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Abstract
Federated learning is particularly susceptible to
model poisoning and backdoor attacks because
individual users have direct control over the train-
ing data and model updates. At the same time,
the attack power of an individual user is limited
because their updates are quickly drowned out by
those of many other users. Existing attacks do not
account for future behaviors of other users, and
thus require many sequential updates and their
effects are quickly erased. We propose an attack
that anticipates and accounts for the entire fed-
erated learning pipeline, including behaviors of
other clients, and ensures that backdoors are effec-
tive quickly and persist even after multiple rounds
of community updates. We show that this new
attack is effective in realistic scenarios where the
attacker only contributes to a small fraction of
randomly sampled rounds and demonstrate this
attack on image classification, next-word predic-
tion, and sentiment analysis.

1. Introduction
When training models on private information, it is desirable
to choose a learning paradigm that does not require stock-
piling user data in a central location. Federated learning
(Konečný et al., 2015; McMahan et al., 2017b) achieves this
goal by offloading the work of model training and storage
to remote devices that do not directly share data with the
central server. Each user device instead receives the cur-
rent state of the model from the central server, computes
local updates based on user data, and then returns only the
updated model to the server.

Unfortunately, by placing responsibility for model updates
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in the handle of many anonymous users, federated learn-
ing also opens up model training to a range of malicious
attacks (Bagdasaryan et al., 2019; Kairouz et al., 2021).
In model poisoning attacks (Biggio & Roli, 2018; Bhagoji
et al., 2019), a user sends malicious updates to the cen-
tral server to alter behavior of the model. For example
in language modeling, backdoor attacks could modify the
behavior of the final model to misrepresent specific facts,
attach negative sentiment to certain groups, change behavior
in edge cases, but also attach false advertising and spam to
certain key phrases.

In practical applications, however, the real threat posed by
such attacks is debated (Sun et al., 2019b; Wang et al., 2020;
Shejwalkar et al., 2021). Usually only a small fraction of
users are presumed to be malicious, and their impact on
the final model can be small, especially when the contribu-
tions of each user are limited by norm-bounding (Sun et al.,
2019b). Attacks as described in Bagdasaryan & Shmatikov
(2021) further require successive attacks over numerous se-
quential rounds of training. This is not realistic in normal
cross-device applications (Bonawitz et al., 2019; Hard et al.,
2019) where users are randomly selected in each round from
a larger pool, making it exceedingly unlikely that any at-
tacker or even group of attackers will be able to contribute
to more than a fraction of the total rounds of training. Model
updates that are limited in this way are immediately less ef-
fective, as even strong backdoor attacks can be wiped away
and replaced by subsequent updates from many benign users
Sun et al. (2019b); Shejwalkar et al. (2021).

In this work we set out to discover whether strong attacks
are possible in these more realistic scenarios. We make
the key observation that previous attack algorithms such as
described in Bagdasaryan et al. (2019); Wang et al. (2020);
Zhou et al. (2021) only consider the immediate effects of
a model update, and ignore the downstream impacts of up-
dates from benign users.We show that, by modeling these
future updates, a savvy attacker can update model parame-
ters in a way that is unlikely to be over-written or undone by
benign users. By backpropagating through simulated future
updates, our proposed attack directly optimizes a malicious
update to maximize its permanence. Using both vision and
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Figure 1. Our method, Anticipate, reaches 100% backdoor accuracy faster than the baseline in the setting of 100 random attacks in
the first 500 rounds. Moreover, after the window of attack passes, the attack decays much slower than the baseline. At the end of federated
training, our attack still has backdoor accuracy of 50%, while the baseline maintains just 10%. Overall, only 100 out of a total of 20k
contributions are malicious.

language tasks, and under a realistic threat model where
attack opportunities are rare, we see that these novel attacks
become operational after fewer attack opportunities than
baseline methods, and remain active for much longer after
the attack has passed. As shown in Figure 1, these novel
backdoors are both operational after fewer attack opportuni-
ties than baseline attacks and fall off much slower after the
window of attack has passed.

2. Background
Federated Learning systems have been described in a series
of studies and a variety of protocols. In this work, we focus
on mainly on federated averaging (fedAVG) as proposed
in McMahan et al. (2017b) and implemented in a range
of recent system designs (Bonawitz et al., 2019; Paulik
et al., 2021; Dimitriadis et al., 2022), but the attack we
describe can be extended to other algorithms. In fedAVG,
the server sends the current state of the model θi to all
users selected for the next round of training. Each user then
computed an updated local model through several iterations,
for example via local SGD. The u-th local user has data D
which is partitioned into batches Du and then, starting from
the global model, their local model is updated for m steps
based on the training objective L:

θi+1,u = θi,u − τ∇L(Du, θi,u). (1)

The updated models θi+1,u from each user are returned to
the server which computes a new central state by averaging:

θi+1 =
1

n

n∑
u=1

θi+1,u. (2)

We will later summarize this procedure that depends on a
group of users Ui in the i-th round as θi+1 = Favg(Ui, θi).

Optionally, the average can be reweighted based on the
amount of data controlled by each user (Bonawitz et al.,

2017), however this is unsafe without further precautions,
as an attacker could overweight their own contributions
such that we only consider unweighted averages in this
work. Federated Averaging is further safeguarded against
malicious users by the use of norm-bounding. Each updated
model θi,u is projected onto an ||θi,u||p ≤ C, for some clip
value C so that no user update can dominate the average.

Norm-bounding is necessary to defend against model re-
placment attacks described in Bagdasaryan et al. (2019) and
Bhagoji et al. (2019) which send malicious updates with
extreme magnitudes that overpower updates from benign
users. Once norm-bounding is in place as a defense though,
the potential threat posed by malicious attacks remains de-
bated. We summarize a few related areas of research, before
returning to this question:

Adversarial Machine Learning The attacks investigated
in this paper are a special case of train-time adversarial
attacks against machine learning systems (Biggio et al.,
2012; Cinà et al., 2022). The federated learning scenario is
naturally an online, white-box scenario. The attack happens
online, while the model is training, and can adapt to the
current state of training. The attack is also white-box as
all users have knowledge of model architecture and local
training hyperparameters.

Train-time Attacks In this work we are further interest in
backdoor attacks, also refered to as targeted attacks, which
form a subset of model integrity attacks (Barreno et al.,
2010). These attacks generally attempt to incorporate mali-
cious behavior into a model without modifying its apparent
performance on test data. In the simplest case, malicious
behavior could be an image classification model that mis-
classifies images marked with a special patch. These attacks
are in contrast to model availability attacks which aim to
undermine model performance on all hold-out data. Avail-
ability attacks are generally considered infeasible in large-
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scale federated learning systems when norm-bounding is
employed (Shejwalkar et al., 2021), given that malicious
users likely form only a minority of all users.

Data Poisoning The model poisoning attacks described
above are closely related to data poisoning attacks against
centralized training (Goldblum et al., 2020). There, the
training data is poisoned before it is sent to the centralized
server. These attacks are thought to scale to larger number
of (unwilling) participants, given that distribution of data is
easier than the setup of fully malicious devices (Shejwalkar
et al., 2021), but are also far more constrained compared
to model poisoning which can modify all parameters in the
model returned to the server instead of just the input. The
idea of anticipating future updates has been investigated
in some works on data poisoning (Muñoz-González et al.,
2017; Huang et al., 2020) where it arises as approximation
of the bilevel data poisoning objective. These attacks opti-
mize a set of poisoned datapoints by differentiating through
several steps of the expected SGD update that the the cen-
tral server would perform on this data. However, for data
poisoning, the attacker is unaware of the model state used
by the server, cannot optimize their attack for each round
of training, and has only approximate knowledge of model
architecture and hyperparameters. This complications lead
Huang et al. (2020) to construct a large ensemble of model
states trained to different stages to approximate missing
knowledge.

3. Can you Backdoor Federated Learning?
Backdoor attacks against federated learning have been de-
scribed in Bagdasaryan et al. (2019). The attacker uses
local data and their malicious objective to create their own
replacement model, scales this replacement model to the
largest scale allowed by the server’s norm-bounding rule
and sends it. However, as discussed in Sun et al. (2019b),
for a more realistic number of malicious users and randomly
occurring attacks, backdoor success is much smaller, espe-
cially against stringent norm-bounding. Wang et al. (2020)
note that backdoor success is high in edge cases not seen
in training and that backdoors that attack “rare” samples
(such as only airplanes in a specific color in images, or a
specific sentence in text) can be much more successful, as
other users do not influence these predictions significantly.
A number of variants of this attack exist (Costa et al., 2021;
Pang et al., 2021; Fang et al., 2020; Baruch et al., 2019; Xie
et al., 2019; Datta et al., 2021; Yoo & Kwak, 2022; Zhang
et al., 2019; Sun et al., 2022), for example allowing for
collusion between multiple users or generating additional
data for the attacker. In this work we will focus broadly on
the threat model of Bagdasaryan et al. (2019); Wang et al.
(2020).

Threat Model We assume a federated learning protocol
running with multiple users, attacked by online white-box
model poisoning. The server orchestrates federated averag-
ing with norm-bounding. The attacker is a single user and
only has knowledge about the local data from this user. The
attacker has full control over the model update that will be
returned to the server and can optimize this model freely. As
a participating user in FL, the attacker is also aware of the
number of local steps and local learning rate that users are
expected to use. We will discuss two variations of this threat
model with different attack opportunities. 1) The attacker
is chosen every round during a limited time window as in
Bagdasaryan et al. (2019). 2) The attacker is chosen only for
random rounds during a limited time window as discussed
in Sun et al. (2019b).

We believe this threat model with random attack opportuni-
ties is a natural step towards the evaluation of risks caused
by backdoor attacks in more realistic systems. We do restrict
the defense to only norm-bounding and explore worst-case
attacks against this scenario. As argued in Sun et al. (2019b),
norm-bounding is thought to be sufficient to prevent these
attacks, although we acknowledge that other defenses exist,
see overviews in Wang et al. (2022) and Qiu et al. (2022).
We focus on norm bounding because it is a standard defense
that is widely used in industrial implementations of feder-
ated learning (Bonawitz et al., 2019; Paulik et al., 2021;
Dimitriadis et al., 2022).

4. Attacks with End-to-End Optimization
4.1. Baseline

As describe by Gu et al. (2017); Bagdasaryan et al.
(2019), suppose an attacker holds N clean data points,
Dc = {xc

i , y
c
i }Ni=1, and M backdoored data points, Db =

{xb
i , y

b}Mi=1, where xb
i could be an input with a special patch

or edge-case example (Wang et al., 2020), and yb is an
attacker-chosen prediction. The goal of the attacker is to
train a malicious model that predicts yb when it sees a back-
doored input, and to push this behavior to the central model.
The attacker can optimize their malicious objective Ladv
directly to identify backdoored parameters:

θ∗ = argmin
θ

Ladv(Db, θ) (3)

where Ladv is the loss function of the task, θ are the weights
of the local model. Some attacks such as Bhagoji et al.
(2019) also include an additional term that enforces that
model performance on local clean data remains good, when
measured by the original objective L:

θ∗ = argmin
θ

Ladv(Db, θ) + L(Dc, θ).

The update is then scaled to the maximal value allowed by
norm-bounding and sent to the server.
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4.2. Anticipating Other Users

This baseline attack can be understood as a greedy objec-
tive which optimizes the effect of the backdoor only for
the current stage of training and assumes that the impact
of other users is negligible after scaling. We show that a
stronger attack anticipates and involves the benign users’
contributions in current and several future rounds during
the backdoor optimization. The optimal malicious update
sent by the attacker should be chosen so that it is optimal
even if the update is averaged with the contributions of other
users and then used for several further rounds of training to
which the attacker has no access. We pose this criteria as
a loss function to be optimized. Intuitively, this allows the
attack to optimally select which parts of the model update
to modify, and to estimate and avoid which parts would be
overwritten by other users.

Formally, with n users per round, suppose an attacker wants
to anticipate k steps (in the following we will use this
keyword to denote the whole attack pipeline). Then, given
the current local model, θ0, the objective of the attacker is
simply to compute the adversarial objective in Equation (3),
but optimize it not directly for θ, but instead insert θk which
depends implicitly on the attacker’s contribution.

To make this precise, we move through all steps now. De-
note the model update that the attacker contributes by θmal.
In the next round following this contribution, the other users
U0 will themselves contribute updates θ0,u. Both are aver-
aged and result in

θ1 =
θmal +

∑n−1
j θ0,j

n
,

where θ1 now depends on θmal. Then, k − 1 more rounds
follow in which the attacker does not contribute, but where
new users Ui contribute:

θi+1 = Favg (Ui, θi) .

Finally, θk still depends implicitly on the malicious con-
tribution θmal. As such, an omniscient attacker could then
optimize

θ∗ = argmin
θmal

Ladv(Db, θk(θmal)) + L(Dc, θk(θmal)), (4)

differentiating the resulting graph of Ladv with respect to
θmal and compute the gradient direction in which θmal should
be updated to improve the effect of the backdoor.

Algorithm 1 Anticipate Algorithm
1: Input: Global model θ0, batch size b, number of mod-

eled users per round n′, future updates anticipated: k,
update steps m′, the attacker A owns a set of clean data
Dc and backdoor data Db.

2: θmal = Initialize from θ0
3: for 0, ...,m′ − 1 do
4: for i = 0, ..., k − 1 do
5: Model a group of users Ui:
6: for u = 0, ..., n′ − 1 do
7: Ui,u = Sample b data points from Dc

8: end for
9: Run one round of federated averaging:

10: if i == 0 then
11: θi+1 = Favg (A(θmal) ∪ Ui, θi)
12: else
13: θi+1 = Favg (Ui, θi)
14: end if
15: end for
16: Differentiate the k − th step w.r.t to θmal:
17: gθmal

= ∇θmal
[Ladv(Db, θk) + L(Dc, θk)]

18: Update θmal based on gθmal

19: end for
20: return θmal

However, in practice, this optimization problem is in-
tractable. First, the attacker is unaware of the exact private
data of other users in future rounds. Meanwhile, involving
the full group of all users Ui in the intermediate federated
learning round makes the problem unsolvable for limited
compute resources, given that each call to Favg contains
many local update steps for each user which each depend
on θmal. Therefore, we stochastically sample the full opti-
mization problem: First, we decide to model only a subset
of users n′ < n and then randomly sample a single batch of
data for each local update in each round, from the attackers
own data source Dc. Based on this data, the attacker can
then recompute the local update steps for this limited group
of users and in this way stochastically approximate the real
contributions from other users with a replaced average over
only the subset of modeled users. Over multiple steps m′

over which the attacker optimizes the malicious update θmal,
random data is sampled in every step. We summarize all
steps in Algorithm 1. Although the estimation of the adver-
sarial gradient is randomized and based on the distribution
of the attacker’s data, we find that this scheme is able to
reliably generate malicious updates that lead to robuster
backdoors.

5. Experiments
In this section, we thoroughly analyze our attack on
three different datasets: CIFAR-10 (image classification)
(Krizhevsky et al., 2009), Reddit (next-word prediction)
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(Caldas et al., 2018), and Sentiment140 (sentiment analysis)
(Go et al., 2009). The Reddit dataset naturally contains non-
IID partitions. For CIFAR-10 we include results for both
IID and non-IID partitions of the dataset. Overall, we show
that the proposed method does outperform the baseline of
Bagdasaryan et al. (2019) under all tasks and scenarios.

5.1. Experimentation Details

As described, our experiments implement fedAVG (McMa-
han et al., 2017a; Wang et al., 2021) with norm-bounding
(Sun et al., 2019a). We implement the implicit objective de-
fined in Equation (4) using functorch (He & Zou, 2021).
For each θi,j , we sample data points from private clean data
randomly. For example, for CIFAR-10 and a batch size of
64, this still allows us to fit k = 5 steps with 10 modeled
users onto 11GB of GPU memory. Note that the number of
actual users is significantly larger.

For all three datasets, we follow the overall settings dis-
cussed in Bagdasaryan et al. (2019); Wang et al. (2020;
2021). We also randomly split CIFAR-10 over users to
make an IID CIFAR-10 task. Details of how each dataset is
processed are described below:

CIFAR-10: For CIFAR-10 we investigate an IID partition
of data to users and the non-IID split computed through
Dirichlet sampling with α = 1 (Hsu et al., 2019) both with
total 100 users. For both CIFAR-10 partitions, we choose
the backdoor pattern trigger from Gu et al. (2017). The
attacker can hence overlay the backdoor pattern on clean
data inputs to generate backdoored inputs Db. We choose
the label 8 (ship) as the target class for all experiments. For
fair comparisons to prior work (Bagdasaryan et al., 2019),
we also choose ResNet18 (He et al., 2016). However, it is
unclear how to realistically implement norm-bounding for
the running stats of Batch Normalization, and global batch
norm would typically not be available in a federated system
(Ioffe & Szegedy, 2015; Li et al., 2021). Therefore, fol-
lowing Wang et al. (2021), we replace Batch Normalization
with Group Normalization with G = 32 (Wu & He, 2018).
Empirically, we choose to anticipate k = 5 training steps.

Reddit: For the Reddit dataset, we take a subset of 2000
users. For next-word prediction, an attacker wants to pro-
vide a target word recommendation for users following a
trigger sentence. We return to the trigger and target evalu-
ated in Bagdasaryan et al. (2019); the attacker backdoors
data by appending pasta from Astoria is to the
end of a sentence, and the target is to predict the next word
delicious. Following Bagdasaryan et al. (2019), the
adversarial loss on the model output is only computed based
on the last word, is, of the autoregressive loss. We re-use
the modified 3-layer Transformer model discussed for FL
in Wang et al. (2021). We again anticipate k = 3 steps.

Table 1. Results for sequential rounds of attack. We report aver-
age afirst and average alast of five runs for every experiment. Task
1, task 2, task 3, and task 4 refer to CIFAR-10, IID CIFAR-10,
Reddit, and Sentiment140.

Method Task 1 Task 2 Task 3 Task 4

afirst
baseline 64.72 69.72 12.22 31.87

ours 67.27 75.09 29.38 42.70

alast
baseline 63.70 70.99 11.25 27.93

ours 68.04 77.82 27.82 36.92

Sentiment140: In Sentiment140 experiments, there are
1000 users in total, and we consider the edge-case examples
from Wang et al. (2020) as backdoored data. For exam-
ple, positive tweets containing Yorgos Lanthimos are
labeled as negative tweets. For this dataset, we adopt the
smaller 3-layer Transformer as above (Vaswani et al., 2017),
where the hidden dimension is 1024, and we anticipate
k = 2 steps.

5.2. Metrics

An attacker’s goal is to ensure that the backdoor attack accu-
racy is as high as possible for the global model at the final
stage. In real scenarios, the number of rounds in which the
attacker will be queried by the server and the total number
of rounds are unknown to the attacker. For that reason, an
attacker wants the attack to be easily implanted and to re-
main functional as long as possible. Therefore, to test the
efficiency of the method, we track the average backdoor ac-
curacy after the first attack (afirst) and the average backdoor
accuracy after the last attack (alast).

5.3. Sequential Rounds

We first verify that the proposed attack is always an improve-
ment over Bagdasaryan et al. (2019) in the simple setting
in which the attacker is queried in all rounds (Wang et al.,
2020). We consider 30, 50, and 100 rounds for CIFAR-10,
Reddit, and Sentiment140 respectively. These numbers are
chosen so that the baseline of Bagdasaryan et al. (2019) can
reach a peak backdoor accuracy of at least 95%. For each
task, we then repeat the experiment with 5 random seeds
and show the plot of the first random seed (to avoid cherry-
picking) in Figure 2. We see form these curves that the
proposed anticipate strategy reaches a peak accuracy
slightly faster than the baseline. Especially for the two NLP
tasks, when anticipate reaches full backdoor accuracy,
the baseline’s backdoor accuracy is still below 50%. After
the last attack, anticipate still (slightly) outperforms
the baseline across all tasks. In addition, we report average
afirst and average alast of five runs for every experiment in
Table 1. Note that in this simple setting the attacker can
modify every step of FedAvg, and so there is little risk of
adversarial updates fading away. In the next section, we will
evaluate the baseline and proposed attacks in the more real-
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Figure 2. Attacks over sequential rounds. In this scenario, an attacker is able to continuously send malicious updates for 100 (a), 100
(b), 30 (c), or 50 (d) rounds. All plots show the run with the first random seed. The attack strictly outperforms previous work under this
simpler threat model.
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(b) IID CIFAR-10
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Figure 3. Attacks over random rounds. Attacks happen at random 100 (a), 100 (b), 50 (c), or 100 (d) rounds of the first 500 of FL
training for four tasks, respectively. All plots show the run with the first random seed. The proposed attack strategy is notably effective
under this more realistic threat model.

Table 2. Quantitative results for random rounds attack. We
report average afirst and average alast of five runs for every experi-
ment. Task 1, task 2, task 3, and task 4 refer to non-IID CIFAR-10,
IID CIFAR-10, Reddit, and Sentiment140.

Method Task 1 Task 2 Task 3 Task 4

afirst
baseline 47.38 57.05 14.04 37.85

ours 65.76 72.28 36.76 50.50

alast
baseline 47.55 59.41 10.97 26.88

ours 73.75 80.61 31.26 29.93

istic setting in which a user is queried sporadically, which is
the main goal of this paper.

5.4. Random Rounds

In a real federated learning scenario, it is rare that an at-
tacker is selected for a large number of consecutive rounds,
and we will now switch to the more challenging but real-
istic scenario of random selections. In such scenario, an
attacker is randomly selected by the server and does not
have any knowledge of the next selected round. This means
sometimes there might be a larger time gap between two
consecutive attacks. For a fair comparison, we randomly
select 100 rounds for CIFAR-10, 50 rounds for Reddit, and
100 rounds for Sentiment140 from the first 500 rounds of
the whole federated learning routine (to simulate a limited
time window for the attack). Overall, these 100/50/100 ma-
licious updates are only a small fraction of the 5000 overall
updates contributed to the model within the time window
of the attack, and an even smaller fraction when compared
to 20000 total contributions over the entire 2000 rounds of
training. As above, we choose these numbers to yield some

success for the baseline attack. Figure 3 shows the plots of
each experiment (again from the first random seed). Com-
pared to the experiments of sequential rounds, these more
realistic evaluations show that the proposed anticipate
strategy is significantly more effective than the baseline
at attacking the central model. For example, for the non-
IID CIFAR-10 experiment, the baseline only maintains a
backdoor accuracy of 12% after the attack window, yet
anticipate maintains backdoor accuracy around 50%.
We again include quantitative results in Table 2, computing
average afirst and average alast over the 5 runs of each task.

6. Conclusion
The goal of this work is to evaluate the feasiblity of backdoor
attacks in the realistic regime where users are numerous and
not consistently queried by the central server. We do this by
considering an attack that models simulated FedAvg updates
and choose adversarial perturbations that are unlikely to be
over-written by other users. Through a series of experiments
on backdoor attacks for image classification, next-word pre-
diction, and sentiment analysis, we show that this strategy
can lead to strong performance of backdoor attacks, even in
scenarios where the attacker has relatively few opportunities
to influence the model.
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Konečný, J., McMahan, B., and Ramage, D. Federated
Optimization:Distributed Optimization Beyond the Dat-
acenter. arXiv:1511.03575 [cs, math], November 2015.
URL http://arxiv.org/abs/1511.03575.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, X., Jiang, M., Zhang, X., Kamp, M., and Dou, Q. Fedbn:
Federated learning on non-iid features via local batch
normalization. arXiv preprint arXiv:2102.07623, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017a.

McMahan, H. B., Moore, E., Ramage, D., Hampson,
S., and y Arcas, B. A. Communication-Efficient
Learning of Deep Networks from Decentralized Data.
arXiv:1602.05629 [cs], February 2017b. URL http:
//arxiv.org/abs/1602.05629.
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A. Hyperparameter Study: Number of Steps
A central hyperparameter to the attack is the amount of steps to anticipate (and subsequently to evaluate the objective on). In
Figure 4, we compare anticipation intervals between 2 and 10 on the random rounds attack for non-IID CIFAR-10. We find
that the larger the number of steps an attacker employs, the faster the attack is implanted. However, interestingly, such quick
implantation does not necessarily mean that the attack lasts longer. The highest accuracy at the end of training is actually
reached at k = 6 steps. However, any number of steps improves over the greedy baseline attack which corresponds to k = 0.
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Figure 4. Backdoor accuracy among different Anticipate steps. Simulating up to 10 Anticipate steps improves the backdoor persistence.

B. Ablation Study: Amount of Private Data
The number of private data points an attacker holds is critical for how well the attacker can estimate the benign user’s
contribution. Intuitively, the more private data an attacker holds the more accurately the attacker can predict other users. To
estimate the effect of data on the attack, we test variations where the attacker holds 100, 300, 500, and 700 data points for
non-IID CIFAR-10, and show backdoor evaluations in Figure 5. In this case, all other benign users have 500 images. For the
experiment with data size = 0 in the figure, the attacker replaces the data for other users with random noise, using their
own 500 images only to create Db. We find that more data does robustify backdoor performance, and that random data is
insufficient to model other users. However, even with only 100 data points, the estimation is notably successful.
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Figure 5. Backdoor accuracy with different amounts of private data held by the attacker. Even a limited amount of local data
available to the attacker is sufficient for a strong attack.
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C. Ablation Study: Number of Users Per Round
Another important factor in federated learning is the number of users involved in each round. The aggregation between a
larger number of users might be more difficult for implanting the attack. Again, we test 5 cases with 5, 10, 15, 20, and 30
users per round for non-IID CIFAR-10. Figure 6 shows how effective the attack is in different situations. For the case with
less than 20 users, the attack is still effective with 100 random rounds attack in the first 500 rounds. However, when there
are more than 20 users, the attack still needs more rounds to work.
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Figure 6. Backdoor accuracy with different numbers of users per round. The effectiveness of the attack decreases as the number of
users per round increases.

D. Analysis
Why does this strategy improve backdoor effectiveness? We investigate this by stopping the simulated FL protocol for the
CIFAR-10 task and for a fixed round of attack, computing both the baseline attack and the proposed attack updates. We
visualize the cosine similarities between the benign update directions and both attack variants in Figure 7. Interestingly, the
gradient updates of the proposed attack are almost orthogonal (cos similarity = 0.04) to the benign user’s gradient update.
In contrast, the cosine similarity between the baseline’s update and the benign user’s update is larger (0.3). Only when the
gradient update of the proposed anticipate attack is averaged with the benign users’ updates does the resulting update
bare similarity to the baseline update. We hypothesize that the attack is more successful because it takes into account the
direction of benign users’ contributions, and does not optimize updates that are too aligned with certain directions that may
be “cancelled” out by other updates and doesn’t overly focus on parameters in the model that are already updated by benign
users. This also explains why the injection of the attack is faster than the baseline that does not consider any other users’
update directions.
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E. Potential Negative Societal Impacts and Mitigations
In this paper, we introduce an attack that might bring negative impacts on society. For example, if an attacker implants the
backdoor attack into a public next-word prediction model trained through federated learning, the model might be able to
predict some inappropriate words after certain trigger sentences. This decreases the reliability of federated learning.

However, on the other hand, we unveil this attack to the public for the attention of the community, bringing to the
community’s attention that basing their estimation of attack capabilities on the the attack suggested in Bagdasaryan et al.
(2019) underestimates the potential validity of such an attack. Although norm-bounding is a strong and efficient defense
in (Sun et al., 2019b), the proposed attack still works with a tight norm-bounding. This shows that additional defenses
should be considered on top of norm-bounding, which continues to be a necessary defense to mitigate individual influence
of an attack that sends extreme malicious updates, like model replacement (Bagdasaryan et al., 2019; Bhagoji et al., 2019).
According to Appendix D, the cosine similarity between the benign users’ updates and the update of our proposed attack is
very small, so Krum (Blanchard et al., 2017) could be a possible defense, where Krum filters out outlier updates. Moreover,
in Appendix C, the most straightforward defense could be increasing the number of participants per round during the training.
By doing so, the server can also expect the higher main task accuracy (Wang et al., 2021).


