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Abstract

We consider an online learning problem with one-
sided feedback, in which the learner is able to ob-
serve the true label only for positively predicted
instances. On each round, k instances arrive and
receive classification outcomes according to a ran-
domized policy deployed by the learner, whose
goal is to maximize accuracy while deploying
individually fair policies. We first extend the
framework of (Bechavod et al., 2020), which re-
lies on the existence of a human fairness audi-
tor for detecting fairness violations, to instead
incorporate feedback from dynamically-selected
panels of multiple, possibly inconsistent, auditors.
We then construct an efficient reduction from our
problem of online learning with one-sided feed-
back and a panel reporting fairness violations to
the contextual combinatorial semi-bandit problem
((Cesa-Bianchi and Lugosi, 2009; György et al.,
2007)). Finally, we show how to leverage the
guarantees of two algorithms in the contextual
combinatorial semi-bandit setting: Exp2 (Bubeck
et al., 2012) and the oracle-efficient Context-Semi-
Bandit-FTPL (Syrgkanis et al., 2016), to provide
multi-criteria no regret guarantees simultaneously
for accuracy and fairness. Our results eliminate
two potential sources of bias from prior work: the
“hidden outcomes” that are not available to an
algorithm operating in the full information set-
ting, and human biases that might be present in
any single human auditor, but can be mitigated by
selecting a well chosen panel.
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1. Introduction
When making many high stakes decisions about people,
we receive only one-sided feedback—often we are only
able to observe the outcome for people for whom we make
a favorable decision. For example, we only observe the
repayment history for applicants we approve for a loan—
not for those we deny. We only observe the success or lack
thereof for employees we hire, not for those that we pass on.
We only observe the college GPA for those applicants that
we admit to college, not to those we reject—and so on. In
all of these domains, fairness is a major concern in addition
to accuracy. Nevertheless, the majority of the literature on
fairness in machine learning does not account for this “one-
sided” feedback structure, operating either in a batch setting,
a full information online setting, or in a more standard bandit
learning setting. But when we make sequential decisions
with one-sided feedback, it is crucial to explicitely account
for the form of the feedback structure to avoid feedback
loops that may amplify and disguise historical bias.

The bulk of the literature in algorithmic fairness also asks
for fairness on a group or aggregate level. A standard tem-
plate for this approach is to select some statistical measure
of error (like false positive rate, false negative rates, or raw
error rates), a partition of the data into groups (often along
the lines of some “protected attribute”), and then to ask that
the statistical measure of error is approximately equalized
across the groups. Because these guarantees bind only over
averages over many people, they promise little to individu-
als, as initially pointed out by Dwork et al.’s “catalogue of
evils” (Dwork et al., 2012).

In an attempt to provide meaningful guarantees on an in-
dividual level, Dwork et al. (2012) introduced the notion
of Individual fairness, which informally asks that “similar
individuals be treated similarly”. In their conception, this is
a Lipschitz constraint imposed on a randomized classifier,
and who is “similar” is defined by a task-specific similarity
metric. Pinning down such a metric is the major challenge
with using the framework of individual fairness. Gillen et al.
(2018) proposed that feedback could be elicited in an online
learning setting from a human auditor who “knows unfair-
ness when she sees it” (and implicitly makes judgements
according to a similarity metric), but cannot enunciate a met-
ric — she can only identify specific violations of the fairness
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constraint. Recently, Bechavod et al. (2020) gave an algo-
rithm for operating in this setting—with full information—
that was competitive with the optimal fair model, while
being able to learn not to violate the notion of individual
fairness underlying the feedback of a single auditor.

Our work extends that of Gillen et al. (2018); Bechavod et al.
(2020) in two key ways. First, we remove the assumption
of a single, consistent auditor: we assume we are given an
adaptively chosen panel of human auditors who may have
different conceptions of individual fairness and may be mak-
ing inconsistent judgements (we aim to be consistent with
plurality judgements of such a panel). Second, we dispense
with the need to operate in a full information setting, and
give oracle efficient algorithms that require only one-sided
feedback. We give simultaneous no-regret guarantees for
both classification error and fairness violation, with respect
to models that are individually fair in hindsight (i.e. given
the realization of the panels of fairness auditors who define
our conception of fairness). Together these improvements
eliminate two potential sources of bias from prior work: the
“hidden outcomes” that are not available to an algorithm
operating in the full information setting, and human biases
that might be present in any single human auditor, but can
be mitigated by selecting a well chosen panel.

1.1. Roadmap of our Contributions

We define an online learning framework with one-sided
label feedback and additional feedback from dynamically-
chosen panels of auditors regarding fairness violations (we
present our formal model in Section 2). We show that au-
diting by panels is in fact equivalent to auditing by specific,
instance-dependent, single auditors (Appendix B), which
is a useful technical step in our analysis. We then cast our
learning problem as an optimization problem of a joint ob-
jective using a Lagrangian formulation (Section 2.2). We
construct an efficient reduction to the contextual combina-
torial semi-bandit setting (Cesa-Bianchi and Lugosi, 2009;
György et al., 2007) (Section 3). We then show how to
leverage the regret guarantees of two algorithms for the con-
textual combinatorial semi-bandit setting: Exp2 (Bubeck
et al., 2012) and the oracle-efficient Context-Semi-Bandit-
FTPL (Syrgkanis et al., 2016), to produce regret guarantees
simultaneously for each of accuracy and fairness (Section
4), where our adaptation of Context-Semi-Bandit-FTPL ap-
pears in Appendix D.

2. Preliminaries
We start by specifying the notation we will use for our
setting. We denote a feature space by X and a label space
by Y . Throughout this work, we focus on the case where
Y = {0, 1}. We denote by H a hypothesis class of binary
predictors h : X → Y . We assume that H contains a

constant hypothesis. For the purpose of achieving better
accuracy-fairness trade-offs, we allow the deployment of
randomized policies over the base class H, which we denote
by ∆H. As we will see later, in the context of individual
fairness, it will be crucial to be able to compete with the
best predictor in ∆H, rather than simply in H. We model
auditors as observing k-tuples of examples (the people who
are present at some round of the decision making process),
as well as our randomized prediction rule, and will form
objections by identifying a pair of examples for which they
believe our treatment was “unfair” if any such pair exists.
For an integer k ≥ 2, we denote by J : ∆H× X k → X 2

the domain of possible auditors. Next, we formalize the
notion of fairness we will aim to satisfy.

2.1. Individual Fairness and Auditing

Here we define the notion of individual fairness and auditing
that we use, following Dwork et al. (2012); Gillen et al.
(2018); Bechavod et al. (2020), and extending it to the notion
of a panel of auditors.

Definition 2.1 (α-fairness violation). Let α ≥ 0 and let
d : X × X → [0, 1].1 We say that a policy π ∈ ∆H
has an α-fairness violation (or simply “α-violation”) on
(x, x′) ∈ X 2 with respect to d if

π(x)− π(x′) > d(x, x′) + α.

where π(x) = Prh∼π[h(x) = 1].

A fairness auditor, parameterized by a distance function d,
given a policy π and a set of k individuals, will report any
single pair of the k individuals on which π represents an
α-violation if one exists.

Definition 2.2 (Auditor). Let α ≥ 0. We define a fairness
auditor jα ∈ J by, ∀π ∈ ∆H, x̄ ∈ X k, jα (π, x̄) :=

(x̄s, x̄l) ∈ V j if V j := {(x̄s, x̄l) : s ̸= l ∈ [k],

π(x̄s)− π(x̄l) > dj(x, x′) + α} ≠ ∅
(x̄1, x̄1) otherwise

,

where x̄ = (x̄1, . . . , x̄k), and dj : X×X → [0, 1] is auditor
jα’s (implicit) distance function. When clear from context,
we will abuse notation, and use j to denote such an auditor.

Note that if there exist multiple pairs in x̄ on which an α-
violation exist, we only require the auditor to report one. In

1d represents a function specifying the auditor’s judgement of
the “similarity” between individuals in a specific context. We do
not require that d be a metric: only that it be non-negative and
symmetric. It is important that we make as few assumptions as
possible when modeling human auditors, as in general, we cannot
expect this form of feedback to take specific parametric form, or
even be a metric.
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the case in which the auditor does not consider there to be
any fairness violations, we define its output to be a “default”
value, (x̄1, x̄1), to indicate that no violation was detected.

Thus far our formulation of fairness violations and auditors
follows the formulation in Bechavod et al. (2020). In the
following, we generalize the notion of fairness violations to
panels of multiple fairness auditors which extends beyond
the framework of Bechavod et al. (2020).

Definition 2.3 ((α, γ)-fairness violation). Let α ≥ 0, 0 ≤
γ ≤ 1, m ∈ N \ {0}. We say that a policy π ∈ ∆H has an
(α, γ)-fairness violation (or simply “(α, γ)-violation”) on
(x, x′) ∈ X 2 with respect to d1, . . . , dm : X 2 → [0, 1] if

1

m

m∑
i=1

1
[
π(x)− π(x′)− di(x, x′) > α

]
≥ γ.

Definition 2.3 specifies that a policy π has an (α, γ)-fairness
violation on a pair of examples when a γ fraction of the
auditors consider π to have an α-fairness violation on that
pair. By varying γ, we can interpolate between considering
there to be a violation when any single auditor determines
that there is one at one extreme, to requiring unanimity
amongst the auditors at the other extreme.

Definition 2.4 (Panel). Let α ≥ 0, 0 ≤ γ ≤ 1, m ∈ N\{0}.
We define a fairness panel j̄α,γ by, ∀π ∈ ∆H, x̄ ∈ X k,
j̄α,γj1,...,jm(π, x̄) :=

(x̄s, x̄l) ∈ V j̄ if V j̄ := {(x̄s, x̄l) : s ̸= l ∈ [k]

∧∃i1, . . . , i⌈γm⌉ ∈ [m],

∀s ∈ [⌈γm⌉], (x̄s, x̄l) ∈ V jis } ≠ ∅
(x̄1, x̄1) otherwise

,

where x̄ := (x̄1, . . . , x̄k), and dj : X × X → [0, 1] is
auditor j’s (implicit) distance function. When clear from
context, we will abuse notation and simply denote such a
panel by j̄.

Again panels need only report a single (α, γ)-violation even
if many exist. The rationale behind extending the auditing
scheme to panels is that human auditors have their own
implicit biases, and so there may be no single human audi-
tor that a collection of stakeholders would agree to entrust
with fairness judgements. It is much easier to agree on a
representative panel of authorities. As already noted, the
γ parameter allows us to adjust the degree to which we
require consensus amongst panel members: we can inter-
polate all the way between requiring full unanimity on all
judgements of unfairness (when γ = 1) to giving any single
panel member effective “veto power” (when γ ≤ 1/m).

Note that different values of γ for the panel do not change
the auditing task for individual auditors: in all cases, each
auditor is only asked to report α-violations according to

their own judgement. Thus, using the same feedback from a
panel of auditors, we can algorithmically vary γ to explore
an entire frontier of fairness/accuracy tradeoffs. We refer
the reader to Appendix B, where an equivalence between
consensus-based auditing schemes and auditing by instance-
specific single auditors is proven and further discussed.

2.2. Lagrangian Loss Formulation

Next, we define the two types of loss we will use in our
setting.

Definition 2.5 (Misclassification loss). We define the mis-
classification loss as, for all π ∈ ∆H, x̄ ∈ X k, ȳ ∈ {0, 1}k,

Error(π, x̄, ȳ) := E
h∼π

[ℓ0−1(h, x̄, ȳ)].

Where for all h ∈ H, ℓ0−1(h, x̄, ȳ) :=∑k
i=1 ℓ

0−1(h, (x̄i, ȳi)), and ∀i ∈ [k] : ℓ0−1(h, (x̄i, ȳi)) =
1[h(x̄i) ̸= ȳi].

Next, we define the unfairness loss, to reflect the existence
of one or more fairness violations according to a panel’s
judgement.

Definition 2.6 (Unfairness loss). Let α ≥ 0, 0 ≤ γ ≤ 1.
We define the unfairness loss as, for all π ∈ ∆H, x̄ ∈ X k,
ȳ ∈ {0, 1}k, j̄ : X k → X 2, Unfairα,γ(π, x̄, ȳ, j̄) :=

1 π has an (α, γ)− violation on a pair (x, x′) ∈ x̄

w.r.t. panel j̄
0 otherwise

.

Finally, we define the Lagrangian loss.

Definition 2.7 (Lagrangian loss). Let C > 0, ρ =
(ρ1, ρ2) ∈ X 2. We define the (C, ρ)-Lagrangian loss as,
for all π ∈ ∆H, x̄ ∈ X k, ȳ ∈ {0, 1}k,

LC,ρ(π, x̄, ȳ) := Error(π, x̄, ȳ) + C ·
[
π(ρ1)− π(ρ2)

]
.

We are now ready to formally define our learning environ-
ment, which we do next.

2.3. Individually Fair Online Learning with One-Sided
Feedback

In this section, we formally define our learning environment
with one-sided feedback. Our setting is formally defined in
Algorithm 1.

One-sided feedback Our one-sided feedback structure
(classically known as “apple tasting”) is different from the
standard bandit setting. In the bandit setting, the feedback
visible to the learner is the loss for the selected action in
each round. In our setting, feedback may or may not be
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Algorithm 1 Individually Fair Online Learning with One-
Sided Feedback

Input: Number of rounds T , hypothesis class H Learner
initializes π1 ∈ ∆H
for t = 1, . . . , T do

Environment selects individuals x̄t ∈ X k, and labels
ȳt ∈ Yk, learner only observes x̄t;

Environment selects panel of auditors
(jt,1, . . . , jt,m) ∈ Jm;

Learner draws ht ∼ πt, predicts ŷt,i = ht(x̄t,i) for
each i ∈ [k], observes ȳt,i iff ŷt,i = 1;

Panel reports its feedback ρt = j̄t,α,γj1,...,jm(πt, x̄t);

Learner suffers misclassification loss
Error(ht, x̄t, ȳt) (not necessarily observed by
learner);

Learner suffers unfairness loss Unfair(πt, x̄t, ȳt, j̄t);

Learner updates πt+1 ∈ ∆H;
end for

observable for a selected action: if we classify an individual
as positive, we observe feedback for our action—and for
the counterfactual action we could have taken (classifying
them as negative). On the other hand, if we classify an
individual as negative, we do not observe (but still suffer)
our classification error.

To measure performance, we will ask for algorithms who are
competitive with the best possible (fixed) policy in hindsight.
This is captured using the notion of regret, which we define
next for relevant loss functions.

Definition 2.8 (Error regret). We define the error regret of
an algorithm A against a comparator class U ⊆ ∆H to be

Regreterr(A, T, U) =

T∑
t=1

Error(πt, x̄t, ȳt)

− min
π∗∈U

T∑
t=1

Error(π∗, x̄t, ȳt).

Definition 2.9 (Unfairness regret). Let α ≥ 0, 0 ≤ γ ≤ 1.
We define the unfairness regret of an algorithm A against a
comparator class U ⊆ ∆H to be

Regretunfair,α,γ(A, T, U)

=

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t)

− min
π∗∈U

T∑
t=1

Unfairα,γ(π∗, x̄t, ȳt, j̄t).

Finally, we define the Lagrangian regret, which will be
useful in our analysis.

Definition 2.10 (Lagrangian regret). Let C > 0, and
(ρt)Tt=1 be a sequence s.t. ∀t ∈ [T ] : ρt ∈ X 2. We de-
fine the Lagrangian regret of an algorithm A against a
comparator class U ⊆ ∆H to be

RegretL,C,ρ1,...,ρT

(A, T, U)

=

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈U

T∑
t=1

LC,ρt(π∗, x̄t, ȳt).

In order to construct an algorithm that achieves no regret
simultaneously for accuracy and fairness, our approach will
be to reduce the setting of individually fair learning with one-
sided feedback (Algorithm 1) to the setting of contextual
combinatorial semi-bandits, which we will see next.

3. Reduction to Contextual Combinatorial
Semi-Bandit

In this section, we present our main result: a reduction from
individually fair online learning with one-sided feedback
(Algorithm 1) to the setting of (adversarial) contextual com-
binatorial semi-bandits, to be specified next. The proofs for
this section appear in Appendix C. We begin by formally de-
scribing the contextual combinatorial semi-bandit setting.2

The setting is formally defined in Algorithm 2.

Algorithm 2 Contextual Combinatorial Semi-Bandit
Parameters: Class of predictors H, number of rounds T ;

Learner deploys π1 ∈ ∆H;
for t = 1, . . . , T do

Environment selects loss vector ℓt ∈ [0, 1]k (without
revealing it to learner);

Environment selects contexts x̄t ∈ X k, and reveals
them to the learner;

Learner draws action at ∈ At ⊆ {0, 1}k according to
πt (where At = {ath = (h(x̄t,1), . . . , h(x̄t,k)) : ∀h ∈
H});

Learner suffers linear loss ⟨at, ℓt⟩;
Learner observes ℓt,i iff at,1 = 1;

Learner deploys πt+1;
end for

We next define regret in the context of contextual combina-
torial semi-bandit (Algorithm 2).

2The combinatorial (full) bandit problem formulation is due to
Cesa-Bianchi and Lugosi (2009). We consider a contextual variant
of the problem. Our setting operates within a relaxation of the
feedback structure, known as “semi-bandit” (György et al., 2007).
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Definition 3.1 (Regret). In the setting of Algorithm 2, we
define the regret of an algorithm A against a comparator
class U ⊆ ∆H to be

Regret(A, T, U)

=

T∑
t=1

E
at∼πt

〈
at, ℓt

〉
− min

π∗∈U

T∑
t=1

E
a∗∼π∗

〈
at, ℓt

〉
.

Reduction Our reduction is summarized in Algorithm 3.

In describing the reduction, we use the following notations
(For integers k ≥ 2, C ≥ 1):

(i) ∀a ∈ {ρt,1, ρt,2, 0, 1, 1/2} :

ā :=

C times︷ ︸︸ ︷
(a, . . . , a), ¯̄a :=

k+2C times︷ ︸︸ ︷
(a, . . . , a) .

(ii) h(¯̄xt) := (h(¯̄xt,1), . . . , h(¯̄xt,2k+4C)).

Algorithm 3 Reduction to Contextual Combinatorial Semi-
Bandit

Input: Contexts x̄t ∈ X k, labels ȳt ∈ {0, 1}k, hypothe-
sis ht, pair ρt ∈ X 2, parameter C ∈ N;

Define: ¯̄xt = (x̄t, ρ̄t,1, ρ̄t,2) ∈ X k+2C , ¯̄yt =
(ȳt, 0̄, 1̄) ∈ {0, 1}k+2C ;

Construct loss vector: ℓt = (¯̄1− ¯̄yt, ¯̄1/2) ∈ [0, 1]2k+4C ;

Construct action vector: at = (ht(¯̄xt), ¯̄1 − ht(¯̄xt)) ∈
{0, 1}2k+4C ;

Output: (ℓt, at);

We next prove that the reduction described in Algorithm 3
can be used to upper bound an algorithm’s Lagrangian regret
in the individually fair online learning with one-sided feed-
back setting. For the following theorem, we will assume the
existence of an algorithm A for the contextual combinato-
rial semi-bandit setting whose expected regret (compared to
only fixed hypotheses in H), against any adaptively and ad-
versarially chosen sequence of loss functions ℓt and contexts
x̄t, is bounded by Regret(A, T,H) ≤ RA,T,H.

Theorem 3.2. In the setting of individually fair online learn-
ing with one-sided feedback (Algorithm 1), running A while
using the sequence (at, ℓt)Tt=1 generated by the reduction
in Algorithm 3 (when invoked every round on x̄t, ȳt, ht, ρt,
and C), yields the following guarantee, for any V ⊆ ∆H,

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈V

T∑
t=1

LC,ρt(π∗, x̄t, ȳt)

≤ 2(2k + 4C)RA,T,H.

Note that the guarantee of Theorem 3.2 holds when compet-
ing with the set of all possibly randomized policies ∆H over

the base class, instead of only with respect to the best classi-
fier in H. As we will see next, the bound on the Lagrangian
loss regret in Theorem 3.2 will be useful in simultaneously
upper bounding each of error regret and unfairness regret.
Definition 3.3 ((α, γ)-fairness). Let α ≥ 0, 0 ≤ γ ≤ 1,
m ∈ N \ {0}. We denote the set of (α, γ)-fair policies with
respect to all of the panels in the run of the algorithm as

Qα,γ :={π ∈ ∆H : ∀(x, x′) ∈ X 2,∀t ∈ [T ] :

1

m

m∑
i=1

1
[
π(x)− π(x′)− dt,i(x, x′) > α

]
< γ},

where dt,i is auditor jt,i’s underlying distance function.

Next, we show how the Lagrangian regret guarantee estab-
lished in Theorem 3.2 can be utilized to provide simultane-
ous guarantees for accuracy and fairness, when compared
with the most accurate policy in Qα−ϵ,γ . Note, in particu-
lar, that by setting Qα−ϵ,γ as the comparator set, we will
be able to upper bound the number of rounds in which an
(α, γ)-violation has occurred.
Lemma 3.4. For any ϵ ∈ [0, α],

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t) +RegretErr(A, T,Qα−ϵ,γ)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρt(π∗, x̄t, ȳt).

4. Multi-Criteria No Regret Guarantees
In this section, we present two algorithms for the contex-
tual combinatorial semi-bandit setting (Algorithm 2), Exp2
(Bubeck et al., 2012) and the oracle-efficient Context-Semi-
Bandit-FTPL (Syrgkanis et al., 2016), and show how they
can be leveraged to produce simultaneous accuracy and
fairness guarantees in the setting of individually fair online
learning with one-sided feedback (Algorithm 1). The full
constructions described next, as well as the proofs for this
section, appear in Appendix D. In the following, we use
the notation ∥ℓt∥∗ = maxa∈At |⟨ℓt, a⟩|, and use Õ to hide
logarithmic factors.

4.1. Exp2

Theorem 4.1 (via Bubeck et al. (2012)). The expected regret
of Exp2 in the contextual combinatorial semi-bandit setting,
against any adaptively and adversarially chosen sequence
of contexts and linear losses such that ∥ℓt∥∗ ≤ 1, is at most:

Regret(T ) ≤ O
(√

kT log |H|
)
.

Next, we show how, when leveraging our reduction as de-
scribed in Section 3, Exp2 can be utilized to provide multi-
criteria guarantees, for accuracy and fairness.
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Theorem 4.2. In the setting of individually fair online learn-
ing with one-sided feedback (Algorithm 1), running Exp2 for
contextual combinatorial semi-bandits (Algorithm 2) while
using the sequence (at, ℓt)Tt=1 generated by the reduction in
Algorithm 3 (when invoked on each round using x̄t, ȳt, ht,
ρt, and C = T

1
5 ), yields the following regret guarantees,

for any ϵ ∈ [0, α], simultaneously:

1. Accuracy:

Regreterr(Exp2, T,Qα−ϵ,γ) ≤ O
(
k

3
2T

4
5 log |H| 12

)
.

2. Fairness:
T∑

t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t) ≤ O

(
1

ϵ
k

3
2T

4
5 log |H| 12

)
.

While presenting statistically optimal performance in terms
of its dependence on the number of rounds and the cardinal-
ity of the hypothesis class, Exp2 is in general computation-
ally inefficient, with runtime and space requirements that
are linear in |H|, which is prohibitive for large hypothesis
classes. We hence next propose an oracle-efficient algo-
rithm, based on a combinatorial semi-bandit variant of the
classical Follow-The-Perturbed-Leader (FTPL) algorithm
(Kalai and Vempala, 2005; Hannan, 1957).

4.2. Context-Semi-Bandit-FTPL

Context-Semi-Bandit-FTPL assumes access to two key com-
ponents: an offline optimization oracle for the base class H,
and a small separator set for H. The optimization oracle as-
sumption is simply equivalent to access to a weighted ERM
oracle for H (we elaborate on the adaptation in Appendix
D). We next describe the small separator set assumption.

Definition 4.3 (Separator set). We say S ⊆ X is a separator
set for a class H : X → {0, 1}, if for any two distinct
hypotheses h, h′ ∈ H, there exists x ∈ S s.t. h(x) ̸= h′(x).
We denote s := |S| the size of the separator set.

Remark 4.4. Classes for which small separator sets are
known include conjunctions, disjunctions, parities, decision
lists, discretized linear classifiers. Please see an elaborate
discussion in Syrgkanis et al. (2016); Neel et al. (2019).

Theorem 4.5 (via Syrgkanis et al. (2016)). The expected
regret of Context-Semi-Bandit-FTPL in the contextual com-
binatorial semi-bandit setting, against any adaptively and
adversarially chosen sequence of contexts and linear, non-
negative losses such that ∥ℓt∥∗ ≤ 1, is at most:

Regret(T ) ≤ O
(
k

7
4 s

3
4T

2
3 log |H|

1
2

)
.

We note that Context-Semi-Bandit-FTPL does not, at any
point, maintain its deployed distribution over the class H
explicitly. Instead, on each round, it “samples” a hypothesis

according to such (implicit) distribution — where the pro-
cess of perturbing then solving described above can equiv-
alently be seen as sampling a single hypothesis from such
underlying distribution over H.

Resampling-based adaptation For our purposes, how-
ever, we will have to adapt the implementation of Context-
Semi-Bandit-FTPL so that the process of sampling the hy-
pothesis at each round is repeated, and we are able to form
an empirical estimate of the implicit distribution. This is
required for two reasons: first, as we wish to compete with
the best fair policy in ∆H, rather than only with the best fair
classifier in H (We elaborate on this in Appendix D.2, and
in Lemma D.4). Second, as it is observed in general (see,
e.g. the discussion in Neu and Bartók (2013)), the specific
weights this implicit distribution places on each of h ∈ H
cannot be expressed in closed-form. In Appendix D, We
construct an adaptation, Context-Semi-Bandit-FTPL-With-
Resampling, which is based on resampling the hypothesis
R times and deploying the empirical estimate π̂t of the (im-
plicit) distribution πt. This adaptation is summarized in
Appendix D, and yields the following guarantees.

Theorem 4.6. In the setting of individually fair online learn-
ing with one-sided feedback (Algorithm 1), running Context-
Semi-Bandit-FTPL-With-Resampling for contextual combi-
natorial semi-bandit (Algorithm 5) as specified in Algorithm
4, with R = T , and using the sequence (ℓt, at)Tt=1 gen-
erated by the reduction in Algorithm 3 (when invoked on
each round using x̄t, ȳt, ĥt, ρ̂t, and C = T

4
45 ), yields, with

probability 1− δ, the following regret guarantees, for any
ϵ ∈ [0, α], simultaneously:

Accuracy: Regreterr(CSB-FTPL-WR, T,Qα−ϵ,γ)

≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
.

Fairness:
T∑

t=1

Unfairα,γ(π̂t, x̄t, ȳt, j̄t)

≤ Õ

(
1

ϵ
k

11
4 s

3
4T

41
45 log |H| 12

)
.

5. Limitations and Future Directions
We next discuss limitations and future directions. First, the
Exp2 algorithm has runtime and space requirements that
are linear in |H|, which is prohibitive for large hypothesis
classes. Context-Semi-Bandit-FTPL is oracle-efficient, but
is limited only to classes for which small separator sets are
known. We inherit these limitations from the contextual
bandit literature — they hold even without the addition-
ally encoded fairness constraints. Second, our adaptation
of Context-Semi-Bandit-FTPL requires T additional oracle
calls at each iteration, to estimate the implicit distribution
by the learner. Taken together, these limitations suggest the
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following important open question: are there efficient algo-
rithms which can provide accuracy and fairness guarantees
of the sort we give here using one-sided feedback with audi-
tors, which are not restricted by the limitations above? This
question is interesting also in less adversarial settings than
we consider here. For example, do things become easier if
the panel is selected i.i.d. from a distribution every round,
rather than being chosen by an adversary?
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A. Additional Related Work
Our work is related to two strands of literature: learning with one-sided feedback, and individual fairness in machine
learning. Despite the prevalence of the problem across a wide variety of domains, there has been relatively little work in the
one-sided feedback model for binary classification that we consider. The problem of learning from positive-prediction-only
feedback first appeared in Helmbold et al. (2000), under the name of “apple tasting”. Subsequently, Cesa-Bianchi et al.
(2006) studied a generalization of the one-sided feedback setting, in which the feedback at each round is a function of the
combined choice of two players. Follow-up work by Antos et al. (2013) showed that it is possible to reduce the online
one-sided feedback setting to the better studied contextual bandit problem. In the context of algorithmic fairness, Bechavod
et al. (2019) considers a stochastic online setting with one-sided feedback, in which the aim is to learn a binary classifier
while enforcing the statistical fairness condition of “equal opportunity” (Hardt et al., 2016). Coston et al. (2021) operate
in a batch setting with potentially missing labels due to one-sided feedback in historical decisions, and attempt to impute
missing labels using statistical techniques.

Dwork et al. (2012) introduced the notion of individual fairness. In their formulation, a similarity metric is explicitly
given, and they ask that predictors satisfy a Lipschitz condition (with respect to this metric) that roughly translates into the
condition that “similar individuals should have similar distributions over outcomes”. Rothblum and Yona (2018) give a
statistical treatment of individual fairness in a batch setting with examples drawn i.i.d. from some distribution, and prove
PAC-style generalization bounds for both accuracy and individual fairness violations. Ilvento (2020) suggests learning
the similarity metric from human arbiters, using a hybrid model of comparison queries and numerical distance queries.
Kim et al. (2018) study a group-based relaxation of individual fairness, while relying on access to an auditor returning
unbiased estimates of distances between pairs of individuals. Jung et al. (2021) consider a batch setting, with a fixed set of
“stakeholders” which provide fairness feedback regarding pairs of individuals in a somewhat different model of fairness, and
give oracle-efficient algorithms and generalization bounds. Gupta and Kamble (2019) study a time-dependent variant of
individual fairness they term “individual fairness in hindsight”.

The papers most related to ours are Gillen et al. (2018) and Bechavod et al. (2020). Gillen et al. (2018) introduces the idea
of online learning with human auditor feedback as an approach to individual fairness, but give algorithms that are limited to
a single auditor that makes decisions with respect to a restrictive parametric form of fairness metrics in the full information
setting. Bechavod et al. (2020) generalize this to a much more permisive definition of a human auditor, but still operate in
the full information setting and are limited to single human auditors. See Appendix A for additional related work.

B. From Panels to Single Auditors
In this section, we prove a reduction from auditing by panels to auditing by single auditors. In particular, we prove that the
decisions of any panel are equivalent to the decisions of a single auditor from the panel. We note that when considering
the space of auditors, it is not possible in general to fully order or compare the level of strictness of different auditors,
as some may be stricter than others on different regions of the space of pairs from X 2, and this order may be reversed
when considering different regions. For illustration, consider the following example: let X = {x1, x2, x3},J = {j1, j2}
and assume that dj

1

(x1, x2) > dj
2

(x1, x2), and dj
1

(x2, x3) < dj
2

(x2, x3). In the context of this example, asking who is
stricter or who is more lenient among the auditors, in an absolute sense, is undefined.

However, as we restrict the attention to a single pair (x, x′), such a task becomes feasible. Namely, in spite of the fact
that we do not have access to auditors’ underlying distance measures (we only observe feedback regarding violations), we
know that there is an implicit ordering among the auditors’ level of strictness with respect to that specific pair. The idea is
to then utilize this (implicit) ordering to argue that a panel’s judgements with respect to this pair are in fact equivalent to
the judgements of a specific single auditor from the panel, which can be viewed as a “representative auditor”, having the
“swing-vote” among the panel. We formalize the argument in Lemma B.1.

Lemma B.1. Let (x, x′) ∈ X 2, (j1, ..., jm) ∈ Jm. Then, the following are equivalent, for all π ∈ ∆H:

1. π has an (α, γ)-violation on (x, x′) with respect to panel j̄α,γj1,...,jm .

2. π has an α-violation on (x, x′) with respect to auditor js, where s = sx,x′(j1, . . . , jm) is an index in [m].

Proof of Lemma B.1. Fix (x, x′). Then, we can define an ordering of (j1, ..., jm) according to their (underlying) distances
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dj
i

(x, x′)dj
s
x,x′ (j1,...,jm)

(x, x′)

Most Strict

0

“Swing Vote” Auditor Most Lenient

1

α-violation w.r.t. auditor jsx,x′ (j1,...,jm) ⇔
α-violation w.r.t. each of the auditors in the interval

Figure 1. An illustration of an ordering of a panel of auditors (j1, . . . , jm) according to their (implicit) distances on (x, x′).
jsx,x′ (j1,...,jm) denotes the auditor who is in the ⌈γm⌉ position in this ordering, which can also be viewed as having the “swing
vote” with respect to deciding an (α, γ)-violation in this instance.

on (x, x′),

dj
i1
(x, x′) ≤ · · · ≤ dj

im
(x, x′). (1)

Then, set

s := sx,x′(j1, ..., jm) = argmin
s′

{
s′ ∈ [m] :

s′

m
≥ γ

}
. (2)

Note that s in eq. (2) is well-defined, since γ ≤ 1.

We also note that, using the ordering defined in eq. (1), for any r ∈ [m],

π(x)− π(x′) > dj
ir
(x, x′) + α =⇒ ∀r′ ≤ r : π(x)− π(x′) > dj

i
r′ (x, x′) + α. (3)

Hence, when considering a random variable indicating an (α, γ)-violation, we know that

1

[[
1

m

m∑
i=1

1

[
π(x)− π(x′)− dj

i

(x, x′) > α
]]

≥ γ

]

= 1

[[
1

m

s∑
i=1

1

[
π(x)− π(x′)− dj

s

(x, x′) > α
]]

≥ γ

]
(by eq. (2) and eq. (3))

= 1

[[
1

[
π(x)− π(x′)− dj

s

(x, x′) > α
] s

m

]
≥ γ

]
(by eq. (1))

= 1

[
π(x)− π(x′)− dj

s

(x, x′) > α
]

(by eq. (2)).

Which concludes the proof.

C. Omitted Details from Section 3
In what follows, we denote k′ = k + 2C.

Lemma C.1. For all π, π′ ∈ ∆H, x̄t ∈ X k, ȳt ∈ {0, 1}k,

LC,ρt(π, x̄t, ȳt)− LC,ρt(π′, x̄t, ȳt) =

k′∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)−
k′∑
i=1

Error(π′, ¯̄xt,i, ¯̄yt,i).
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Proof. Observe that

LC,ρt(π, x̄t, ȳt)− LC,ρt(π′, x̄t, ȳt)

= Error(π, x̄t, ȳt) + C ·
[
π(ρt,1)− π(ρt,2)

]
− Error(π′, x̄t, ȳt)− C ·

[
π′(ρt,1)− π′(ρt,2)

]
=

k∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i) +

k+C∑
i=k+1

π(ρt,1)− π′(ρt,1) +

k+2C∑
i=k+C+1

1− π(ρt,2)− 1 + π′(ρt,2)

=

k∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i) +

k+C∑
i=k+1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i)

+

k+2C∑
i=k+C+1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i)

=

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt).

Which proves the lemma.

Lemma C.2. For all π, π′ ∈ ∆H, ¯̄xt ∈ X k′
,¯̄yt ∈ Yk′

,

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt) = 2

[
E

h∼π

[
⟨ah, ℓt⟩

]
− E

h′∼π′

[
⟨ah

′
, ℓt⟩

]]
.

Proof. Observe that

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt)

=

 k′∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i) + 1
[
¯̄yt,i = 0

]−

 k′∑
i=1

Error(π′, ¯̄xt,i, ¯̄yt,i) + 1
[
¯̄yt,i = 0

]
= 2

[〈(
π(¯̄xt,1), . . . , π(¯̄xt,k′

), 1− π(¯̄xt,1), . . . , 1− π(¯̄xt,k′
)
)
,
(
1− ¯̄yt,1, . . . , 1− ¯̄yt,k

′
, 1/2, . . . , 1/2

)〉
−
〈(

π′(¯̄xt,1), . . . , π′(¯̄xt,k′
), 1− π′(¯̄xt,1), . . . , 1− π′(¯̄xt,k)

)
,
(
1− ¯̄yt,1, . . . , 1− ¯̄yt,k

′
, 1/2, . . . , 1/2

)〉]
= 2

[
E

h∼π

[
⟨ah, ℓt⟩

]
− E

h′∼π′

[
⟨ah

′
, ℓt⟩

]]
.

Where the last transitions stems from the linearity of Error(·, ¯̄xt, ¯̄yt). This concludes the proof.
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Proof of Theorem 3.2. We can see that

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈V

T∑
t=1

LC,ρt(π∗, x̄t, ȳt)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈∆H

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) (V ⊆ ∆H)

=

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈H

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) (Linearity of LC,ρt(·, x̄t, ȳt)

= 2

[
T∑

t=1

E
ht∼πt

[
⟨ah

t

, ℓt⟩
]
− min

π∗∈H

T∑
t=1

E
h∗∼π∗

[
⟨ah

∗
, ℓt⟩

]]
. (Lemma C.1+Lemma C.2)

= 2(2k + 4C)RA,T,H (∀t ∈ [T ] : ℓt ∈ [0, 2k + 4C]).

Which concludes the proof.

Proof of Lemma 3.4. To prove the lemma, it is sufficient to prove that for every π∗ ∈ Qα−ϵ,γ ,

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t) +

T∑
t=1

Error(πt, x̄t, ȳt)−
T∑

t=1

Error(π∗, x̄t, ȳt)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)−
T∑

t=1

LC,ρt(π∗, x̄t, ȳt).

Which, using Definition 2.7, is equivalent to proving that

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t) ≤
T∑

t=1

C ·
[
πt(ρt,1)− πt(ρt,2)

]
−

T∑
t=1

C ·
[
π∗(ρt,1)− π∗(ρt,2)

]
.

We consider two cases:

1. For rounds t where the panel j̄t did not detect any (α, γ)-fairness violations, the left hand side of the inequality is 0,
and so is the right hand side, since ρt,1 = ρt,2.

2. For rounds t where the panel j̄t detected an (α, γ)-violation, the left hand side is equal to Cϵ, and the right hand side is
at least Cϵ, since, using Lemma B.1, we know

πt(ρt,1)− πt(ρt,2) > dsρt,1,ρt,2 (j
t,1,...,jt,m)(ρt,1, ρt,2) + α,

−(π∗(ρt,1)− π∗(ρt,2)) ≥ ϵ− α− min
r∈[T ]

dsρt,1,ρt,2 (j
r,1,...,jr,m)(ρt,1, ρt,2).

And hence,

πt(ρt,1)− πt(ρt,2)− (π∗(ρt,1)− π∗(ρt,2))

≥ dsρt,1,ρt,2 (j
t,1,...,jt,m)(ρt,1, ρt,2) + α+ ϵ− α− min

r∈[T ]
dsρt,1,ρt,2 (j

r,1,...,jr,m)(ρt,1, ρt,2)

≥ ϵ.

The lemma hence follows.
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D. Omitted Details from Section 4
D.1. Accuracy and Fairness Regret Rates of Exp2

Proof of Theorem 4.2. Combining Theorems 3.2, 4.1, we know that

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
.

Setting C = T
1
5 , and using Lemma 3.4, we get

Regreterr(Exp2, T,Qα−ϵ,γ) ≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
− Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t)

≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
≤ O

(
k

3
2T

4
5 log |H| 12

)
.

And,

T∑
t=1

Unfairα,γ(πt, x̄t, ȳt, j̄t) ≤ 1

Cϵ

[
O
(
(2k + 4C)

3
2

√
T log |H|

)
−Regreterr(Exp2, T,Qα−ϵ,γ)

]
≤ 1

Cϵ

[
O
(
(2k + 4C)

3
2

√
T log |H|

)
+ kT

]
≤ O

(
1

ϵ
k

3
2T

4
5 log |H| 12

)
.

D.2. Adaptation of Context-Semi-Bandit-FTPL

We next describe an adaptation of Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016) to our setting. Context-Semi-Bandit-
FTPL relies on the class H having a small separator set.

Definition D.1 (Separator set). We say S ⊆ X is a separator set for a class H : X → {0, 1}, if for any two distinct
hypotheses h, h′ ∈ H, there exists x ∈ S s.t. h(x) ̸= h′(x). We denote s := |S| the size of the separator set.

Remark D.2. Classes for which small separator sets are known include conjunctions, disjunctions, parities, decision lists,
discretized linear classifiers. Please see an elaborate discussion in Syrgkanis et al. (2016); Neel et al. (2019).

Context-Semi-Bandit-FTPL further relies on access to an (offline) optimization oracle for the corresponding problem
(equivalent to a weighted ERM oracle), which we define next.

Definition D.3 (Optimization oracle). Context-Semi-Bandit-FTPL assumes access to oracle of the form

M((¯̄xt)Nt=1, (ℓ̂
t)Nt=1) = argmin

h∈H
L(h, (¯̄xt, ℓ̂t)),

where ℓ̂t denotes the loss estimates held by Context-Semi-Bandit-FTPL for round t, and L denotes the cumulative loss, over
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linear loss functions of the form f t(a) = ⟨a, ℓ⟩. In our construction, this is equivalent to

argmin
h∈H

L(ht, (¯̄xt, ℓ̂t))

:= argmin
h∈H

N∑
t=1

〈
ath, ℓ̂

t
〉

(Definition of L)

= argmin
h∈H

N∑
t=1

k+2C∑
i=1

h(¯̄xt,i) · ℓ̂t,i + (1− h(¯̄xt,i)) · 1
2

(Algorithm 3)

= argmin
h∈H

N∑
t=1

k+2C∑
i=1

h(¯̄xt,i) · (ℓ̂t,i − 1

2
) (Subtraction of constant).

In broad strokes, Context-Semi-Bandit-FTPL operates by, at each round, first sampling a set of “fake” samples zt, that is
added to the history of observed contexts and losses by the beginning of round t, denoted by Ht. The algorithm then invokes
the optimization oracle on the extended set zt ∪Ht, and deploys ht ∈ H that is returned by the oracle.

Equivalently, this process can be seen as the learner, at each round t, (implicitly) deploying a distribution over hypotheses
from the base class H, denoted by πt, then sampling and deploying a single hypothesis ht ∼ πt. As it is observed in general
(see, e.g. the discussion in Neu and Bartók (2013)), the specific weights this implicit distribution places on each of h ∈ H
on any given round cannot be expressed in closed-form. Instead, FTPL-based algorithms resort to sampling actions from the
distribution, leveraging the linearity of the loss function in obtaining expected regret guarantees.

For our purposes, however, such a method of assessing the loss on single realized hypotheses ht from πt could be problematic,
since we rely on the panel j̄t reporting its feedback upon observing the actual distribution πt. Querying the panel instead
using realizations ht ∼ πt could lead to an over-estimation of the unfairness loss, as we demonstrate next.

Lemma D.4. There exist α, γ,m, k > 0, H : X → {0, 1}, (x, x′) ∈ X 2, j̄ : X k → X 2, and π ∈ ∆H for which,
simultaneously,

1. E
h∼π

[unfairα,γ(h, x̄, ȳ, j̄)] = 1.

2. unfairα,γ(π, x̄, ȳ, j̄) = 0.

We defer the proof of Lemma D.4 to the end of this section.

We therefore adapt Context-Semi-Bandit-FTPL to our setting by adding a resampling process at each iteration of the
algorithm. Our approach is similar in spirit to the resampling-based approach in (Bechavod et al., 2020) (which offer an
adaptation for the full information variant of the algorithm), however, unlike their suggested scheme, which requires further
restricting the power of the adversary to, at each round t, to not depend on the policy πt deployed by the learner (instead,
they only allow dependence on the history of the interaction until round t− 2), the adaptation we next propose would not
require such a relaxation.

We next abstract out the implementation details of the original Context-Semi-Bandit-FTPL that remain unchanged (namely,
the addition of “fake” samples, and solving of the resulting optimization problem at the beginning of each round, and the
loss estimation process at the end of it), to focus on the adaptation.

Our adaptation will work as follows: the learner first initializes Context-Semi-Bandit-FTPL-With-Resampling with a
pre-computed separator set S for H. Then, at each round t, the learner (implicitly) deploys πt according to Context-Semi-
Bandit-FTPL-With-Resampling. The environment then selects individuals x̄t and their labels ȳt, only revealing x̄t to the
learner. The environment proceeds to select a panel of auditors (jt,1, . . . , jt,m). The learner invokes Context-Semi-Bandit-
FTPL-With-Resampling and receives an estimated policy π̂t, and a realized predictor ĥt sampled from π̂t. The learner
then predicts the arriving individuals x̄t using ĥt, only observing feedback on positively labelled instances. The panel then
reports its feedback ρ̂t on (π̂t, x̄t). The learner invokes the reduction (Algorithm 3), using x̄t, ȳt, ĥt, ρ̂t, and C, and receives
(ℓt, at). The learner updates Context-Semi-Bandit-FTPL-With-Resampling with (ℓt, at) and lets it finish the loss estimation
process and deploy the policy for the next round. Finally, the learner suffers misclassification loss with respect to ĥt, and
unfairness loss with respect to π̂t. The interaction is summarized in Algorithm 4.
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Algorithm 4 Utilization of Context-Semi-Bandit-FTPL
Parameters: Class of predictors H, number of rounds T , separator set S, parameters ω, L;
Initialize Context-Semi-Bandit-FTPL-With-Resampling(S, ω, L);
Learner deploys π1 ∈ ∆H according to Context-Semi-Bandit-FTPL-With-Resampling;
for t = 1, . . . , T do

Environment selects individuals x̄t ∈ X k, and labels ȳt ∈ Yk, learner only observes x̄t;
Learner selects panel of auditors (jt,1, . . . , jt,m) ∈ Jm;
(π̂t, ĥt) = Context-Semi-Bandit-FTPL-With-Resampling(x̄t, ω, L);
Learner predicts ŷt,i = ht(x̄t,i) for each i ∈ [k], observes ȳt,i iff ŷt,i = 1;
Panel reports its feedback ρt = j̄t,α,γj1,...,jm(π̂t, x̄t);

(ℓt ,at) = Reduction(x̄t, ȳt, ĥt, ρt, C);
Update Context-Semi-Bandit-FTPL-With-Resampling with (ℓt ,at);
Learner suffers misclassification loss Error(ĥt, x̄t, ȳt) (not necessarily observed by learner);
Learner suffers unfairness loss Unfair(π̂t, x̄t, ȳt, j̄t);
Learner deploys πt+1 ∈ ∆H according to Context-Semi-Bandit-FTPL-With-Resampling;

end for

Algorithm 5 Context-Semi-Bandit-FTPL-With-Resampling(S, ω, L)
Parameters: Class of predictors H, number of rounds T , optimization oracle M , separator set S, parameters ω, L;
for t = 1, . . . , T do

for r = 1, . . . , R do
Sample predictor ht,r according to Dt;

end for
Set and report π̂t = U(ht,1, . . . , ht,R), ĥt ∼ π̂t;
Receive back (ℓt, at) from reduction;
Continue as original Context-Semi-Bandit-FTPL;

end for

As for the resampling process we add to the original Context-Semi-Bandit-FTPL: at each round we define “sampling from
Dt” to refer to the process of first sampling the additional “fake” samples to be added, and then solving the resulting
optimization problem over the original and the “fake” samples, to produce a predictor ht,r. We repeat this process R times,
to produce an empirical distribution π̂t, and select a single predictor ĥt from it, which are reported to the learner. Once
receiving back (ℓt, at) from the learner, Context-Semi-Bandit-FTPL-With-Resampling proceeds to perform loss estimation,
as well as selecting the next policy, in a similar fashion to the original version of Context-Semi-Bandit-FTPL. This adaptation
is summarized in Algorithm 5.

We note that for the described adaptation, we will next prove accuracy and fairness guarantees for the sequence of estimated
policies, (π̂t)Tt=1, rather than for the underlying policies (πt)Tt=1. One potential issue with this approach is that the
Lagrangian loss at each round is defined using the panel’s reported pair ρt, which is assumed to be reported with respect to
πt. Here, we instead consider the Lagrangian loss using ρ̂t, which is based on the realized estimation π̂t. However, this
issue can be circumvented with the following observation: on each round, there are k2 options for selecting ρt, which are
simply all pairs in x̄t. We will prove next, that since resampling for ρ̂t is done after x̄t is fixed, with high probability, the
Lagrangian loss for each of πt and π̂t will take values that are close to each other, when defined using any possible pair
ρ̂t from x̄t. Hence, by allowing the adversary the power to specify ρ̂t after π̂t is realized, we do not lose too much. We
formalize this argument next.

Theorem D.5. In the setting of (adapted) individually fair online learning with one-sided feedback (Algorithm 4), running
Context-Semi-Bandit-FTPL-With-Resampling (Algorithm 5) with L = T

1
3 , and optimally selected ω, using the sequence

(at, ℓt)Tt=1 generated by the reduction in Algorithm 3 (when invoked every round on x̄t, ȳt, ĥt, ρ̂t, and C), yields the
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following guarantee, for any U ⊆ ∆H,

T∑
t=1

LC,ρ̂t(π̂t, x̄t, ȳt)− min
π∗∈U

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)

+ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

In order to prove Theorem D.5, we will first prove the following lemma, regarding the difference of losses between the
underlying πt and the estimated π̂t.
Lemma D.6. With probability 1− δ (over the draw of (ht,1, . . . , ht,R)Tt=1), for any arbitrary sequence of reported pairs
(ρt)Tt=1,

T∑
t=1

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

Proof. Using Chernoff bound, we can bound the difference in predictions between the underlying and the estimated
distributions, for each of the contexts context in x̄t, for any round t:

∀t ∈ [T ], i ∈ [k] : Pr

∣∣π̂t(x̄t,i)− πt(x̄t,i)
∣∣ ≥

√
log

(
2kT
δ

)
2R

 ≤ δ

kT
.

Union bounding over all rounds, and each of the contexts in a round, we get that, with probability 1− δ,

∀t ∈ [T ], i ∈ [k] :
∣∣π̂t(x̄t,i)− πt(x̄t,i)

∣∣ ≤
√

log
(
2kT
δ

)
2R

.

Hence, when considering pairs of individuals, and using triangle inequality, we know that with probability 1− δ,

∀t ∈ [T ], i, j ∈ [k] :
∣∣[π̂t(x̄t,i)− π̂t(x̄t,j)

]
−

[
πt(x̄t,i)− πt(x̄t,j)

]∣∣ ≤ 2

√
log

(
2kT
δ

)
2R

.

Hence, by construction of the losses and actions sequence (using the reduction in Algorithm 3 with respect to ρ̂t), with
probability 1− δ,

∀t ∈ [T ], ρ̂t ∈ x̄t :

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)

√
log

(
2kT
δ

)
2R

.

Summing over rounds, with probability 1− δ, for any arbitrary sequence of reported pairs (ρt)Tt=1,

T∑
t=1

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

Which concludes the proof of the lemma.

We are now ready to prove the regret bound of Context-Semi-Bandit-FTPL-With-Resampling.

Proof of Theorem D.5. Note that by the guarantees of Context-Semi-Bandit-FTPL, and since ∥ℓt∥∗ ≤ 2k + 4C, for any
arbitrary sequence (ρt)Tt=1,

2

[
T∑

t=1

E
ht∼πt

[
⟨ah

t

, ℓt⟩
]
− min

π∗∈∆H

T∑
t=1

E
h∗∼π∗

[
⟨ah

∗
, ℓt⟩

]]
≤ O

(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)
.
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Using Lemma D.6 and the triangle inequality, we conclude

T∑
t=1

LC,ρ̂t(π̂t, x̄t, ȳt)− min
π∗∈U

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)

+ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

Proof of Theorem 4.6. Using Theorem D.5 with C = T
4
45 , R = T

38
45 , we know that, with probability 1− δ,

T∑
t=1

LC,ρ̄t(π̂t, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ Õ
(
k

11
4 s

3
4T

41
45 log |H|

1
2

)
.

Using Lemma 3.4, we get, with probability 1− δ,

Regreterr(CSB-FTPL-WR, T,Qα−ϵ,γ) ≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
−

T∑
t=1

Unfairα,γ(π̂t, x̄t, ȳt, j̄t)

≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
.

And,
T∑

t=1

Unfairα,γ(π̂t, x̄t, ȳt, j̄t) ≤ 1

Cϵ

[
Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
−Regreterr(T )

]
≤ 1

Cϵ

[
Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
+ kT

]
≤ Õ

(
1

ϵ
k

11
4 s

3
4T

41
45 log |H| 12

)
.

Proof of Lemma D.4. We set α = 0.2, γ = 1 and k = 2. We define the context space to be X = {x, x′} (each with label 1),
and the hypothesis class as H = {h, h′}, where h(x) = h′(x′) = 1, and h(x′) = h′(x) = 0. We set m = 1, and the panel
j̄, that hence consists of a single auditor, to reflect the judgements of j, where dj(x, x′) = 0.1. Define π ∈ ∆H as h with
probability 0.5, and as h′ with probability 0.5.

We denote x̄ = (x, x′), ȳ = (1, 1).

Next, note that

h(x)− h(x′) = 1 > 0.3 = dj(x, x′) + α,

h′(x′)− h′(x) = 1 > 0.3 = dj(x, x′) + α.

Hence,
E

h∼π
[unfairα,γ(h, x̄, ȳ, j̄)] = 0.5unfairα,γ(h, x̄, ȳ, j̄) + 0.5unfairα,γ(h′, x̄, ȳ, j̄) = 1.

On the other hand,
π(x)− π(x′) = π(x′)− π(x) = 0 < 0.3 = dj(x, x′) + α.

Hence,
unfairα,γ(π, x̄, ȳ, j̄) = 0.

Which proves the lemma.


