroid µC′ of fℓ(PC′), and then optimizes
for

δℓi := argmin
∥δℓ∥∞≤ϵ

||fℓ(xC
i + δℓ)− µC′ ||. (4)

Both (3) and (4) are related to the hidden layer attacks
described in (Wang et al., 2018; Inkawhich et al., 2019). A
schematic of the targeted TP attack can be found in Figure
1.

In Section 4, we show that in spite of the fact that neither (3)
nor (4) is the primary optimization objective of either TCAV
or FFV, the TP attack is still effective when applied to either
method. In fact, objective functions (3) and (4) make the TP
attack more flexible since they act against the underlying
linear probe mechanism common to many CBIMs. This
means that the adversary does not need to know the specific
CBIM that the defender is using in order for the method to
have a high probability of success.



Figure 2. The untargeted TP attack on three different concepts for a ResNet-18 trained on Caltech-UCSD Birds 200 with TCAV magnitude
scores with respect to the class ‘brewer blackbird’ (left) and the scaly DTD concept for an InceptionV1 trained on ImageNet with TCAV
magnitude scores with respect to snake classes in ImageNet (righ). Note that the plot on the left varies the concepts but keeps the class,
‘brewer blackbird’, fixed while and plot on the right varies the class while keeping the concept, ‘scaly’, fixed.
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Figure 3. The targeted TP attack, perturbing three classes (dumb-
bell and corgi from ImageNet, bubbly from DTD) towards the
centroid of the honeycombed DTD concept for the layer. TCAV
magnitude scores are with respect to the honeycomb ImageNet
class.

4. Experiments
To better understand the effectiveness of the methods pro-
posed in Section 3, we apply the TP attack to TCAV and
FFV. For both TCAV and FFV we focus on InceptionV1
weights trained on ImageNet-1k (Deng et al., 2009) from
Torchvision (Marcel & Rodriguez, 2010). We apply our
attack to interpretation input from ImageNet and Caltech-
UCSD Birds 200 (CUB) (Welinder et al., 2010a). The token
sets that we use to capture concepts for ImageNet input
come from ImageNet itself and the Describable Textures
Dataset (DTD) (Cimpoi et al., 2014). The tokens that we
use for CUB input come from the attribute metadata as-
sociated with that dataset. We perform all PGD attacks
with ϵ = 8/255 and 20 steps. To train a CAV, we use a
linear classifier trained via stochastic gradient descent and
ℓ2-regularization. See Section A.5 in the Appendix for other
experimental details. Examples of perturbed tokens can be
found in Figure 8 in the Appendix. The results we describe
in the first part of this section focus on the white-box setting
where the adversary knows the defender’s model. In Sec-
tion 5.1 we show that our attacks are also effective in the
black-box setting.

4.1. TP Attacks on TCAV

To test the untargeted TP attack against TCAV, we choose
concept/class pairs with straightforward associations. For
example ‘striped’/‘zebra’. The goal of the attack is to change
the interpretation so that a concept that is actually significant
to a model, no longer appears so. For example, the perturba-
tion may cause TCAV to indicate that ‘striped’ is not a sig-
nificant concept for the class ‘zebra’. We provide a full list
of concept/class pairs in Table 2 of the Appendix. We per-
form the same experiment for all concept/class pairs, but for
simplicity explain the procedure with the ‘striped’/‘zebra’
concept/class pair. We select 70 non-overlapping sets of 50
randomly chosen images from ImageNet to be {N i

striped}.
This same {N i

striped} will be used for all concept/class pairs.
We fix a set of unrelated images Ustriped of size 1000 that are
also randomly sampled from ImageNet. Finally, we choose
random sets of 40 images from the class ‘striped’, Pstriped,
from DTD. The interpretation input, Dzebra, is a collection
of images which the model predicts as belonging to the class
‘zebra’.

For each layer ℓ of the model we run the TP attack against
Pstriped to generate perturbed tokens P̂ ℓ

striped. For each of
the resulting pairs (Pstriped, P̂

ℓ
striped) and each layer ℓ′ of

the model, we then apply TCAV 70 times (once for each
N i

C), calculating the difference in magnitude TCAV score
when using P̂ ℓ

striped instead of Pstriped. Thus in effect, we
not only explore the case where the TP attack targets the
same model layer that the interpretability method is being
used to analyze (ℓ = ℓ′), we also investigate the case where
these are different (ℓ ̸= ℓ′).

In the targeted case, we focus on concept/class pairs that
would not be expected to have any association. For example,
class ‘honeycomb’ and concept ‘Pembroke Welsh corgi’.
Then we choose target concepts that would be assumed to
be important to the class. For example, we might attack
tokens for the concept ‘Pembroke Welsh corgi’ so that it
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Figure 4. Average Fréchet Inception distances between visualiza-
tions generated from InceptionV1 in different ways: using only
the channel term from (2) (FV), two separate runs of FFV with
different sets of positive and negative concept images (FFV 1 and
FFV2), with Gaussian noise added to the positive concept images
(Gaussian), and with the token pushing attack applied (TP attack).
Targeted layers are mixed3a, mixed3b, mixed4a, and mixed4b.

looks like it has the same significance to the ImageNet class
‘honeycomb’ as the DTD texture ‘honeycombed’. Thus we
make it appear that ‘Pembroke Welsh corgi’ is an important
concept when the model predicts something is a honeycomb.

4.2. TP Attacks on FFV

We evaluate the TP attack on FFV by performing feature
visualizations for InceptionV1 on every channel neuron for
the layers mixed3a, mixed3b, mixed4a, and mixed4b using
(1) FV: the channel objective only (i.e., using only the first
term in equation 2), (2) FFV1 and FFV2: two different
groups of concept images for PC (‘striped’) and NC , (3)
Gaussian: concept images to which Gaussian noise has been
added for PC , and (4) TP attack: concept images to which a
TP attack has been applied targeting layer mixed3b for PC .
We then compare these visualizations using a variant of the
Fréchet Inception Distance (FID) (Heusel et al., 2017) to
measure the perceptual distance. A successful attack should
significantly change this distance since the visualizations
will no longer be optimized towards the “same” concept.
The FID score is calculated across neurons in all the layers
listed above, though our attack only targets mixed3b. We
use a PyTorch implementation of FID (Seitzer, 2020) and
use the second block of InceptionV3 as the visual similarity
encoder (due to the smaller dataset size).

5. Results
Plots of raw TCAV magnitude scores over model layer for
both clean concept tokens (dotted lines) and the attacked
concept tokens (solid lines) can be found in Figure 2.1. In
the plot on the left the defender’s model is a ResNet-18
trained on Caltech-UCSD Birds 200 with TCAV magni-
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Figure 5. A faceted feature visualization of the same neuron (chan-
nel 9 on InceptionV1, layer mixed4d) for ‘striped’ and ‘dots’ facets,
(first row), and the FFV after a TP attack (second row). While
visualizations in the first row reflect the concept priors, the vi-
sualizations in the second row do not (indicating the attack was
successful).

tude scores calculated with respect to fixed class ‘brewer
blackbird’ and varying concepts. In the plot on the right the
defender’s model is an InceptionV1 and the fixed concept
‘scaly’ is evaluated with respect to various snake classes.
We see that in both cases, our attack results in significant
changes in TCAV magnitude scores, meaning that the inter-
pretation of the class in terms of the concept is significantly
different before and after the attack (the goal of the untar-
geted attack). For example, in the right plot in Figure 2.1
we see that the importance of the ‘scaly’ concept for all the
snake classes decreases significantly which would signify,
to a user who is unaware of the attack, that ‘scaly’ is not
important to the model’s prediction of snake classes.

We note that while TP attacks are generally effective, this
effectiveness depends on the class, concept, and layer. We
see that the attacked ‘scaly’ tokens result in TCAV magni-
tude scores that are only marginally lower than the baseline
at layer ‘mixed3b’ for the class ‘green snake’, whereas the
score is much lower at layer ‘mixed4a’. On all the plots
we include 95% confidence intervals for each layer based
on the 70 different N i

C sets. The point of this is to verify
that the result does not depend on having the “right” nega-
tive examples and to provide evidence that our results are
statistically significant.

Figure 4 shows a plot for the targeted TP attack on TCAV.
The model being interpreted is an InceptionV1, the concepts
being attacked are dumbbell, corgi, and bubbly, and the
target class is honeycombed. We see that after the targeted
attack, the TCAV scores for all three concepts are higher
than their baseline scores, suggesting that the corgi, dumb-
bell, and bubbly concepts are important in all layers of the
model for honeycombed classification.



Figure 6. TCAV sensitivity scores for the zebra class with the stripe images for a MobileNetV2 (left) (Sandler et al., 2018) and a Vision
Transformer (right) (Dosovitskiy et al., 2020) trained on ImageNet-1K. The attacks use perturbations made on the stripe concept images
for InceptionV1 using centroids for different hidden layers (different colored curves). All layers/blocks shown are sensitive to the stripe
concept before the attack, and are not sensitive after the attack.

For FFV, we observe TP attack effectiveness from the dif-
ferences between the visualizations FFV produces when
given a clean concept set PC and the visualizations FFV
produces when given an attacked concept set P̂C . We give
three such examples separately using the ‘striped’, ‘dotted’,
and ‘zigzagged’ concept sets in Figure 5. We note that while
the first row appears to look like the labeled concept, the
second row of attacked visualizations do not appear related
to the concept. For quantitative measurements, Figure 4
gives the average FID between visualizations produced in
different ways. We note that while the FID scores between
the separate clean FFV runs is 0.26, the FID score between
the TP attack and the clean FFV runs are 1.39 and 1.34.
The larger FID scores suggest that the TP attack modifies
the FFV output significantly more than the usual variation
between runs. This, along with visualizations such as 5,
suggest that a TP attack can drastically change the semantic
meaning associated with the feature visualizations produced
by FFV.

Finally, we find that both the TCAV magnitudes (Table
1) and the FFV FID scores (Figure 4) are susceptible to
Gaussian noise added to the concept set. This suggests
that, even independent of adversarial attacks, CBIMs are
brittle. This brittleness suggests that these methods are
also vulnerable to natural distribution shifts in data, e.g.,
between the concept set and training images. We see a need
for continued research into robust interpretability methods.

5.1. Transferability to Different Layers and Model
Architectures

We evaluate TP attacks for two kinds of transferability:
transferability to methods which target different layers of a
model and transferability to different model architectures.
We investigated the former by performing attacks developed
for one hidden layer ℓ, on methods targeting a different
hidden layer ℓ′ as described in Section 4. We found that in

many cases, TP attack worked comparably well even when
the layer being targeted differed from the layer actually used
by the interpretability method (see the off-diagonal entries
in Figure 1 in the Appendix).

We also investigate how TP attacks transfer to a defender
that is using a different model architecture by applying at-
tacks developed for InceptionV1 to TCAV when it is used
to interpret a MobileNetV2 (Howard et al., 2017) and a
Vision Transformer (Dosovitskiy et al., 2020) models, all
trained on ImageNet. We compute the TCAV magnitude
score for ‘striped’/‘zebra’ for the output of the three layers
in MobileNetV2 that were sensitive to the stripe concept ac-
cording to signed TCAV and the output of the even blocks (2,
4, 6, 8, 10) for the ViT. These results are displayed in Figure
6. We see that other than block 4 of the Vision Transformer,
the TCAV magnitude scores decreases significantly even
when perturbations are developed on a model architecture
different from the one that is being interpreted.

6. Conclusion
In this work we show that concept-based interpretability
methods, like much of the deep learning modeling pipeline,
are vulnerable to adversarial attacks. By introducing subtle
changes to the examples of a concept used to drive the inter-
pretation, an adversary can induce different interpretations.
The attacks we describe target the linear probe component
common to many different concept-based interpretability
methods and thus are general enough to work for multiple
methods without modification. We hope that the results of
this paper will promote better security practices, not only
around the model pipeline itself, but also around the method
that is being used to interpret the model.
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Cardoso, M. J., Silva, C. A., Pereira, S., and Meier, R.
(eds.), Understanding and Interpreting Machine Learning
in Medical Image Computing Applications, pp. 124–132,
Cham, 2018b. Springer International Publishing. ISBN
978-3-030-02628-8.

Graziani, M., Brown, J. M., Andrearczyk, V., Yildiz, V.,
Campbell, J. P., Erdogmus, D., Ioannidis, S., Chiang,
M. F., Kalpathy-Cramer, J., and Müller, H. Improved
interpretability for computer-aided severity assessment
of retinopathy of prematurity. In Medical Imaging 2019:
Computer-Aided Diagnosis, volume 10950, pp. 109501R.
International Society for Optics and Photonics, 2019.

Heo, J., Joo, S., and Moon, T. Fooling neural network
interpretations via adversarial model manipulation. Ad-
vances in Neural Information Processing Systems, 32:
2925–2936, 2019.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Huang, J., Chai, J., and Cho, S. Deep learning in finance and
banking: A literature review and classification. Frontiers
of Business Research in China, 14:1–24, 2020.

https://proceedings.mlr.press/v119/anders20a.html
https://proceedings.mlr.press/v119/anders20a.html
https://openreview.net/forum?id=B1MXz20cYQ
https://openreview.net/forum?id=B1MXz20cYQ
https://proceedings.neurips.cc/paper/2017/hash/0060ef47b12160b9198302ebdb144dcf-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0060ef47b12160b9198302ebdb144dcf-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0060ef47b12160b9198302ebdb144dcf-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0060ef47b12160b9198302ebdb144dcf-Abstract.html


Inkawhich, N., Wen, W., Li, H. H., and Chen, Y. Feature
space perturbations yield more transferable adversarial
examples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7066–
7074, 2019.

Janik, A., Dodd, J., Ifrim, G., Sankaran, K., and Curran, K.
Interpretability of a deep learning model in the applica-
tion of cardiac mri segmentation with an acdc challenge
dataset. In Medical Imaging 2021: Image Processing,
volume 11596, pp. 1159636. International Society for
Optics and Photonics, 2021.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning,
pp. 2668–2677. PMLR, 2018.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S.,
Pierson, E., Kim, B., and Liang, P. Concept bottle-
neck models. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5338–5348. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/koh20a.html.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Al-
sallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N.,
Araya, C., Yan, S., and Reblitz-Richardson, O. Captum:
A unified and generic model interpretability library for
pytorch, 2020.

Lakkaraju, H., Arsov, N., and Bastani, O. Robust and stable
black box explanations. In International Conference on
Machine Learning, pp. 5628–5638. PMLR, 2020.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Li, O., Liu, H., Chen, C., and Rudin, C. Deep learning for
case-based reasoning through prototypes: A neural net-
work that explains its predictions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

Lucieri, A., Bajwa, M. N., Braun, S. A., Malik, M. I., Den-
gel, A., and Ahmed, S. On interpretability of deep learn-
ing based skin lesion classifiers using concept activation
vectors. In 2020 International Joint Conference on Neu-
ral Networks (IJCNN), pp. 1–10. IEEE, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mahendran, A. and Vedaldi, A. Understanding deep im-
age representations by inverting them. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5188–5196, 2015.

Marcel, S. and Rodriguez, Y. Torchvision the machine-
vision package of torch. In Proceedings of the 18th ACM
international conference on Multimedia, pp. 1485–1488,
2010.

McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A.,
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A. Appendix
A.1. Ethics Statement

In this work we highlight the vulnerability of a class of popular interpretability methods to adversarial attack. We chose to
explore a threat model wherein the positive tokens for a concept are perturbed. This is of particular concern because (unlike
individual input) positive tokens will often be centralized and used collectively by researchers and practitioners many times.
Because of this, an attack on this small subset of data may have wide-ranging effects. We hope that by better understanding
and communicating this specific threat to interpretability, we can motivate researchers to use best practices around security
for interpretability and explainability as they are already encouraged to do for dataset and model creation.

A.2. Limitations

In this work we chose two CBIMs to test TP attacks on. While TCAV and FFV do a good job capturing the diversity of such
methods, they do not capture their full breadth. In particular, it would be useful to understand how TP attacks behave when
they are applied to other types of feature visualization methods, namely those that average over a large number of images
or activations (Nguyen et al., 2016b; Carter et al., 2019) to build a visualization. Further, while we only consider image
classification models, TCAV is agnostic to modality. Evaluating CBIM brittleness in other critical modalities such as NLP
would give a more complete picture of these method’s vulnerabilities. Finally, the attacks described in this work perturb
positive concept tokens. While we argue that in many ways this is the most critical component of the CBIM pipeline (being
re-used for many input), to fully understand the attack surfaces of CBIMs, it makes sense to consider attacks on the other
inputs to a method: the model itself, negative examples, and the interpretation input.

A.3. Related work

Interpretability methods: Because of the size and complexity of modern deep learning architectures, skill is required to
extract interpretations of how these models make decisions. Established methods range from those that focus on highlighting
the importance of individual input features to those that can give clues to the importance of specific neurons to a particular
class. Popular examples of interpretability methods that focus on input feature importance include saliency map methods
(Selvaraju et al., 2017; Sundararajan et al., 2017; Ribeiro et al., 2016; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017;
Chang et al., 2019) which identify those input features (for example, pixels in an image) whose change is most likely to
change the network’s prediction.

CBIMs focus on decomposing the hidden layers of deep neural networks with respect to human-understandable concepts.
One of the best-known approaches in this direction involves the use of concept activation vectors (CAVs) (Kim et al., 2018).
Work that is either related or extends these ideas includes (Zhou et al., 2018; Graziani et al., 2018a; 2019; Koh et al., 2020;
Yeh et al., 2020).

Feature visualization is a set of interpretability techniques (Szegedy et al., 2014; Mahendran & Vedaldi, 2015; Wei et al.,
2015; Nguyen et al., 2016b) concerned with optimizing model input so that it activates some specific node or set of nodes
within the network. However, a challenge arises when one tries to analyze ‘polysemantic neurons’ (Olah et al., 2018),
neurons that activate for several conceptually distinct ideas. For example, a neuron that fires for both a boat and a cat leg is
polysemantic. Interpretability methods have imposed priors to disambiguate neurons by clustering the training images (Wei
et al., 2015; Nguyen et al., 2016b) or the hidden layer activations (Carter et al., 2019) and using the average of the cluster as
a coarse-grained image prior, parameterizing the feature visualization image with a learned GAN (Nguyen et al., 2016a), or
using a diversity term in the feature visualization objective (Wei et al., 2015; Olah et al., 2017).

Robustness of interpretability methods: This is not the first work that has shown that interpretability methods can be
brittle. Saliency methods have been shown to produce output maps that appear to point to semantically meaningful content
even when they are extracted from untrained models, indicating that these methods may sometimes simply function as
edge detectors (Adebayo et al., 2018). While not an interpretability method per se, preliminary work has studied the
robustness of Concept Bottleneck Models, an intrinsically interpretable concept-based method, to out-of-distribution data
(Koh et al., 2020). From a more adversarial perspective, a number of works have shown that saliency methods are vulnerable
to small perturbations made to either an input image or to the model itself that cause the model to offer radically different
interpretations (Heo et al., 2019; Ghorbani et al., 2019; Viering et al., 2019; Subramanya et al., 2019; Anders et al., 2020);
work has looked at methods to make explanations more robust to attack (Lakkaraju et al., 2020). On the other hand, this
is the first work that shows that CBIMs are also vulnerable to adversarial attack. In particular, since we focus on attacks



InceptionV1 Layer

Attacks mixed3a mixed3b mixed4a mixed4b

Baseline TCAV (no attack) 0.69± 0.02 0.90± 0.01 0.66± 0.03 0.68± 0.04

Gaussian noise 0.61± 0.02 0.62± 0.02 0.64± 0.03 0.67± 0.04
TP attack on

Logit 0.37± 0.02 0.37± 0.03 0.35± 0.02 0.33± 0.03
mixed3a centroid 0.29± 0.05 0.29± 0.10 0.22± 0.05 0.34± 0.08
mixed3b centroid 0.17± 0.05 0.39± 0.10 0.19± 0.03 0.37± 0.08
mixed4a centroid 0.22± 0.06 0.40± 0.11 0.32± 0.05 0.44± 0.08
mixed4b centroid 0.27± 0.07 0.32± 0.10 0.33± 0.06 0.42± 0.08
mixed4c centroid 0.26± 0.08 0.30± 0.09 0.29± 0.05 0.28± 0.08
mixed4d centroid 0.28± 0.08 0.30± 0.10 0.25± 0.06 0.18± 0.10

Table 1. The TCAV magnitude score for the zebra class on the ‘striped’ concept, before and after the TP attacks on InceptionV1. The
Baseline TCAV row uses the concept sets with no perturbations. The Gaussian noise row applies Gaussian noise to positive tokens. The
rows below ‘TP attack on’ indicate the layer that is being targeted by the TP attack. The columns are the InceptionV1 layer that TCAV is
being applied to. For all concept/pairs we bold those values where the layer targeted by the TP attack and the layer TCAV is applied to are
the same.

targeting a component absent from other interpretability methods (concept tokens), there is not a straightforward way of
applying the attacks mentioned above within the threat model presented in this paper.

A.4. A Threat Model for CBIMs

We frame the notion of a CBIM abstractly in order to better understand its attack surface. We view such a method as a map
that takes (1) a model from family M, (2) positive tokens of the concept that we would like to steer our interpretation (from
space P), (3) negative tokens of the concept (from space N ), and (4) an interpretation input which will be the focus of the
interpretation (from space I). We call the output of an interpretability method an interpretation output. An interpretation
output might be a single scalar value (as in the case of TCAV), or it may be an image (as in the case of FFV). In all cases,
an interpretation output is designed to help the user better understand a model’s decision making process. Thus, we can
understand a CBIM as a function T : M×P ×N ×I → O. We note that in the case of TCAV, the interpretation input is a
dataset Dk of examples of some class k, while the interpretation input of FFV is a specific node position (i, j, k) in the
model.

Since we will only be considering images as input in our experiments, we specify to that setting here. Otherwise, we use the
formalism that we developed above. Specifically, we assume there exists an interpretability method I , a model f ∈ M, a set
of positive image tokens PC = {xC

i }i ∈ P , a set of negative image tokens NC ∈ N , and an interpretation input I ∈ I . We
also assume a function F : O ×O → R that quantitatively captures meaningful difference between interpretation output.

Adversary’s goal: Find perturbations {δi}i to generate a new attacked positive token set P̂C = {xC
i + δi}i to satisfy the

following objective functions:

• (Untargeted) maximizes the difference

argmax
{δi}i

F (I(f, PC , NC , T ), I(f, P̂C , NC , T )),

• (Targeted) minimizes the difference

argmin
{δi}i

F (I(f, PC′ , NC′ , T ), I(f, P̂C , NC , T ))

for some second concept C ′.

In order to avoid detection, P̂C is subject to the constraint: maxi ||δi||∞ ≤ ϵ, for some fixed ϵ > 0.

Informally, in the untargeted setting the adversary tries to maximally alter the way input is interpreted with respect to a
concept C (without regard to the direction of the new interpretation), while in the targeted setting the adversary wants the



Table 2. The concept/class pairs used for the untargeted ImageNet experiments described in Section 4. Concept examples are either taken
from ImageNet itself or DTD.

Concept Class
Honey Honeycombed
Zebra Striped
Green snake Scaly
Hognose snake Scaly
Water snake Scaly
King snake Scaly

Table 3. The concept/class/target class triplets used for the targeted ImageNet experiments described in Section 4. Concept examples are
either taken from ImageNet itself or DTD.

Concept Class Target class
Bubbly Honeycomb Honeycombed
Dumbbell Honeycomb Honeycombed
Corgi Honeycomb Honeycombed

apparent interpretation of output with respect to concept C to actually be as close as possible to the actual interpretation
output with respect to some distinct concept C ′. For example, a untargeted attack on a stop sign classifier might seek to
make the concept of ‘red’ appear unimportant, as a way of reducing trust in the model1. On the other hand, a targeted attack
might seek to change the interpretation with respect to the concept ‘blue sky’ so that it resembles the true interpretation with
respect to ‘red’. Since ‘red’ is presumably an important concept to a stop sign classifier, a successful attack of this type
would cause ‘blue sky’ to also seem like an important concept to the model. Since the background weather should not be an
important concept for the task of identifying a stop sign, this could also cast doubt on the model’s reliability.

Adversary knowledge and capabilities: In this paper we assume that the adversary has read and write access to the tokens
PC either before or after they have been collected. We also assume that the adversary has access to at least a surrogate of the
model that is being interpreted. We discuss transferability of the attack in Section 5.1.

The adversary’s goal is framed in terms of a function F that depends on the specific interpretability method. We show that
TP attacks, which we propose below, work without modification for a range of F , including those for TCAV and FFV, by
optimizing for an objective function that disrupts the fundamental mechanism underlying most CBIMs. As noted in the
introduction, we centered our threat model around the positive tokens critical to CBIMs that, once perturbed, can cause
persistent misinterpretation across numerous inputs. In contrast, a perturbation of an individual input image alone affects
only the interpretation associated to that input.

A.5. Further Experimental Details

To run TCAV, FFV, and our attacks, we use PyTorch with an NVIDIA Tesla T4 GPU provided with Google Colab Pro as
well as a single NVIDIA Tesla P100 GPU. We use the Captum (Kokhlikyan et al., 2020) implementation of TCAV with a
linear classifier trained via stochastic gradient descent and ℓ2-regularization. For the Faceted Feature Visualizations, we start
with random noise and parameterize the image Fourier basis (Olah et al., 2017). We use random scaling, rotation, color, and
shift transformations.

The concept/class pairs that we used for untargeted attacks on ImageNet classes can be found in Table 2. For CUB we
used concepts taken from the CUB metadata attributes: ‘has bill shape all purpose’, ‘has bill shape needle’, ‘has bill
shape spatulate’, ‘has primary color red’. We pair each of these with each class in a size 70 subset of CUB classes. The
concept/class/target concept triplets that we used for targeted attacks on ImageNet input can be found in Table 3.

In our transferability experiments in Section 5.1, for all models we use Torchvision pretrained weights (Marcel & Rodriguez,
2010), except for the ViT which uses the implementation and pretrained weights found in (Wightman, 2019).

1Stop signs are red in North America.
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Figure 7. Relative TCAV magnitude scores before (top) and after (bottom) the TP attack on the ‘striped’ concept images. Note that the
‘striped’ concept goes from being a relatively more important concept (before attack) to an unimportant concept (relative to concepts
‘zigzagged’ and ‘dotted’).

A.6. TP Attack on Relative TCAV

As mentioned in Section 2 the relative TCAV score aims to measure the importance of one concept relative to another. We
show that the TP attack is also effective against this variant of TCAV. We again focus on input class ‘zebra’. It would be
expected that the importance of the concept of ‘striped’ would be high relative to the concepts of ‘zigzagged’ or ‘dotted’ and
indeed we see this experimentally for an InceptionV1 model in the top plot of Figure 7. On the other hand, after applying an
untargeted TP attack to ‘striped’, we see that ‘dotted’ becomes vastly more important than ‘striped’ in all cases (as seen in
the bottom plot of Figure 7), while ‘zigzagged’ becomes significantly more important than ‘striped’ in layer mixed4c and
slightly more important in layers mixed4d and mixed4e.

A.7. Can Attacked CAVs be Detected with DeepDream?

Could a perturbed concept set P̂ ℓ
C itself be identified as corrupted through visualization? Might this be a possible defense

against TP attacks? To investigate this, we applied Empirical DeepDream to CAVs to which an untargeted TP attack had
been applied (Mordvintsev et al., 2015). These are shown in Figure 9 where we use DeepDream to visualize a CAV before
and after the TP attack. We consider CAVs for the hidden layers mixed3b and mixed4b of InceptionV1. We use images
from the ‘striped’, ‘honeycombed’, and ‘scaly’ concept sets, and use a TP attack aimed at the hidden layer mixed4d. We
use cosine similarity (Carter et al., 2019) for the feature visualization objective and the same Fourier parameterization and
transformations we used for the FFV.

We note that the visualizations for the attacked CAV tend to qualitatively resemble those of the CAV without the attack,
albeit with unnatural hue and colors. It has been proposed that DeepDream can confirm that CAVs represent the concept of
images (Kim et al., 2018). The small experiments we describe here suggest this approach is not an effective defense against
TP attacks since attacked CAV tend to visually resemble unattacked CAVs.



Figure 8. Example of ‘striped’ concept images before (left) and after (right) an untargeted TP attack using ϵ = 8/255 and 20 iterations of
PGD. The perturbation shown targets InceptionV1 layer mixed3a.
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Figure 9. Empirical Deepdream (Mordvintsev et al., 2015) visualizations for CAVs computed from the original concept sets P ℓ
C (top row

of each grid) and the attacked concept sets P̂ ℓ
C (bottom row of each grid). Columns within the grids correspond to CAVs in different

layers of the model. Each grid corresponds to a different concept (‘striped’, ‘honeycombed’, ‘scaly’). For the attacked concept sets, the
TP attack targets hidden layer mixed4d of InceptionV1. Note that except for some strange coloring, the visualizations still resemble the
initial concept, suggesting that DeepDream may not be an effective tool for identifying attacked tokens.


