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Abstract

Existing adversarial example research focuses on

digitally inserted perturbations on top of exist-

ing natural image datasets. This construction of

adversarial examples is not realistic because it

may be difficult, or even impossible, for an at-

tacker to deploy such an attack in the real-world

due to sensing and environmental effects. To

better understand adversarial examples against

cyber-physical systems, we propose approximat-

ing the real-world through simulation. In this

paper we describe our synthetic dataset genera-

tion tool that enables scalable collection of such

a synthetic dataset with realistic adversarial ex-

amples. We use the CARLA simulator to col-

lect such a dataset and demonstrate simulated at-

tacks that undergo the same environmental trans-

forms and processing as real-world images. Our

tools have been used to collect datasets to help

evaluate the efficacy of adversarial examples,

and can be found at https://github.com/

carla-simulator/carla/pull/4992.

1. Introduction

Deep Neural Networks (DNN) have revolutionized the field

of artificial intelligence with significant success in many

emerging fields like computer vision and natural language

processing. As the production and deployment of DNN

models are on the rise in security and safety critical applica-

tions, numerous studies have shown that DNN models are

susceptible to adversarial examples (Szegedy et al., 2018;

Carlini & Wagner, 2017; Goodfellow et al., 2015; Papernot

et al., 2016).

In the computer vision domain, although the robustness of

defense schemes are often analyzed through digital pertur-

bation attacks, these attacks are very difficult to deploy in
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(a) Green Patch in CARLA (b) Digital Patch

(c) DAPRICOT Patch (d) Rendered Adversarial Patch

Figure 1. A comparison of patch insertion methods. (b) shows a

digital adversarial patch that is composed directly onto the image

and obviously does not blend into the surrounding environment.

In (c), a DAPRICOT (Threet et al., 2021) patch is crafted to mimic

environmental effects, but artifacts are still noticeable. In (a),

a green patch is first inserted into CARLA, then an adversarial

texture is streamed onto it as shown in (d). Hence, this patch is

rendered by CARLA in the same way as other objects in the scene.

practice as they manipulate images directly after the inputs

have been captured and digitized inside the system. Digital

insertion attacks are not realistic as they do not account

for real-world environmental transforms, such as shading,

lighting, occlusions and sensor noise. Figure 1 shows an

exemplar comparison between the realism of three types of

patch attacks. Other work has shown that physical adversar-

ial examples need to be robust against multi-distance and

multi-perspective view of the camera in order to have an

impact in a real-world scenario (Lu et al., 2017). Hence, it

is not a fair evaluation for many defense schemes, if any at

all, with these types of digital attacks.

We propose a simulation tool that is able to generate large

scale synthetic datasets with realistic adversarial examples.

By leveraging the capabilities of CARLA (Dosovitskiy et al.,

2017), our simulated datasets have the following distinct

attributes: multi-modal sensory measurements, instance seg-

https://github.com/carla-simulator/carla/pull/4992
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mentation labels, diverse backgrounds with varying weather

conditions, and multi-perspective views of the scenes.

2. Related Work

There has been a significant amount of literature on gen-

erating synthetic datasets for various applications, includ-

ing autonomous driving through diverse scenes with syn-

thetic pedestrians and objects (Geiger et al., 2012; Cordts

et al., 2016; Richter et al., 2016). For example, Sim 200k

(Johnson-Roberson et al., 2017) dataset consists of 200k

synthetic images of vehicles driving in different times of the

day under diverse weather and lighting conditions. A lot of

recent work relies on synthetic data to create benchmarks, or

to compensate for the lack of training data with data augmen-

tation. SynDataGeneration (Dwibedi et al., 2017) cut and

paste object patches in scenes to create images thus focusing

on patch-level realism. This technique requires preexisting

object masks which are generated using pixel-objectness

models with bi-linear pooling.

Prior work (Brown et al., 2017) have shown that it is possi-

ble to generate scene-independent adversarial patches which

can be placed anywhere and is able to alter the behaviour of

the targeted model. Generating patches, which work under

various lighting conditions and transfer to different target

models, is a computationally intensive optimization process.

More recent work (Pintor et al., 2022) released a small ad-

versarial patch dataset for fast robustness evaluation, where

patches are applied with translation and rotation and com-

posed onto images from ImageNet. Imagenet-C (Hendrycks

& Dietterich, 2019) and WILDS (Koh et al., 2021) datasets

address distribution shifts in the dataset. Imagenet-C has im-

age corruptions (e.g., blurring, jitter) and WILDS addresses

domain generalization and sub-population shifts.

APRICOT open source dataset (Braunegg et al., 2020) was

the first step to provide a benchmark to evaluate the ro-

bustness of object detection models against realistic attacks.

APRICOT photographed printed adversarial patches on real

objects and scenes in real-world environments. However,

there are several drawbacks of this dataset: not every object

in the image is labelled; there is no complexity to the attacks

since the attacks are static and not adaptive in nature; not

all patches work against all models. Moreover, this manual

data collection is time-consuming, not configurable to new

environmental factors and does not capture multi-modal

inputs beside RGB images. Dynamic APRICOT (DAPRI-

COT) (Threet et al., 2021) is one step further towards a

realistic adversarial dataset using CARLA with customized

assets. Customized green screen patches, which serve as

the place holders for adversarial patches, are inserted into

the scene. Then, color transforms these patches undergo are

taken and used for adjusting adversarial patches such that

the adversarial patches blend into the simulated environment

more realistically. While a step closer to realistic attacks

leveraging simulation, this attack cannot map textures to 3D

objects. Prior work (Cornelius et al., 2019) showed how

to use CARLA to demonstrate the efficacy of ShapeShifter

(Chen et al., 2018) attacks against driving scenarios. That

work also highlighted the importance of validating realistic

attacks by reproducing scenarios across varying environ-

mental conditions, which CARLA already supports.

There are other advancements of placing adversarial at-

tacks physically and capturing images in different weather

conditions. For example, with the sign embedding attack

(Sitawarin et al., 2018), traffic signs are modified to improve

robustness to noisy transformations happened during the im-

age capture stage. This attack also exemplifies the difficulty

in creating datasets with realistic attacks.

Privacy concerns also raise for real-world datasets collected

from public places, especially for tasks like pedestrian detec-

tion and tracking. To address privacy concerns, generating

a large diverse synthetic dataset using a rendering game

engine is explored in (Fabbri et al., 2021). The dataset has

temporally consistent bounding boxes, instance segmenta-

tion, depth maps and pose occlusion information along with

varied environment conditions, camera viewpoints, object

textures, lighting conditions, weather, seasonal changes, and

object identities.

3. Motivation

While aforementioned datasets maybe useful for the pur-

poses of augmenting benign datasets, there is an imminent

need for frameworks that enable the exploration of realistic

adversarial attacks with varying threat models.

We define realistic attacks as those attacks that use the same

end-to-end processing pipeline as the defense models. In

Figure 2, the complete pipeline for image classification

tasks typically includes four stages. Attacks may come in

at different stages. For example, digital attacks such as

Projected Gradient Descent (PGD) (Madry et al., 2017) are

injected at the final recognition stage, while DAPRICOT

attacks are performed at preprocessing stage. Physical at-

tacks and static physical attacks are injected at the very

front and applied to real-world objects, which makes them

realistic. However, these physical attacks are very expen-

sive and hence are costly to scale. Therefore, we adopt an

alternative approach by replacing the real-world with a sim-

ulated world created by CARLA. As a result, we can apply

adversarial textures onto 3D objects, which then undergo

all environmental transforms in the simulation as shown in

Figure 2.
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Figure 2. Comparison of performing attacks in the real world ver-

sus in the simulation. The end-to-end image classification pipeline

includes four stages. As shown at the top, in the real world, a

realistic attack needs to be applied to a real object to undergo the

complete pipeline, which makes it very challenging. However,

with simulation, it is convenient to apply a adversarial texture to

the target stop sign and force the attack to undergo all the same en-

vironmental transformations and processing as the defense model.

4. Data Collection Tool

Motivated by the lack of large scale dataset with re-

alistic adversarial examples, we developed a scalable

data collection tool that is built on top of CARLA.

We open sourced this tool at https://github.com/

carla-simulator/carla/pull/4992.

This tool enables the collection of multimodal data (as

shown in Figure 3) and different scenes from sensors placed

at different locations. A wide range of scenarios can be con-

figured to collect data with varying weather patterns, times

of day, traffic, and crowd conditions. The tool provides

accurate labels and minimizes the costs involved in gener-

ating annotations for the dataset. The annotations include

bounding boxes, classification labels, instance segmentation

masks and frame sequence order for temporal tasks.

CARLA supports various atmospheric conditions and illu-

mination settings with tunable configurations for position

and color of the sun, the intensity and color of diffuse sky

radiation, ambient occlusion, atmospheric fog, cloudiness,

precipitation, as well as lighting conditions by time of day.

CARLA allows configurable placements of sensors from

different modalities, such as RGB, depth, LIDAR, RADAR,

Figure 3. Multimodality is well supported in CARLA, while it may

be very difficult to obtain synced data from different sensors in a

real-world dataset. From left to right, the depth image, the RGB

image and the ground truth (i.e., instance segmentation masks)

provide well aligned data for research that explores the relations

among different modalities.

optical flow, event based dynamic vision sensor and ground-

truth sensors (instance segmentation and semantic segmen-

tation). Taking advantage of these features from CARLA,

we developed a data collection tool, which supports various

configuration of synchronized sensor suites, weather and

lighting conditions, traffic and crowd settings.

The tool consists of two major components: a data saver

and an annotator. The data saver takes a configuration file

(details in Listing 1) as an input and then instantiates a

CARLA simulation accordingly. We support three kinds

of sensor placements: statically placed sensors, sensors

attached to vehicles or pedestrians, and sensors that move.

The three supported sensor movement patterns are: (1) linear

motion, where the sensor moves straight from the source

position to the destination position; (2) rotation, where the

sensor rotates within a predefined angle range; (3) jitter,

where the sensor jitters randomly within a configured range.

All the three types of movement can be applied together to

a moving sensor. Also, jitter and rotation can be added to a

“static” sensor too.

The annotator supports two types of annotation formats:

kwcoco (Crall, 2020) and Multi Object Tracking and Seg-

mentation (MOTS) (Voigtlaender et al., 2019). The kwcoco

annotation format is an extension of the COCO format with

COCOAPI support. We choose this format to support tempo-

ral annotations that are not supported in COCO. The MOTS

format has two forms, text and PNG, to support object track-

ing and segmentation scenarios. Figure 4 shows a RGB

image and the visualization of its annotations generated by

our tool.

We focus on five specific aspects that we find lacking in

the existing datasets and synthetic data generation frame-

works: configurability with different settings via a YAML

configuration file, reproducibility of data with a seed and

configuration, the enablement of realistic attacks that go

through the same environmental transforms as the defenses,

extensibility to augment a existing dataset to accommodate

new requirements, ease of use with docker to bypass the

https://github.com/carla-simulator/carla/pull/4992
https://github.com/carla-simulator/carla/pull/4992
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(a) Scene (b) Annotated scene

Figure 4. An image captured by a RGB camera from CARLA using

the data saver and the visualization of the generated annotations

using the annotator tool: (a) scene and (b) annotated scene.

complexity from CARLA and Unreal Engine installations

and simplify running simulations, and scalability to be able

to run multiple simulations in containers simultaneously on

different GPUs.

5. Capabilities to Enable Benign and

Adversarial Machine Learning Research

Configurability and extensibility have been of huge impor-

tance to the development of datasets that advance machine

learning research. Quite often, when attempting to deep

dive into complex problems and decouple a set of mingled

factors, researchers find out that it is very challenging to

obtain new customized data from the real world that can

help them conduct experiments and pinpoint the root cause.

They may have to use the initial real world dataset due to

the heavy cost in collecting and labelling that specific data.

However, with our tool, extending an existing dataset with

customized configurations to meet new research require-

ments become feasible. Because the simulation can isolate

one environmental factor at a time, researchers can deter-

mine specific effects that lighting, weather, object orienta-

tion, or time of day have on a model’s ability to correctly per-

form its task by easily creating new data that only changes

a chosen environmental factor. As a result, researchers can

have better understanding of the model and hence improve

the model correspondingly. Moreover, as the data collection

is defined by configurations in our tool, it is easy to extract

the statistics of the dataset so that we can better understand

the characteristics and limitations of the models trained on

the dataset. And if more data is needed at a later time, it is

also convenient to generate more data with new customized

configurations.

From an adversarial perspective, an attacker can also enjoy

all the benefits. Just as model training may overfit to a given

training dataset, an attack may overfit to a set of data as

well. By being able to easily create additional data and

change environmental factors, an attacker can generalize

the attack better to a given situation. Figure 5 shows an

Figure 5. An example of how the simulation tool helps a patch

attack generalizes better with more object tracking data. The left

figure shows that the attack overfits to a single pedestrian tracking

video. In the middle figure, the attack improves as it is computed

over five tracking videos. The attack shown in the right figure is

optimized with ten diverse tracking videos and hence performs the

best among the three.

example of how a patch attack may overfit to an object

tracking model in a scenario, where a child walks by a wall

with an adversarial patch on it. As more diverse data is

created from simulations, however, the attack improves and

generalizes better as it is able to attack the tracking model in

case of any person walking in front of the adversarial patch

on the wall from any directions.

Researchers can test and challenge assumptions for machine

learning defenses and attacks, when given the ability to cre-

ate synthetic data in this manner. As an example, Figure 6

shows a machine learning defense that assumes a static

background. The figures in the first row show the scene

where an adversarial patch is placed on the background wall.

The figures in the second row show the defense mechanism

of ablating the background in order to remove the patch.

In the static setting, it is clear that this defense scheme is

quite effective by masking out the background. However, a

more advanced attack may challenge this static assumption

and test how well the defense holds up under a different as-

sumption. The third row of Figure 6 shows a set of images,

which is a moving scene as the camera changes its trans-

form slightly. The figures in the fourth row show how the

defense performs in this dynamic setting. The adversarial

patch is not removed and the defense model fails to ablate

the background as expected. This experiment shows that

even a slight shift in the background of the scene causes

the background ablation defense to be largely ineffective.

This type of study would be time consuming and expen-

sive, if at all possible, in a real world setting. A researcher

would need to recollect a scene, ideally keeping most of

the environmental factors as similar as possible. Using the

data collection tool we introduced allows the recollection

of a scene with a simple change (e.g. adding sensor jitter

movement) to a configuration file. This allows researchers

to better understand what makes their machine learning

defenses generalize better.

As another example, Figure 7 demonstrates how an attack’s

efficacy may vary when placed in different scenes by taking
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Figure 6. Generalization of the adversarial patch defense using

background ablation. Figures at top two rows show that an adver-

sarial attack on a video with a static background, and the defense

successful ablates the adversarial patch. However, as shown by

the figures in the bottom two rows, an attack on a tracking video

with dynamic background causes the defense fail to ablate the

adversarial patch.

into consideration of physical constraints in the scene. An

adversarial patch defense may attempt to locate a patch by

detecting anomalous natural scene statistics. The success

of the defense largely depends on where other objects are

located within the scene as well as the natural environmental

statistics of the scene. Figure 7 provides a comparison on

how a patch defense performs on low resolution images and

high resolution images. As it was trained on low resolution

images, the defense performs well on the RGB image in

the left column and can locate the patch as shown in the

other three images in the left column. However, given a

high resolution RGB image in the right column, the defense

performance degrades as the patch is located at a wrong

place in the third image in the right column. While the

defense still identifies the patch in the second image, it

also generates many false positives as well. These failures

indicate potential generalizability issues of this defense that

uses physical constraints.

Our tool can help better generalize defenses by enabling

researchers to easily generate additional data with variability

for different scenarios. On the other hand, attackers could

also receive benefits as they can take this information and

use it to their advantage. For example, an adversarial patch

Figure 7. Generalization of adversarial patch defense using phys-

ical constraints (Feng et al., 2022). The left column includes a

low resolution RGB image and the visualization after applying the

defense, while the right column is a high resolution RGB image

with the visualized defenses. The first row shows two adversarial

images with an adversarial patch in the top left quadrant. The

second row shows masks of pixels with anomalous colors. The

third row shows masks in regions with high frequency contents.

And the fourth row shows masks in regions with high hue and

saturation pixel values. This defense, which was trained on low

resolution images, performs well on the left column images as it is

able to identify the patch location. However, it does not generalize

well on high resolution images as shown in the right column where

the patch is located at wrong position or false positives occur.

can be placed in a location that better “blends in” to the

scene. Or the patch may be optimized to more closely

match the current environment where it is placed.

Multimodal machine learning is one of the most vibrant

research areas that aims to process and learn related infor-

mation from different modalities. As it is similar to how

humans sense and learn the world, multimodal learning

shows increasing importance and extraordinary potential.

However, a big challenge in this research area is the lack

of high quality, well aligned data from different modalities.

It is very difficult to obtain real-world datasets with data

captured from different types of sensors at the exact same

location and perspective. On the other side, it is easy to gen-

erate a multimodal synthetic dataset using CARLA, which

currently supports RGB camera, depth camera, optical flow

camera, LIDAR and RADAR sensors. Figure 3 shows an

example where a depth camera and a RGB camera are per-



Synthetic Dataset Generation for Adversarial Machine Learning Research

fectly aligned (i.e., placed at the exact same location with

the same rotation) and share the same ground truth.

In the adversarial machine learning domain, digital pertur-

bation attacks, such as PGD, are widely used for evaluating

the robustness of models. However, these attacks are of-

ten too powerful in the sense that they directly attack the

image pixels after the image has been captured and hence

do not undergo the environmental transforms and the pro-

cessing pipeline that a defense scheme needs to consider for

accuracy and robustness.

We show a comparison between varying methods of insert-

ing an adversarial patch into a scene captured by CARLA

in Figure 1. The digital patch in Figure 1(b) is composed

directly onto the image, which bypasses all the environmen-

tal transforms. Note that there are no shadows on the patch

even though it is located in the shadowy area of the sidewalk.

Figure 1(c) shows a DAPRICOT patch that estimates the

environmental transforms and calculates a color correction

to be applied to the patch before digitally inserting into the

scene. Finally, using CARLA, a green patch in Figure 1(a)

is first inserted into the scene as a place holder. Then the ad-

versarial patch is applied as a texture to the designated area

in the simulation, and then rendered in CARLA as shown

in Figure 1(d). This approach makes the patch look very

realistic as it takes the environmental transforms (such as

shadow, lighting, reflections) and applies them to the patch

in the same way as other objects in the scene. To evaluate

the robustness of machine learning models fairly and accu-

rately, it is critical to perform realistic attacks that undergo

the complete processing pipeline as normal models would

take. Our synthetic dataset generation has the capability to

force the attacker to consider the effects of environmental

transformations. As a result, we are able to provide an even

playground for both the attacker and the defender.

Moreover, from the attacker’s perspective, in real life it is

very expensive and slow to compute and apply a physical

adversarial perturbation. However, with the simulation tool,

it is much faster to iterate the perturbation computations

and evaluate the effectiveness of the realistic attack. The

tool also allows an attacker to choose any suitable technique

to craft adversarial examples for specific scenes. Figure 8

shows an example of validating a ShapeShifter (Chen et al.,

2018) attack, where an adversarial texture is computed and

then applied to a Tesla Model 3 car in CARLA. This attack

is successful as it causes the vehicle to be misclassified as

an orange. Without simulation, to validate this physically re-

alizable attack, a car needs to be painted with the computed

adversarial texture to validate the effectiveness of the attack

in the real world. Even worse, the attack optimization may

go through this paint-validation-repaint process multiple

times, which makes it very expensive to conduct realistic

attack research in real world. On contrary, our simulation

tool brings significant benefits for developing realistic attack

techniques, as it saves the heavy overhead of creating real

adversarial objects while at the same time ensures the attack

undergoes the same environmental transformations as the

defense.

Figure 8. Validation of a ShapeShifter attack in CARLA. An adver-

sarial texture is computed and then applied to a Tesla Model 3 car

in the simulation. This attack is successful as it causes the vehicle

to be misclassified as an orange.

Hence, our tool provides a cheap and convenient alternative

to the real-world adversarial dataset generation, which has

an prohibiting cost for realistic adversarial examples and

thus is very difficult to be of large scale, if even possible.

With the simulation tool, it becomes much easier to insert

2D or 3D adversarial perturbations back into the simula-

tion. And due to its low cost and low time consumption,

generating a large scale synthetic adversarial dataset with

realistic attack samples becomes feasible. Even further, as

discussed in Figure 1, streaming texture capability provided

by CARLA, which allows the texture of an object to be

changed in real time during the simulation, opens an door

for the adversarial training with realistic adversarial noises.

6. Conclusion

Adversarial machine learning research suffers from a lack

of large scale, high quality datasets with realistic, physically

plausible adversarial examples. We overcome these limita-

tions by using simulation to insert adversarial examples and

generate synthetic data. Our tools enables a new way for

distributing datasets that are reproducible, configurable, ex-

tensible, and scalable. Rather than downloading large, static

archives, researchers can distribute a dataset in the form

of configuration files and locally re-create the dataset by

running our tools and CARLA. They can also easily extend

the dataset with new configurations based on their specific

needs and dynamically insert adversarial examples in a real-

istic manner. In future work, we would like to conduct large

scale studies on the efficacy of attacks from various sources

such as those shown in Figure 1. We believe this tool will

enable more realistic evaluation of adversarial examples.
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R. MOTSynth: How can synthetic data help pedestrian

detection and tracking? In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 10849–

10859, 2021.

Feng, R., Jha, S., and Prakash, A. Constraining the attack

space of machine learning models with distribution clamp-

ing preprocessing. arXiv preprint arXiv:2205.08989,

2022.

Geiger, A., Lenz, P., and Urtasun, R. Are we ready

for autonomous driving? the kitti vision benchmark

suite. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 3354–3361.

IEEE, 2012. URL https://ieeexplore.ieee.

org/abstract/document/6248074.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples. In International

Conference on Learning Representations, 2015. URL

http://arxiv.org/abs/1412.6572.

Hendrycks, D. and Dietterich, T. Benchmarking neural

network robustness to common corruptions and perturba-

tions. arXiv preprint arXiv:1903.12261, 2019.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N.,

Rosaen, K., and Vasudevan, R. Driving in the matrix: Can

virtual worlds replace human-generated annotations for

real world tasks? In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pp. 746–753, 2017.

doi: 10.1109/ICRA.2017.7989092.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,

M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,

R. L., Gao, I., et al. Wilds: A benchmark of in-the-

wild distribution shifts. In International Conference on

Machine Learning, pp. 5637–5664. PMLR, 2021.

Lu, J., Sibai, H., Fabry, E., and Forsyth, D. A. No need to

worry about adversarial examples in object detection in

autonomous vehicles. ArXiv, abs/1707.03501, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,

Z. B., and Swami, A. The limitations of deep learning in

adversarial settings. In 2016 IEEE European Symposium

on Security and Privacy (EuroS P), pp. 372–387, 2016.

doi: 10.1109/EuroSP.2016.36.

https://arxiv.org/pdf/1712.09665.pdf
https://arxiv.org/pdf/1712.09665.pdf
https://gitlab.kitware.com/computer-vision/kwcoco
https://gitlab.kitware.com/computer-vision/kwcoco
https://ieeexplore.ieee.org/abstract/document/6248074
https://ieeexplore.ieee.org/abstract/document/6248074
http://arxiv.org/abs/1412.6572


Synthetic Dataset Generation for Adversarial Machine Learning Research

Pintor, M., Angioni, D., Sotgiu, A., Demetrio, L., Demontis,

A., Biggio, B., and Roli, F. Imagenet-Patch: A dataset

for benchmarking machine learning robustness against

adversarial patches. ArXiv, abs/2203.04412, 2022.

Richter, S. R., Vineet, V., Roth, S., and Koltun, V. Playing

for data: Ground truth from computer games. ArXiv,

abs/1608.02192, 2016.

Sitawarin, C., Bhagoji, A. N., Mosenia, A., Mittal, P., and

Chiang, M. Rogue signs: Deceiving traffic sign recog-

nition with malicious ads and logos. arXiv preprint

arXiv:1801.02780, 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties

of neural networks. In Joint European Conference on Ma-

chine Learning and Knowledge Discovery in Databases,

pp. 52–68. Springer, 2018.

Threet, M., Busho, C., Harguess, J., Jutras, M., Lape, N.,

Leary, S., Manville, K., Tan, M., and Ward, C. Physical

adversarial attacks in simulated environments. In 2021

IEEE Applied Imagery Pattern Recognition Workshop

(AIPR), pp. 1–5, 2021. doi: 10.1109/AIPR52630.2021.

9762099.

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B.

B. G., Geiger, A., and Leibe, B. Mots: Multi-object track-

ing and segmentation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 7942–7951, 2019.



Synthetic Dataset Generation for Adversarial Machine Learning Research

A. Appendix

The synthetic data collection tool described in Section 4 consists of two major components, a data saver and an annotator.

The data saver takes a configuration file as input to configure the CARLA simulation scenario. This configuration includes

CARLA server configurations, weather settings, and configurations for spawning actors (i.e., vehicles and pedestrians) and

sensors for data capture. Listing 1 shows an example of such a configuration that captures 300 frames from three sensors

(RGB camera, depth camera, and instance segmentation sensor) with two pedestrians. These sensors are statically placed to

capture the two pedetrians as they walk past these sensors. The two pedestrians that walk past each other are specified by

their the start positions, destination positions, and walking speeds. Finally, the configuration sets a seed to enable repeated

generations of a particular scenario. Figure 9 shows example frames captured from three different captures under different

weather conditions using configurations shown in Listing 1 and Listing 2. Our tool enables reproducible capture under a

variety of conditions like weather and lighting.

(a) Sunny (b) Rainy (c) Foggy

Figure 9. Our tool can repeatably collect data over a weather distribution shift. We collected frames from the same scenario for different

weather conditions: (a) sunny, (b) rainy, and (c) foggy.

Listing 1. An example config.yaml file that generates 2 pedestrians with 3 static sensors (RGB, depth and instance segmentation).

1 carla:

2 host: "127.0.0.1"

3 port: 2000

4 timeout: 5.0

5 sync:

6 fps: 30

7 timeout: 2.0

8 seed: 30

9 townmap: "Town10HD"

10 traffic_manager_port: 8000

11 retry: 10

12
13 output_dir: "_out"

14 max_frames: 300

15
16 # Sunny weather

17 weather:

18 cloudiness: 0.0

19 precipitation: 0.0

20 precipitation_deposits: 0.0

21 wind_intensity: 0.0

22 sun_azimuth_angle: 0.0

23 sun_altitude_angle: 10.0

24 fog_density: 0.0

25 fog_distance: 0.0

26 wetness: 0.0

27
28 spawn_actors:

29 # Spawn Pedestrian 1
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30 - blueprint:

31 name: "walker.pedestrian.*"

32 attr: {role_name: "hero1", is_invincible: "false"}

33 speed: 1.4 # Between 1 and 2 m/s (default is 1.4 m/s).

34 transform:

35 location: {x: -91, y: 170, z: 0.6}

36 rotation: {yaw: -90.0}

37 destination_transform:

38 location: {x: -91, y: 150, z: 0.6}

39 # Spawn statically placed sensors - RGB, Depth and Instance Segmentation

40 - blueprint:

41 name: "sensor.camera.rgb"

42 attr: {"image_size_x": "800", "image_size_y": "600"}

43 transform:

44 location: {x: -95, y: 160, z: 1.6}

45 rotation: {yaw: 0.0}

46 - blueprint:

47 name: "sensor.camera.depth"

48 attr: {"image_size_x": "800", "image_size_y": "600"}

49 transform:

50 location: {x: -95, y: 160, z: 1.6}

51 rotation: {yaw: 0.0}

52 - blueprint:

53 name: "sensor.camera.instance_segmentation"

54 attr: {"image_size_x": "800", "image_size_y": "600"}

55 transform:

56 location: {x: -95, y: 160, z: 1.6}

57 rotation: {yaw: 0.0}

58 # Spawn Pedestrian 2

59 - blueprint:

60 name: "walker.pedestrian.*"

61 attr: {role_name: "hero2", is_invincible: "false"}

62 speed: 2.0

63 transform:

64 location: {x: -91, y: 150, z: 0.6}

65 rotation: {yaw: 90.0}

66 destination_transform:

67 location: {x: -91, y: 170, z: 0.6}

Listing 2. An example to show 2 different weather settings used to create the examples shown in Figure 9

1 # Rainy weather

2 weather:

3 cloudiness: 60.0

4 precipitation: 60.0

5 precipitation_deposits: 60.0

6 wind_intensity: 60.0

7 sun_azimuth_angle: -1.0

8 sun_altitude_angle: 15.0

9 fog_density: 3.0

10 fog_distance: 0.75

11 wetness: 0.0

12
13 # Foggy weather

14 weather:

15 cloudiness: 0.0

16 precipitation: 0.0

17 precipitation_deposits: 0.0

18 wind_intensity: 0.0

19 sun_azimuth_angle: 0.0

20 sun_altitude_angle: 10.0

21 fog_density: 100.0

22 fog_distance: 1.0
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23 wetness: 0.0


