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Abstract
For adversarial robustness in a practical setting, it
is important to consider realistic levels of knowl-
edge that the learner has about the adversary’s
choice in perturbations. We present two levels
of learner knowledge, (1) full knowledge which
contains the majority of current research in ad-
versarial ML and (2) partial knowledge which
captures a more realistic setting where the learner
does not know how to mathematically model the
true perturbation function used by the adversary.
We discuss current literature within each category
and propose potential research directions within
the setting of partial knowledge.

1. Motivation
Currently, the majority of adversarial ML research addresses
the problem of defending against an adversary with a well-
defined threat model such as ℓp perturbations of bounded
radius. In practice, however, the threat models that we
would like to defend against may not be so well-defined.
For example, in tasks such as image classification, we may
be interested in defending against the set of imperceptible
perturbations, but we currently do not have a good model
of imperceptibility. In fact, defining perceptual distance
metrics itself is a research area (Zhang et al., 2018; Wang
et al., 2004).

Thus, to improve the practicality of the current defenses, it
is crucial for us to consider more realistic levels of knowl-
edge that the learner may have about the adversary’s threat
model. We divide learner knowledge into 2 categories: (1)
full knowledge, the setting in which the learner has unlim-
ited access to the true perturbation function used by the
adversary, and (2) partial knowledge, the setting in which
the learner has access to a set of approximations of the ad-
versary’s threat model. We outline current research in these
categories and propose additional research directions within
the category of partial knowledge.
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2. Background and Notations
Let D = X × Y denote the data distribution and H
denote the learner’s hypothesis class. The problem of
adversarial ML can be modeled as a game between the
learner and attacker (Huang et al., 2011). The defender
first chooses a learning algorithm A for obtaining a ro-
bust model in H based on training data Dtrain and a set
K of knowledge that the learner may have about the at-
tacker’s threat model. The attacker then chooses an at-
tack procedure P : X × Y × H → X to apply during
test-time (potentially with knowledge of A). One exam-
ple of an attack procedure is an ℓ2 attack with bound 0.5:
P (x, y, h) = argmaxx′,||x′−x||2<0.5 ℓ(h(x

′), y).

During training, the defender obtains a model by applying
their learning algorithm on the training set and knowledge
set: h = A(Dtrain,K). During testing, for every test data
(x, y) ∼ D, the defender evaluates the performance of their
h on the perturbed input P (x, y, h). This performance is
assessed using a loss function ℓ : X × Y → R.

Formally, the learner’s objective is to define a learn-
ing algorithm A such that with high probability over
the training samples, h = A(Dtrain,K) achieves
E(x,y)∼D[ℓ(h(P (x, y, h)), y)] ≤ ϵ for small ϵ ∈ R.

3. Learner Knowledge Levels
We now present two levels of learner knowledge, full knowl-
edge and partial knowledge, and discuss prior works within
each category. We also discuss potential research directions
within the category of partial knowledge.

3.1. Full Knowledge

Most existing defenses against adversarial examples fall
under the category of a learner with full knowledge. With
full knowledge, the learner knows both the exact constraints
of the adversary and has a model for generating these adver-
sarial examples. In this setting, the learner’s knowledge set
K contains P , the true perturbations used by the adversary.
The learner can use this knowledge in 2 ways: (1) the learner
uses information about the mathematical model for P or (2)
the learner can make queries to P on any x ∈ X and h ∈ H.
Defenses that fall under the first form include certified ro-
bustness techniques such as randomized smoothing (Cohen
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et al., 2019) and interval bound propagation (Yang et al.,
2020); these techniques certify robustness for a specific per-
turbation type (ie. ℓ2, ℓ∞). Meanwhile adversarial training
(Madry et al., 2018; Zhang et al., 2019; Tramèr & Boneh,
2019; Maini et al., 2020) falls into the second setting. In
adversarial training framework, the learner does not need
to know exactly what P is, they only need to query P to
obtain adversarial examples during training.

3.2. Partial Knowledge

In practice, the learner does not have full knowledge of the
adversary. A better model of learner knowledge is partial
knowledge, where the learner has an idea of the space of
perturbations that can be performed by the adversary, but
this space of perturbations is difficult to model. For example,
the learner may know that the adversary is restricted to
imperceptible perturbations but does not know exactly how
to model imperceptibility.

Under the setting of learning with partial knowledge, we
assume that the knowledge set K of the learner contains a
set of approximations of the true adversarial perturbation P .
For instance, we can consider K to be the set of ℓp bounded
perturbations with radius δ: K = {P ′ | P ′(x, y, h) =
argmaxx′,||x′−x||p<δ ℓ(h(x

′), y), p ∈ R+}. We can also
consider settings where P ′ are noisy versions of P , for
example, K may contain P ′ = P +∆ where ∆ ∼ N (0, I).

This learner’s learning algorithm can then use knowledge
of the exact mathematical form of or query access to
each P ′ ∈ K. The goal of the learner is to achieve
E(x,y)∼D[ℓ(h(P (x, h)), y)] ≤ ϵ. Current approaches to
achieving robustness in this setting generally fall under 2
categories: (1) perturbation modeling and (2) enforcing
smoothness.

Perturbation modeling Approaches that fall under this cat-
egory generally consider using a learning algorithm from
the full knowledge setting (ie. adversarial training) with the
available approximations P ′ ∈ K. One example of a de-
fense that falls under this category is perceptual adversarial
training (PAT) (Laidlaw et al., 2021), which uses pertur-
bations with bounded LPIPS distance (Zhang et al., 2018)
from the input during training. Here, the LPIPS-bounded
attack is an approximation of the true imperceptible attack
used by the adversary and can be considered an approxi-
mation P ′ ∈ K. (Laidlaw et al., 2021) demonstrate that
using this approximation with adversarial training improves
robustness against multiple adversaries including ℓp, spa-
tially transformed (Xiao et al., 2018), and recolor (Laidlaw
& Feizi, 2019) adversaries. On the theoretical front, Mon-
tasser et al. (2021) explore the setting of learning with an
approximation P ′ of P and show that it is possible to gen-
eralize to attacks generated with P ′. However, it is unclear
whether it is possible to generalize to P .

The direction of perturbation modeling opens several areas
of research in both algorithms and theory. Algorithmically,
how can we improve upon approximations for imperceptibil-
ity? One potential direction is to utilize generative models to
learn to generate realistic perturbations. This idea has been
explored in Wong & Kolter (2020) and Madaan et al. (2020)
for robustness with full knowledge, but not for the setting of
partial knowledge. In the direction of theory, we can ask the
question: for what types noise present in the approximations
P ′ ∈ K is learning to be robust to P feasible?

Enforcing smoothness Another line of works addressing
the partial knowledge by enforcing smoothness. Specifi-
cally, these works look at methods (mainly regularization)
to bias the learning algorithm to select models for which
the loss increases more gradually when tested on P that
lies outside of K using only P ′ ∈ K. Dai et al. (2022)
provide a theoretical framework for reasoning about what
types of learning algorithms produce models which have
better generalization to unforeseen perturbations and intro-
duce a regularization term called variation regularization to
enforce this. Similarly, Jin & Rinard (2020) propose regu-
larizing Hamming distance between activation patterns and
ℓ2 Lipschitzness of the prediction to bias towards smooth
models.

The direction of enforcing smoothness also opens several
directions for research. First, what is the best definition
for smoothness? In the full knowledge setting with ℓp per-
turbations we could use local-Lipschitzness, it is unclear
what specific property we would like when the true pertur-
bation function is unknown. Secondly, Dai et al. (2022)
and Jin & Rinard (2020) find that applying regularization
trades off significant clean accuracy. How can we reduce
this trade-off? Another direction is evaluation: how should
we evaluate these approaches and how can we compare with
approaches using perturbation modeling?

Incorporating additional query knowledge We can also
bridge the gap between the partial and full knowledge set-
tings by further allowing the partial knowledge learner to
make a limited number of queries to P .

One problem under this category of partial knowledge with
limited query access is the problem of adapting robust mod-
els to be robust against new perturbation types. For example,
consider the case where we might have a robust model and
at some point in time discover a new perturbation type that
our model is not robust to. In this case, we may be interested
in quickly adapting our model (with few examples of the
attack) to be robust against the union of the new attack and
all previously known attacks instead of retraining a model
from scratch. To the best of our knowledge, there are no
works investigating at this setting within adversarial ML,
and we encourage additional research addressing this learner
knowledge regime.
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