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Why adversarial training can hurt robust accuracy
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Abstract

Machine learning classifiers with high test accu-
racy often perform poorly under adversarial at-
tacks. It is commonly believed that adversarial
training alleviates this issue. In this paper, we
demonstrate that, surprisingly, the opposite can
be true for a natural class of perceptible pertur-
bations — even though adversarial training helps
when enough data is available, it may in fact hurt
robust generalization in the small sample size
regime. We first prove this phenomenon for a
high-dimensional linear classification setting with
noiseless observations. Using intuitive insights
from the proof, we could surprisingly find per-
turbations on standard image datasets for which
this behavior persists. Specifically, it occurs for
perceptible attacks that effectively reduce class
information such as object occlusions or corrup-
tions.

1. Introduction
Today’s best-performing classifiers are vulnerable to adver-
sarial attacks (Goodfellow et al., 2015; Szegedy et al., 2014)
and exhibit high robust error: for many inputs, their predic-
tions change under adversarial perturbations, even though
the true class stays the same. Such content-preserving
(Gilmer et al., 2018), consistent (Raghunathan et al., 2020)
attacks can be either perceptible or imperceptible. For image
datasets, most work to date studies imperceptible attacks
that are based on perturbations with limited strength or
attack budget. These include bounded `p-norm perturba-
tions (Goodfellow et al., 2015; Madry et al., 2018; Moosavi-
Dezfooli et al., 2016), small transformations using image
processing techniques (Ghiasi et al., 2019; Zhao et al., 2020;
Laidlaw et al.; Luo et al., 2018) or nearby samples on the
data manifold (Lin et al., 2020; Zhou et al., 2020). Even
though they do not visibly change the image by definition,
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Figure 1. On subsampled CIFAR-10 attacked by 2×2 masks,
adversarial training yields higher robust error than standard
training when the sample size is small, even though it helps
for large sample sizes. (see App. E for details).

imperceptible attacks can often successfully fool a learned
classifier.

On the other hand, perturbations that naturally occur and
are physically realizable are commonly perceptible. Some
perceptible perturbations specifically target the object to be
recognized: these include occlusions (e.g. stickers placed
on traffic signs (Eykholt et al., 2018) or masks of differ-
ent sizes that cover important features of human faces (Wu
et al., 2020)) or corruptions that are caused by the image
capturing process (animals that move faster than the shutter
speed or objects that are not well-lit, see Figure 2). Oth-
ers transform the whole image and are not confined to the
object itself, such as rotations, translations or corruptions
(Engstrom et al., 2019; Kang et al., 2019). In this paper, we
refer to such perceptible attacks as directed attacks. They
have the distinguishing property to effectively reduce actual
class information in the input without necessarily changing
the true label. For example, a stop sign with a small sticker
could partially cover the text without losing its semantic
meaning. Similarly, a flying bird captured with a long expo-
sure time can induce motion blur in the final image without
becoming unrecognizable to the observer.

In the literature so far, it is widely acknowledged that adver-
sarial training with the same perturbation type and budget
as during test time often achieves significantly lower ad-
versarial error than standard training (Madry et al., 2018;
Zhang et al., 2019; Bai et al., 2021). In contrast, we show
that adversarial training not only increases standard test
error as noted in (Zhang et al., 2019; Tsipras et al.; Stutz
et al.; Raghunathan et al., 2020)), but surprisingly, in the
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(a) Masks (b) Original (c) Lighting (d) Blur (e) Classification of perturbations

Figure 2. Examples of directed attacks on CIFAR10 and the Waterbirds dataset. In Figure 2a, we corrupt the image with a
black mask of size 2× 2 and in Figure 2c and 2d we change the lighting conditions (darkening) and apply motion blur on
the bird in the image respectively. All perturbations reduce the information about the class in the images: they are the result
of directed attacks. (e) Directed attacks are a subset of perceptible attacks.

low-sample regime,

adversarial training may even increase the robust test error
compared to standard training!

Figure 1 illustrates the main message of our paper: although
adversarial training with directed attacks outperforms stan-
dard training when enough training samples are available, it
is inferior when the sample size is small.

Our contributions are as follows:

• We prove that, almost surely, adversarially training
a linear classifier on separable data yields a mono-
tonically increasing robust error as the perturbation
budget grows. We further establish high-probability
non-asymptotic lower bounds on the robust error gap
between adversarial and standard training.

• Our proof provides intuition for why this lower bound
on the gap is particularly large for directed attacks in
the low-sample regime.

• We observe empirically for different directed attacks
on real-world image datasets that this behavior persists:
adversarial training for directed attacks hurts robust
accuracy when the sample size is small.

2. Robust classification
We first introduce our robust classification setting more
formally by defining the notions of adversarial robustness,
directed attacks and adversarial training.

Robust classifiers For inputs x ∈ Rd, we consider multi-
class classifiers associated with parameterized functions
fθ : Rd → RK , where K is the number of labels. For
example, fθ(x) could be a linear model (as in Section 3) or
a neural network (as in Section 4). In the special case of
binary classification (K = 2), the output label predictions
are obtained by y = sign(fθ(x)).

In order to convince practitioners to use machine learning
models in the wild, it is key to demonstrate that they ex-

hibit robustness. One kind of robustness is that they do
not change prediction when the input is subject to small
class-preserving perturbations. Mathematically speaking,
the model should have a small εte-robust error, defined as

Err(θ; εte) := E(x,y)∼P max
x′∈T (x;εte)

`(fθ(x
′), y), (1)

where ` is 0 if the index of the largest value of fθ(x) is equal
to y and 1 otherwise. Further, T (x; εte) is a perturbation
set defined by a transformation type and size εte. Note
that the (standard) error E(x,y)∼P`(fθ(x), y) of a classifier
corresponds to Err(θ; 0).

Directed attacks The inner maximization in Equation (1)
is often called the adversarial attack of the model fθ and
the corresponding solution is referred to as the adversarial
example. In this paper, we consider directed attacks that
effectively reduce the information about the true classes,
with examples for images depicted in Figure 2. For linear
classification, we analyze directed attacks in the form of
additive perturbations that are constrained to the direction of
the optimal decision boundary (see details in Section 3.1).

Adversarial training A common approach to obtain classi-
fiers with a good robust accuracy is to minimize the training
objective Lεtr with a surrogate robust classification loss L

Lεtr(θ) :=
1

n

n∑
i=1

max
x′i∈T (xi;εtr)

L(fθ(x
′
i)yi), (2)

also called adversarial training. In practice, we often use the
cross entropy loss L(z) = log(1 + e−z) and minimize the
robust objective by using first order optimization methods
such as (stochastic) gradient descent (SGD). SGD is also
the algorithm that we focus on in both the theoretical and
experimental sections. When the desired type of robustness
is known in advance, it is standard practice to use the same
perturbation set for training as for testing, i.e. T (x; εtr) =
T (x; εte). For example, Madry et al. (2018) show that the
robust error sharply increases for εtr < εte. In this paper, we
demonstrate that for directed attacks in the small sample
size regime, in fact, the opposite is true.
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(a) Robust error increase with εtr (b) Overparameterization effect (c) Robust error decomposition (d) Intuition in 2D

Figure 3. Experimental verification of Theorem 3.1. (a) We set d = 1000, r = 12 and n = 50. The robust error gap between
standard and adversarial training in function of the adversarial budget εtr. (b) For d = 10000, the robust error gap and the
lower bound of Theorem 3.1. (c) The robust error decomposition into susceptibility and standard error as a function of the
adversarial budget εtr. For experimental details see Appendix C. (d) 2D illustration providing intuition for the linear setting.
The effect of adversarial training with directed attacks is captured in the yellow dotted lines: adversarially perturbed training
points move closer to the true boundary which in turn tilts the decision boundary more heavily in the wrong direction.

3. Theoretical results
In this section, we prove for linear functions fθ(x) = θ>x
that in the case of directed attacks, robust generalization
deteriorates with increasing εtr. The proof, albeit in a simple
setting, provides explanations for why adversarial training
fails in the high-dimensional regime for such attacks.

3.1. Setting

We now introduce the precise linear setting used in our
theoretical results.

Data model In this section, we assume that the ground
truth and hypothesis class are given by linear functions
fθ(x) = θ>x and the sample size n is lower than the ambi-
ent dimension d. In particular, the generative distribution Pr
is similar to (Tsipras et al.; Nagarajan & Kolter, 2019): The
label y ∈ {+1,−1} is drawn with equal probability and the
covariate vector is sampled as x = [y r2 , x̃] with the random
vector x̃ ∈ Rd−1 drawn from a standard normal distribution,
i.e. x̃ ∼ N (0, σ2Id−1). We would like to learn a classifier
that has low robust error by using a dataset D = (xi, yi)

n
i=1

with n i.i.d. samples from Pr.

Notice that the distribution Pr is noiseless: for a given input
x, the label y = sign(x[1]) is deterministic. Further, the
optimal linear classifier (also referred to as the ground truth)
is parameterized by θ? = e1.1 By definition, the ground
truth is robust against all consistent perturbations and hence
so is the optimal robust classifier.

Directed attacks The focus in this paper lies on consistent
directed attacks that by definition efficiently concentrate
their attack budget to reduce the class information. For our
linear setting this information lies in the first entry. Hence,
we can model such attacks by additive perturbations in the

1Note that the result more generally holds for non-sparse mod-
els that are not axis aligned by way of a simple rotation z = Ux.
In that case the distribution is characterized by θ? = u1 and a
rotated Gaussian in the d− 1 dimensions orthogonal to θ?.

first dimension

T (x; ε) = {x′ = x+ δ | δ = βe1 and − ε ≤ β ≤ ε}. (3)

Note that this attack is always in the direction of the true
signal dimension, i.e. the ground truth. Furthermore, when
ε < r

2 , it is a consistent directed attack. Observe how this
is different from `p-attacks - an `p attack, depending on the
model, may add a perturbation that only has a very small
component in the signal direction.

Robust max-`2-margin classifier A long line of work stud-
ies the implicit bias of interpolators that result from applying
stochastic gradient descent on the logistic loss until conver-
gence (Liu et al., 2020; Ji & Telgarsky, 2019; Chizat &
Bach, 2020; Nacson et al., 2019). For linear models, we
obtain the εtr-robust maximum-`2-margin solution (robust
max-margin in short)

θ̂εtr := arg max
‖θ‖2≤1

min
i∈[n],x′i∈T (xi;εtr)

yiθ
>x′i. (4)

This has been shown in Theorem 3.4 in (Li et al., 2020).
Even though our result is proven for the max-`2-margin
classifier, it can easily be extended to other interpolators.

3.2. Main results

We are now ready to characterize the εte-robust error as a
function of εtr, the separation r, the dimension d and sample
size n of the data. In the theorem statement we use the
following quantities

ϕmin =
σ

r/2− εte

(√
d− 1

n
−

(
1 +

√
2 log(2/δ)

n

))

ϕmax =
σ

r/2− εte

(√
d− 1

n
+

(
1 +

√
2 log(2/δ)

n

))
that arise from concentration bounds for the singular values
of the random data matrix. Further, let ε̃ := r

2 −
ϕmax√

2
and denote by Φ the cumulative distribution function of a
standard normal.
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Theorem 3.1. Assume d − 1 > n. For any εte ≥ 0, the
εte-robust error on test samples from Pr with 2εte < r and
perturbation sets in Equation (3) , the following holds:

1. The εte-robust error of the εtr-robust max-margin esti-
mator reads

Err(θ̂εtr ; εte) = Φ

(
−
(
r
2 − εtr

)
ϕ̃

)
(5)

for a random quantity ϕ̃ > 0 depending on σ, r, εte,
which is a strictly increasing function with respect to
εtr.

2. With probability at least 1− δ, we further have ϕmin ≤
ϕ̃ ≤ ϕmax and the following lower bound on the robust
error increase by adversarially training with size εtr

Err(θ̂εtr ; εte)− Err(θ̂0; εte)

≥Φ

(
r/2

ϕmin

)
− Φ

(
r/2−min{εtr, ε̃}

ϕmin

)
.

(6)

The proof can be found in Appendix A. Note that the theo-
rem holds for any 0 ≤ εte <

r
2 and hence also applies to the

standard error by setting εte = 0. In Figure 3, we empirically
confirm the statements of Theorem 3.1 by performing exper-
iments on synthetic datasets as described in Subsection 3.1
with different choices of d/n and εtr. In the first statement,
we prove that for small sample-size (n < d− 1) noiseless
data, almost surely, the robust error increases monotonically
with adversarial training budget εtr > 0. In Figure 3a, we
plot the robust error gap between standard and adversarial
logistic regression in function of the adversarial budget εtr
for 5 runs.

The second statement establishes a simplified lower bound
on the robust error increase for adversarial training (for a
fixed εtr = εte) compared to standard training. In Figures 3a
and 3b, we show how the lower bound closely predicts the
robust error gap in our synthetic experiments. Furthermore,
by the dependence of ϕmin on the overparameterization ratio
d/n, the lower bound on the robust error gap is amplified
for large d/n. Indeed, Figure 3b shows how the error gap
increases with d/n both theoretically and experimentally.
However, when d/n increases above a certain threshold, the
gap decreases again, as standard training fails to learn the
signal and yields a high error.

3.3. Proof intuition

The reason that adversarial training hurts robust generaliza-
tion is based on an extreme robust vs. standard error trade-
off. We provide intuition for the effect of directed attacks
and the small sample regime on the solution of adversarial

training by decomposing the robust error Err(θ; εte). Notice
that εte-robust error Err(θ; εte) is the probability of the union
of two events: the event that the classifier is wrong and the
event that the classifier is susceptible to attacks:

Ex,y∼P
[
I{yfθ(x) < 0}∨ max

x′∈T (x;εte)
I{fθ(x)fθ(x

′) < 0}
]

= Err(θ; εte) ≤ Err(θ; 0) + Susc(θ; εte)
(7)

where Susc(θ; εte) is the expectation of the maximization
term in Equation (7). Susc(θ; εte) represents the εtr-attack-
susceptibility of a classifier induced by θ and Err(θ; 0) its
standard error. In Figure 3c, we plot the decomposition of
the robust error in standard error and susceptibility for ad-
versarial logistic regression with increasing εtr. We observe
that increasing εtr increases the standard error too drastically
compared to the decrease in susceptibility, leading to a drop
in robust accuracy. For completeness, in Appendix B, we
provide upper and lower bounds on the susceptibility score.

We now give the intuition how adversarial training may
increase standard error to the extent that it dominates over a
decrease in susceptibility using the 2D diagram in Figure 3d.
In Figure 3d we see that the few samples in the dataset are
all far apart in the non-signal direction, which models how
Gaussian random vectors are far apart in high dimensions.
Further, we see how shifting the dataset closer to the true
decision boundary using the directed attack (3), may result
in a max-margin solution (yellow) that aligns much worse
with the ground truth (gray), compared to the estimator
learned from the original points (blue). Even though the new
(robust max-margin) classifier (yellow) is less susceptible
to directed attacks in the signal dimension, it also uses the
signal dimension less.

3.4. Extending the directed attack

The type of additive perturbations used in Theorem 3.1,
defined in Equation (3), is explicitly constrained to the di-
rection of the true signal. This choice is reminiscent of
corruptions where every possible perturbation in the set
is directly targeted at the object to be recognized, such as
motion blur of moving objects. Such corruptions are also
studied in the context of domain generalization and adapta-
tion (Schneider et al.). Directed attacks in general, however,
may also consist of perturbation sets that are only strongly
biased towards the true signal direction. They may find
the true signal direction only when the inner maximization
is exact. The following corollary extends Theorem 3.1 to
small `1-perturbations

T (x; ε) = {x′ = x+ δ | ‖δ‖1 ≤ ε}, (8)

for 0 < ε < r
2 that reflect such attacks. We state the

corollary here and give the proof in Appendix A.
Corollary 3.2. Theorem 3.1 also holds for (4) with pertur-
bation sets defined in (8).
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The proof uses the fact that the inner maximization effec-
tively results in a sparse perturbation equivalent to the attack
resulting from the perturbation set (3).

4. Real-world experiments
In this section, we demonstrate that the proof intuition of
the linear case may generalize to more complex models.
Specifically, the insights from Section 3 helped us to iden-
tify realistic directed attacks on standard image datasets for
which adversarial training hurts robust accuracy in the low-
sample regime. In what follows, we present experimental
results for corruption attacks on the Waterbirds dataset. Due
to space constraints, implementation details on the mask
attacks on CIFAR-10 can be found in App. E. The corre-
sponding experimental details and more results on other
additional image datasets (such as the hand gestures dataset)
can be found in Appendices D, E and F.

4.1. Datasets and models

We consider three datasets: the Waterbirds dataset, CIFAR-
10 and a hand gesture datasets, but restrict to the Waterbirds
dataset here. We build a new version of the Waterbirds
dataset, consisting of images of water- and landbirds of
size 256× 256 and labels that distinguish the two types of
birds. Using code provided by Sagawa et al. (2020), we con-
struct the dataset as follows: First, we sample equally many
water- and landbirds from the CUB-200 dataset (Welinder
et al., 2010). Then, we segment the birds and paste them
onto a background image that is randomly sampled (with-
out replacement) from the Places-256 dataset (Zhou et al.,
2017). Also, following the choice of Sagawa et al. (2020),
we use as models a ResNet50 and a ResNet18 that were
both pretrained on ImageNet and achieve near perfect stan-
dard accuracy. We give similar experiments with different
architectures in Appendix D.

4.2. Implementation of the directed attacks

In this section, we consider two attacks on the Waterbirds
dataset: motion blur and adversarial illumination as depicted
in Figure 2. In Appendix E, we also discuss the mask attack,
which should mimic occlusions of objects in images that are
physically realizable (Eykholt et al., 2018; Wu et al., 2020).

Motion blur We implement motion blur attacks on the ob-
ject (the bird) specifically, a natural corruption that could
occur if birds move at speeds that are faster than the shutter
speed. The aim is robustness against all motion blur sever-
ity levels up to Mmax = 15. To simulate motion blur, we
apply a motion blur filter with a kernel of size M on the
segmented bird before we paste it onto the background im-
age. See Appendix D for concrete expressions of the motion
blur kernel. Intuitively, the worst attack should be the most

severe blur, rendering a search over a range of severity super-
fluous. However, similar to rotations, this is not necessarily
true in practice since the training loss on neural networks is
generally nonconvex. Therefore, for an exact evaluation of
the robust error at test time, we perform a full grid search
over all kernel sizes in [1, 2, . . . ,Mmax]. We refer to Figure
2d and Section D for examples of our motion blur attack.
During training time, we perform an approximate search
over kernels with sizes 2i for i = 1, . . . ,Mmax/2.

Adversarial illumination We consider adversarial illumina-
tion on the Waterbirds dataset. The adversary can darken or
brighten the bird without corrupting the background of the
image. The attack aims to model images where the object at
interest is hidden in shadows or placed against bright light.
To compute the attack, we modify the brightness of the seg-
mented bird by adding a constant a ∈ [−εte, εte] to all pixel
values, before pasting the bird onto the background image.
We find the most adversarial lighting level, i.e. the value of
a, by equidistantly partitioning the interval [−εte, εte] in K
steps and performing a full list-search over all steps. See
Figure 2c and Appendix D for an illustration of the adver-
sarial illumination attack. We choose K = 65, 33 during
test and training time respectively.

Adversarial training For all datasets and attacks, we run
SGD until convergence on the robust cross-entropy loss (2).
In each iteration, we search for an adversarial example and
update the weights using a gradient with respect to the re-
sulting perturbed example (Goodfellow et al., 2015; Madry
et al., 2018). For every experiment, we choose the learning
rate and weight decay parameters that minimize the robust
error on a hold-out dataset.

4.3. Adversarial training can hurt robust generalization

We now present our experimental results on the Waterbirds
dataset. Figure 4d and 4c show that the phenomenon char-
acterized in the linear setting by Theorem 3.1 also occurs
for directed attacks on the Waterbirds dataset: adversarial
training for directed attacks can hurt robust generalization in
the low sample size regime. Furthermore, to gain intuition
as described in Section 3.3, we plot the robust error decom-
position (Equation 7) consisting of the standard error and
susceptibility in Figure 4b and 4a. Recall that we measure
susceptibility as the fraction of data points in the test set
for which the classifier predicts a different class under an
adversarial attack. As in our linear example, we observe an
increase in robust error despite a slight drop in susceptibility,
because of the more severe increase in standard error.

4.4. Discussion

In this section, we discuss how different algorithmic choices,
motivated by related work, might affect how adversarial
training hurts robust generalization.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Why adversarial training can hurt robust accuracy

(a) Motion Blur (b) Adversarial illumination (c) Motion Blur (d) Adversarial Illumination

Figure 4. Experiments on the Waterbirds dataset considering the adversarial illumination attack with εte = 0.3 and the motion
blur attack with εte = 15. We plot the mean and standard deviation of the mean of independent experiments. (a, b) We
subsample to n = 20. The decomposition of the robust error in standard error and susceptibility as a function of adversarial
budget εtr. The increase in standard error is more severe than the drop in susceptibility, leading to a slight increase in robust
error. (c, d) The robust error of standard and adversarial training as a function of the number of samples. While adversarial
training hurts for small sample sizes, it helps for larger sample sizes. For more experimental details see Appendix D.

Strength of attack and catastrophic overfitting Often the
worst-case perturbation during adversarial training is found
using an approximate algorithm. It is common belief that
using stronger attacks during training result in better robust
generalization. In particular, the literature on catastrophic
overfitting shows that weaker attacks during training lead to
bad performance on stronger attacks during testing (Wong
et al., 2020; Andriushchenko & Flammarion, 2020; Li et al.,
2021). In contrast, our results suggest that in the low-sample
size regime for directed attacks: the weaker the attack during
training, the better adversarial training performs.

Robust overfitting Recent work observes empirically (Rice
et al., 2020) and theoretically (Sanyal et al.; Donhauser et al.,
2021), that perfectly minimizing the adversarial loss during
training might be suboptimal for robust generalization; that
is, classical regularization techniques might lead to higher
robust accuracy. This phenomenon is often referred to as
robust overfitting. In Appendix D we show that adversar-
ial training can hurt robust accuracy even when standard
regularization methods such as early stopping are used.

5. Related work
We now discuss how our results relate to phenomena that
have been studied in the literature before.

Small sample size and robustness A direct consequence
of Theorem 3.1 is that in order to achieve the same robust
error as standard training, adversarial training requires more
samples. This statement might remind the reader of sam-
ple complexity results for robust generalization in Schmidt
et al. (2018); Yin et al. (2019); Khim & Loh (2018). While
those results compare sample complexity bounds for stan-
dard vs. robust error, our theorem statement compares two
algorithms, standard vs. adversarial training, with respect to
the robust error.

Trade-off between standard and robust error Many pa-
pers observed that even though adversarial training de-
creases robust error compared to standard training, it may

lead to an increase in standard test error (Madry et al., 2018;
Zhang et al., 2019). For example, Tsipras et al.; Zhang et al.
(2019); Javanmard et al. (2020); Dobriban et al. (2020);
Chen et al. (2020) study settings where the Bayes optimal
robust classifier is not equal to the Bayes optimal (stan-
dard) classifier (i.e. the perturbations are inconsistent or the
dataset is non-separable). Raghunathan et al. (2020) study
consistent perturbations, as in our paper, and prove that for
small sample size, fitting adversarial examples can increase
standard error even in the absence of noise. While these
works focus on the decrease in standard error, we prove that
for directed attacks, in the small sample regime adversarial
training may increase robust error.

Mitigation of the trade-off A long line of work has pro-
posed procedures to mitigate the trade-off between robust
and standard error. For example Alayrac et al. (2019); Car-
mon et al. (2019); Zhai et al. (2019); Raghunathan et al.
(2020) study robust self training, which leverages a set of
unlabelled data, while Lee et al.; Lamb et al. (2019); Xu
et al. use data augmentation by interpolation. Ding et al.
(2020); Balaji et al. (2019); Cheng et al. (2020) on the other
hand propose to use adaptive perturbation budgets εtr that
vary across inputs. We leave a thorough empirical study as
interesting future work.

6. Conclusion
This paper aims to caution the practitioner against blindly
following current widespread practices to increase the ro-
bust performance of machine learning models. Specifically,
adversarial training is currently recognized to be one of
the most effective defense mechanisms for `p-perturbations,
significantly outperforming robust performance of standard
training. However, we prove that in the low-sample size
regime this common wisdom is not applicable for consistent
directed attacks, which efficiently focus their attack budget
to target the ground truth class information. In particular,
in such settings adversarial training can in fact yield worse
robust accuracy than standard training.
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A. Theoretical statements for the linear model
Before we present the proof of the theorem, we introduce two lemmas are of separate interest that are used throughout the
proof of Theorem 1. Recall that the definition of the (standard normalized) maximum-`2-margin solution (max-margin
solution in short) of a dataset D = {(xi, yi)}ni=1 corresponds to

θ̂ := arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>xi, (9)

by simply setting εtr = 0 in Equation (4). The `2-margin of θ̂ then reads mini∈[n] yiθ̂
>xi. Furthermore for a dataset

D = {(xi, yi)}ni=1 we refer to the induced dataset D̃ as the dataset with covariate vectors stripped of the first element, i.e.

D̃ = {(x̃i, yi)}ni=1 := {((xi)[2:d], yi)}ni=1, (10)

where (xi)[2:d] refers to the last d− 1 elements of the vector xi. Furthermore, remember that for any vector z, z[j] refers
to the j-th element of z and ej denotes the j-th canonical basis vector. Further, recall the distribution Pr as defined in
Section 3.1: the label y ∈ {+1,−1} is drawn with equal probability and the covariate vector is sampled as x = [y r2 , x̃]
where x̃ ∈ Rd−1 is a random vector drawn from a standard normal distribution, i.e. x̃ ∼ N (0, σ2Id−1). We generally allow
r, used to sample the training data, to differ from rtest, which is used during test time.

The following lemma derives a closed-form expression for the normalized max-margin solution for any dataset with fixed
separation r in the signal component, and that is linearly separable in the last d− 1 coordinates with margin γ̃.
Lemma A.1. Let D = {(xi, yi)}ni=1 be a dataset that consists of points (x, y) ∈ Rd × {±1} and x[1] = y r2 , i.e. the
covariates xi are deterministic in their first coordinate given yi with separation distance r. Furthermore, let the induced
dataset D̃ also be linearly separable by the normalized max-`2-margin solution θ̃ with an `2-margin γ̃. Then, the normalized
max-margin solution of the original dataset D is given by

θ̂ =
1√

r2 + 4γ̃2

[
r, 2γ̃θ̃

]
. (11)

Further, the standard accuracy of θ̂ for data drawn from Prtest reads

Prtest(Y θ̂
>X > 0) = Φ

(
r rtest

4σ γ̃

)
. (12)

The proof can be found in Section A.3. The next lemma provides high probability upper and lower bounds for the margin γ̃
of D̃ when x̃i are drawn from the normal distribution.
Lemma A.2. Let D̃ = {(x̃i, yi)}ni=1 be a random dataset where yi ∈ {±1} are equally distributed and x̃i ∼ N (0, σId−1)
for all i, and γ̃ is the maximum `2 margin that can be written as

γ̃ = max
‖θ̃‖2≤1

min
i∈[n]

yiθ̃
>x̃i.

Then, for any t ≥ 0, with probability greater than 1− 2e−
t2

2 , we have γ̃min(t) ≤ γ̃ ≤ γ̃max(t) where

γ̃max(t) = σ

(√
d− 1

n
+ 1 +

t√
n

)
, γ̃min(t) = σ

(√
d− 1

n
− 1− t√

n

)
.

A.1. Proof of Theorem 3.1

Given a dataset D = {(xi, yi)} drawn from Pr, it is easy to see that the (normalized) εtr-robust max-margin solution (4) of
D with respect to signal-attacking perturbations T (εtr;xi) as defined in Equation (3), can be written as

θ̂εtr = arg max
‖θ‖2≤1

min
i∈[n],x′i∈T (xi;εtr)

yiθ
>x′i

= arg max
‖θ‖2≤1

min
i∈[n],|β|≤εtr

yiθ
>(xi + βe1)

= arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>(xi − yiεtr sign(θ[1])e1).



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Why adversarial training can hurt robust accuracy

Note that by definition, it is equivalent to the (standard normalized) max-margin solution θ̂ of the shifted dataset
Dεtr = {(xi − yiεtr sign(θ[1])e1, yi)}ni=1. Since Dεtr satisfies the assumptions of Lemma A.1, it then follows directly
that the normalized εtr-robust max-margin solution reads

θ̂εtr =
1√

(r − 2εtr)2 + 4γ̃2

[
r − 2εtr, 2γ̃θ̃

]
, (13)

by replacing r by r − 2εtr in Equation (11). Similar to above, θ̃ ∈ Rd−1 is the (standard normalized) max-margin solution
of {(x̃i, yi)}ni=1 and γ̃ the corresponding margin.

Proof of 1. We can now compute the εte-robust accuracy of the εtr-robust max-margin estimator θ̂εtr for a given datasetD as
a function of γ̃. Note that in the expression of θ̂εtr , all values are fixed for a fixed dataset, while 0 ≤ εtr ≤ r − 2γ̃max can be
chosen. First note that for a test distribution Pr, the εte-robust accuracy, defined as one minus the robust error (Equation (1)),
for a classifier associated with a vector θ, can be written as

Acc(θ; εte) = EX,Y∼Pr
[
I{ min
x′∈T (X;εte)

Y θ>x′ > 0}
]

(14)

= EX,Y∼Pr
[
I{Y θ>X − εteθ[1] > 0}

]
= EX,Y∼Pr

[
I{Y θ>(X − Y εte sign(θ[1])e1) > 0}

]
Now, recall that by Equation (13) and the assumption in the theorem, we have r − 2εtr > 0, so that sign(θ̂εtr) = 1. Further,
using the definition of the T (εtr;x) in Equation (3) and by definition of the distribution Pr, we have X[1] = Y r

2 . Plugging
into Equation (14) then yields

Acc(θ̂εtr ; εte) = EX,Y∼Pr
[
I{Y θ̂εtr>(X − Y εtee1) > 0}

]
= EX,Y∼Pr

[
I{Y θ̂εtr>(X−1 + Y

(r
2
− εte

)
e1) > 0}

]
= Pr−2εte(Y θ̂

εtr>X > 0)

where X−1 is a shorthand for the random vector X−1 = (0;X[2], . . . , X[d]). The assumptions in Lemma A.1 (Dεtr is
linearly separable) are satisfied whenever the n < d − 1 samples are distinct, i.e. with probability one. Hence applying
Lemma A.1 with rtest = r − 2εte and r = r − 2εtr yields

Acc(θ̂εtr ; εte) = Φ

(
r(r − 2εte)

4σγ̃
− εtr

r − 2εte

2σγ̃

)
. (15)

Theorem statement a) then follows by noting that Φ is a monotically decreasing function in εtr. The expression for the robust
error then follows by noting that 1− Φ(−z) = Φ(z) for any z ∈ R and defining

ϕ̃ =
σγ̃

r/2− εte
. (16)

Proof of 2. First define ϕmin, ϕmax using γ̃min, γ̃max as in Equation (16). Then we have by Equation (15)

Err(θ̂εtr ; εte)− Err(θ̂0; εte) = Acc(θ̂0; εte)− Acc(θ̂εtr ; εte)

= Φ

(
r/2

ϕ̃

)
− Φ

(
r/2− εtr

ϕ̃

)
=

∫ r/2

r/2−εtr

1√
2πϕ̃

e−
x2

ϕ̃2 dx

By plugging in t =
√

2 log 2/δ
n in Lemma A.2, we obtain that with probability at least 1− δ we have

γ̃min := σ

[√
d− 1

n
−

(
1 +

√
2 log(2/δ)

n

)]
≤ γ̃ ≤ σ

[√
d− 1

n
+

(
1 +

√
2 log(2/δ)

n

)]
=: γ̃max
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and equivalently ϕmin ≤ ϕ̃ ≤ ϕmax.

Now note the general fact that for all ϕ̃ ≤
√

2x the density function f(ϕ̃;x) = 1√
2πϕ̃

e−
x2

ϕ̃2 is monotonically increasing in ϕ̃.

By assumption of the theorem, ϕ̃ ≤
√

2(r/2− εtr)(r/2− εte) so that f(ϕ̃;x) ≥ f(ϕmin;x) for all x ∈ [r/2− εtr, r/2] and
therefore ∫ r/2

r/2−εtr

1√
2πϕ̃

e−
x2

ϕ̃2 dx ≥
∫ r/2

r/2−εtr

1√
2πϕmin

e−
x2

ϕ̃2 dx = Φ

(
r/2

ϕmin

)
− Φ

(
r/2− εtr

ϕmin

)
.

and the statement is proved.

A.2. Proof of Corollary 3.2

We now show that Theorem 3.1 also holds for `1-ball perturbations with at most radius ε. Following similar steps as in
Equation (13), the εtr-robust max-margin solution for `1-perturbations can be written as

θ̂εtr := arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>(xi − yiεtr sign(θ[j?(θ)])ej?(θ)) (17)

where j?(θ) := arg maxj |θj | is the index of the maximum absolute value of θ. We now prove by contradiction that the
robust max-margin solution for this perturbation set (8) is equivalent to the solution (13) for the perturbation set (3). We
start by assuming that θ̂εtr does not solve Equation (13), which is equivalent to assuming 1 6∈ j?(θ̂εtr) by definition. We now
show how this assumption leads to a contradiction.

Define the shorthand j? := j?(θ̂εtr) − 1. Since θ̂εtr is the solution of (17), by definition, we have that θ̂εtr is also the
max-margin solution of the shifted dataset Dεtr := (xi − yiεtr sign(θ[j?+1])ej?+1, yi). Further, note that by the assumption
that 1 6∈ j?(θ̂εtr), this dataset Dεtr consists of input vectors xi = (yi

r
2 , x̃i− yiεtr sign(θ[j?+1])ej?+1). Hence via Lemma A.1,

θ̂εtr can be written as

θ̂εtr =
1√

r2 − 4(γ̃εtr)2
[r, 2γ̃εtr θ̃εtr ], (18)

where θ̃εtr is the normalized max-margin solution of D̃ := (x̃i − yiεtr sign(θ̃[j?])ej? , yi).

We now characterize θ̃εtr . Note that by assumption, j? = j?(θ̃εtr) = arg maxj |θ̃
εtr
[j]|. Hence, the normalized max-margin

solution θ̃εtr is the solution of
θ̃εtr := arg max

‖θ̃‖2≤1
min
i∈[n]

yiθ̃
>x̃i − εtr|θ̃[j?]| (19)

Observe that the minimum margin of this estimator γ̃εtr = mini∈[n] yi(θ̃
εtr)>x̃i − εtr|θ̃εtr

[j?]| decreases with εtr as the problem

becomes harder γ̃εtr ≤ γ̃, where the latter is equivalent to the margin of θ̃εtr for εtr = 0. Since r > 2γ̃max by assumption

in the Theorem, by Lemma A.2 with probability at least 1 − 2e−
α2(d−1)

n , we then have that r > 2γ̃ ≥ 2γ̃εtr . Given the
closed form of θ̂εtr in Equation (18), it directly follows that θ̂εtr

[1] = r > 2γ̃εtr‖θ̃εtr‖2 = ‖θ̂εtr
[2:d]‖2 and hence 1 ∈ j?(θ̂εtr). This

contradicts the original assumption 1 6∈ j?(θ̂εtr) and hence we established that θ̂εtr for the `1-perturbation set (8) has the
same closed form (13) as for the perturbation set (3).

The final statement is proved by using the analogous steps as in the proof of 1. and 2. to obtain the closed form of the robust
accuracy of θ̂εtr .

A.3. Proof of Lemma A.1

We start by proving that θ̂ is of the form

θ̂ =
[
a1, a2θ̃

]
, (20)

for a1, a2 > 0. Denote by H(θ) the plane through the origin with normal θ. We define d ((x, y),H(θ)) as the signed
euclidean distance from the point (x, y) ∈ D ∼ Pr to the planeH(θ). The signed euclidean distance is the defined as the
euclidean distance from x to the plane if the point (x, y) is correctly predicted by θ, and the negative euclidean distance
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from x to the plane otherwise. We rewrite the definition of the max l2-margin classifier. It is the classifier induced by the
normalized vector θ̂ , such that

max
θ∈Rd

min
(x,y)∈D

d ((x, y) ,H(θ)) = min
(x,y)∈D

d
(

(x, y) ,H(θ̂)
)
.

We use that D is deterministic in its first coordinate and get

max
θ

min
(x,y)∈D

d ((x, y) ,H(θ)) = max
θ

min
(x,y)∈D

y(θ[1]x[1] + θ̃>x̃)

= max
θ
θ1
r

2
+ min

(x,y)∈D
yθ̃>x̃.

Because r > 0, the maximum over all θ has θ̂[1] ≥ 0. Take any a > 0 such that ‖θ̃‖2 = a. By definition the max l2-margin

classifier, θ̃, maximizes min(x,y)∈D d ((x, y) ,H(θ)). Therefore, θ̂ is of the form of Equation (20).

Note that all classifiers induced by vectors of the form of Equation (20) classifyD correctly. Next, we aim to find expressions
for a1 and a2 such that Equation (20) is the normalized max l2-margin classifier. The distance from any x ∈ D toH(θ̂) is

d
(
x,H(θ̂)

)
=
∣∣∣a1x[1] + a2θ̃

>x̃
∣∣∣ .

Using that x[1] = y r2 and that the second term equals a2d
(
x,H(θ̃)

)
, we get

d
(
x,H(θ̂)

)
=
∣∣∣a1 r

2
+ a2d

(
x,H(θ̃)

)∣∣∣ = a1
r

2
+
√

1− a21d
(
x,H(θ̃)

)
. (21)

Let (x̃, y) ∈ D̃ be the point closest in Euclidean distance to θ̃. This point is also the closest point in Euclidean distance to
H(θ̂), because by Equation (21) d

(
x,H(θ̂)

)
is strictly decreasing for decreasing d

(
x,H(θ̃)

)
. We maximize the minimum

margin d
(
x,H(θ̂)

)
with respect to a1. Define the vectors a = [a1, a2] and v =

[
r
2 , d

(
x,H(θ̃)

)]
. We find using the dual

norm that
a =

v

‖v‖2
.

Plugging the expression of a into Equation (20) yields that θ̂ is given by

θ̂ =
1√

r2 + 4γ̃2

[
r, 2γ̃θ̃

]
.

For the second part of the lemma we first decompose

Prtest(Y θ̂
>X > 0) =

1

2
Prtest

[
θ̂>X > 0 | Y = 1

]
+

1

2
Prtest

[
θ̂>X < 0 | Y = −1

]
We can further write

Prtest

[
θ̂>X > 0 | Y = 1

]
= Prtest

[
d∑
i=2

θ̂[i]X[i] > −θ̂[1] X[1] | Y = 1

]
(22)

= Prtest

[
2γ̃

d−1∑
i=1

θ̃[i]X[i] > −r
rtest

2
| Y = 1

]

= 1− Φ

(
−r rtest

4σγ̃

)
= Φ

(
r rtest

4σγ̃

)
where Φ is the cumulative distribution function. The second equality follows by multiplying by the normalization constant
on both sides and the third equality is due to the fact that

∑d−1
i=1 θ̃[i]X[i] is a zero-mean Gaussian with variance σ2‖θ̃‖22 = σ2

since θ̃ is normalized. Correspondingly we can write

Prtest

[
θ̂>X < 0 | Y = −1

]
= Prtest

[
2γ̃

d−1∑
i=1

θ̃[i]X[i] < −r
(
−rtest

2

)
| Y = −1

]
= Φ

(
r rtest

4σγ̃

)
(23)
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so that we can combine (22) and (22) and (23) to obtain Prtest(Y θ̂
>X > 0) = Φ

(
r rtest
4σγ̃

)
. This concludes the proof of the

lemma.

A.4. Proof of Lemma A.2

The proof plan is as follows. We start from the definition of the max `2-margin of a dataset. Then, we rewrite the max
`2-margin as an expression that includes a random matrix with independent standard normal entries. This allows us to prove
the upper and lower bounds for the max-`2-margin in Sections A.4.1 and A.4.2 respectively, using non-asymptotic estimates
on the singular values of Gaussian random matrices.

Given the dataset D̃ = {(x̃i, yi)}ni=1, we define the random matrix

X =


x̃>1
x̃>2
...
x̃>n

 . (24)

where x̃i ∼ N (0, σId−1). Let V be the class of all perfect predictors of D̃. For a matrix A and vector b we also denote by
|Ab| the vector whose entries correspond to the absolute values of the entries of Ab. Then, by definition

γ̃ = max
v∈V,‖v‖2=1

min
j∈[n]

|Xv|[j] = max
v∈V,‖v‖2=1

min
j∈[n]

σ|Qv|[j], (25)

where Q = 1
σX is the scaled data matrix.

In the sequel we will use the operator norm of a matrix A ∈ Rn×d−1.

‖A‖2 = sup
v∈Rd−1|‖v‖2=1

‖Av‖2

and denote the maximum singular value of a matrix A as smax(A) and the minimum singular value as smin(A).

A.4.1. UPPER BOUND

Given the maximality of the operator norm and since the minimum entry of the vector |Qv| must be smaller than ‖Q‖2√
n

, we
can upper bound γ̃ by

γ̃ ≤ σ 1√
n
‖Q‖2.

Taking the expectation on both sides with respect to the draw of D̃ and noting ‖Q‖2 ≤ smax (Q), it follows from Corollary
5.35 of (Vershynin, 2010) that for all t ≥ 0:

P
[√

d− 1 +
√
n+ t ≥ smax (Q)

]
≥ 1− 2e−

t2

2 .

Therefore, with a probability greater than 1− 2e−
t2

2 ,

γ̃ ≤ σ
(

1 +
t+
√
d− 1√
n

)
.

A.4.2. LOWER BOUND

By the definition in Equation (25), if we find a vector v ∈ V with ‖v‖2 = 1 such that for an a > 0, it holds that
minj∈n σ|Xv|[j] > a, then γ̃ > a.

Recall the definition of the max-`2-margin as in Equation 24. As n < d − 1, the random matrix Q is a wide matrix, i.e.
there are more columns than rows and therefore the minimal singular value is 0. Furthermore, Q has rank n almost surely
and hence for all c > 0, there exists a v ∈ Rd−1 such that

σQv = 1{n}c > 0, (26)
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where 1{n} denotes the all ones vector of dimension n. The smallest non-zero singular value of Q, smin, nonzero(Q), equals
the smallest non-zero singular value of its transpose Q>. Therefore, there also exists a v ∈ V with ‖v‖2 = 1 such that

γ̃ ≥ min
j∈[n]

σ|Qv|[j] ≥ σsmin,nonzeros
(
Q>
) 1√

n
, (27)

where we used the fact that any vector v in the span of non-zero eigenvectors satisfies ‖Qv‖2 ≥ smin, nonzeros(Q) and the
existence of a solution v for any right-hand side as in Equation 26. Taking the expectation on both sides, Corollary 5.35 of
(Vershynin, 2010) yields that with a probability greater than 1− 2e−

t2

2 , t ≥ 0 we have

γ̃ ≥ σ
(√

d− 1− t√
n

− 1

)
. (28)

B. Bounds on the susceptibility score
In Theorem 3.1, we give non-asymptotic bounds on the robust and standard error of a linear classifier trained with adversarial
logistic regression. Moreover, we use the robust error decomposition in susceptibility and standard error to gain intuition
about how adversarial training may hurt robust generalization. In this section, we complete the result of Theorem 3.1 by
also deriving non-asymptotic bounds on the susceptibility score of the max `2-margin classifier.

Using the results in Appendix A, we can prove following Corollary B.1, which gives non asymptotic bounds on the
susceptibility score.
Corollary B.1. Assume d− 1 > n. For the εte-susceptibility on test samples from Pr with 2εte < r and perturbation sets in
Equation (3) and (8) the following holds:

For εtr <
r
2 − γ̃max, with probability at least 1 − 2e−

α2(d−1)
2 for any 0 < α < 1, over the draw of a dataset D with n

samples from Pr, the εte-susceptibility is upper and lower bounded by

Susc(θ̂εtr ; εte) ≤ Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃maxσ

)
− Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃minσ

)
Susc(θ̂εtr ; εte) ≥ Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃minσ

)
− Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃maxσ

) (29)

We give the proof in Subsection B.1. Observe that the bounds on the susceptibility score in Corollary B.1 consist of two
terms each, where the second term decreases with εtr, but the first term increases. We recognise following two regimes: the
max `2-margin classifier is close to the ground truth e1 or not. Clearly, the ground truth classifier has zero susceptibility and
hence classifiers close to the ground truth also have low susceptibility. On the other hand, if the max l2-margin classifier
is not close to the ground truth, then putting less weight on the first coordinate increases invariance to the perturbations
along the first direction. Recall that by Lemma A.1, increasing εtr, decreases the weight on the first coordinate of the max
`2-margin classifier. Furthermore, in the low sample size regime, we are likely not close to the ground truth. Therefore, the
regime where the susceptibility decreases with increasing εtr dominates in the low sample size regime.

To confirm the result of Corollary B.1, we plot the mean and standard deviation of the susceptibility score of 5 independent
experiments. The results are depicted in Figure 5. We see that for low standard error, when the classifier is reasonably close
to the optimal classifier, the susceptibility increases slightly with increasing adversarial budget. However, increasing the
adversarial training budget, εtr, further, causes the susceptibility score to drop greatly. Hence, we can recognize both regimes
and validate that, indeed, the second regime dominates in the low sample size setting.

B.1. Proof of Corollary B.1

We proof the statement by bounding the robustness of a linear classifier. Recall that the robustness of a classifier is the
probability that a classifier does not change its prediction under an adversarial attack. The susceptibility score is then given
by

Susc(θ̂εtr ; εte) = 1− Rob(θ̂εtr ; εte). (30)

The proof idea is as follows: since the perturbations are along the first basis direction, e1, we compute the distance from the
robust l2-max margin θ̂εtr to a point (X,Y ) ∼ P. Then, we note that the robustness of θ̂εtr is given by the probability that the
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distance along e1, from X to the decision plane induced by θ̂εtr is greater then εte. Lastly, we use the non-asymptotic bounds
of Lemma A.2.

Recall, by Lemma A.1, the max l2-margin classifier is of the form of

θ̂εtr =
1√

(r − 2εtr)2 + 4γ̃2

[
r − 2εtr, 2γ̃θ̃

]
. (31)

Let (X,Y ) ∼ P. The distance along e1 from X to the decision plane induced by θ̂εtr ,H(θ̂εtr), is given by

de1(X,H(θ̂εtr)) =

∣∣∣∣∣X[1] +
1

θ̂εtr
[0]

d∑
i=2

θ̂εtr
[i]X[i]

∣∣∣∣∣ .
Substituting the expression of θ̂εtr in Equation 31 yields

de1(X,H(θ̂εtr)) =

∣∣∣∣∣X[1] + 2γ̃
1

(r − εtr)

d∑
i=2

θ̃[i]X[i]

∣∣∣∣∣ .
Let N be a standard normal distributed random variable. By definition ‖θ̃‖22 = 1 and using that a sum of Gaussian random
variables is again a Gaussian random variable, we can write

de1(X,H(θ̂εtr)) =

∣∣∣∣X[1] + 2γ̃
σ

(r − εtr)
N

∣∣∣∣ .
The robustness of θ̂εtr is given by the probability that de1(X,H(θ̂εtr)) > εte. Hence, using that X1 = ± r2 with probability 1

2 ,
we get

Rob(θ̂εtr ; εte) = P

[
r

2
+ 2γ̃

σ

(r − 2εtr)
N > εte

]
+ P

[
r

2
+ 2γ̃

σ

(r − εtr)
N < −εte

]
. (32)

We can rewrite Equation 32 in the form

Rob(θ̂εtr ; εte) = P

[
N >

(r − 2εtr)(εte − r
2 )

2γ̃σ

]
+ P

[
N <

(r − 2εtr)(−εte − r
2 )

2γ̃σ

]
.

Recall, that N is a standard normal distributed random variable and denote by Φ the cumulative standard normal density. By
definition of the cumulative denisity function, we find that

Rob(θ̂εtr ; εte) = 1− Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃σ

)
+ Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃σ

)
.

Substituting the bounds on γ̃ of Lemma A.2 gives us the non-asymptotic bounds on the robustness score and by Equation 30
also on the susceptibility score.

(a) Susceptibility score decreases with εtr (b) Robust error decomposition

Figure 5. We set r = 6, d = 1000, n = 50 and εte = 2.5. (a) We plot the average susceptibility score and the standard
deviation over 5 independent experiments. Note how the bounds closely predict the susceptibility score. (b) For comparison,
we also plot the robust error decomposition in susceptibility and standard error. Even though the susceptibility decreases,
the robust error increases with increasing adversarial budget εtr.
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C. Experimental details on the linear model
In this section, we provide detailed experimental details to the Figure 3.

We implement adversarial logistic regression using stochastic gradient descent with a learning rate of 0.01. Note that logistic
regression converges logarithmically to the robust max l2-margin solution. As a consequence of the slow convergence, we
train for up to 107 epochs. Both during training and test time we solve maxx′i∈T (xi;εtr) L(fθ(x

′
i)yi) exactly. Hence, we

exactly measure the robust error. Unless specified otherwise, we set σ = 1, r = 12 and εte = 4.

Experimental details on Figure 3 (a) We draw 5 datasets with n = 50 samples and input dimension d = 1000 from the
distribution P. We then run adversarial logistic regression on all 5 datasets with adversarial training budgets, εtr = 1 to 5. To
compute the resulting robust error gap of all the obtained classifiers, we use a test set of size 106. Lastly, we compute the
lower bound given in part 2. of Theorem 3.1. (b) We draw 5 datasets with different sizes n between 50 and 104. We take
an input dimension of d = 104 and plot the mean and standard deviation of the robust error after adversarial and standard
logistic regression over the 5 samples.(c) We again draw 5 datasets for each d/n constellation and compute the robust error
gap for each dataset.

D. Experimental details on the Waterbirds dataset
In this section, we discuss the experimental details and construction of the Waterbirds dataset in more detail. We also provide
ablation studies of attack parameters such as the size of the motion blur kernel, plots of the robust error decomposition with
increasing n, and some experiments using early stopping.

The waterbirds dataset To build the Waterbirds dataset, we use the CUB-200 dataset (Welinder et al., 2010), which
contains images and labels of 200 bird species, and 4 background classes (forest, jungle/bamboo, water ocean, water lake
natural) of the Places dataset (Zhou et al., 2017).The aim is to recognize whether or not the bird, in a given image, is a
waterbird (e.g. an albatros) or a landbird (e.g. a woodpecker). To create the dataset, we randomly sample equally many
water- as landbirds from the CUB-200 dataset. Thereafter, we sample for each bird image a random background image.
Then, we use the segmentation provided in the CUB-200 dataset to segment the birds from their original images and paste
them onto the randomly sampled backgrounds. The resulting images have a size of 256× 256. Moreover, we also resize the
segmentations such that we have the correct segmentation profiles of the birds in the new dataset as well. For the concrete
implementation, we use the code provided by (Sagawa et al., 2020).

Experimetal training details Following the example of (Sagawa et al., 2020), we use a ResNet50 pretrained on the
ImageNet dataset for all experiments, a weight-decay of 10−4, and train for 300 epochs using the Adam optimizer. Extensive
fine-tuning of the learning rate resulted in an optimal learning rate of 0.006 for all experiments in the low sample size
regime. Adversarial training is implemented as suggested in (Madry et al., 2018): at each iteration we find the worst case
perturbation with an exact or approximate method. In all our experiments, the resulting classifier interpolates the training set.
We plot the mean over all runs and the standard deviation of the mean.

Specifics to the motion blur attack Fast moving objects or animals are hard to photograph due to motion blur. Hence,
when trying to classify or detect moving objects from images, it is imperative that the classifier is robust against reasonable
levels of motion blur. We implement the attack as follows. First, we segment the bird from the original image, then use a
blur filter and lastly, we paste the blurred bird back onto the background. We are able to apply more severe blur, by enlarging
the kernel of the filter. See Figure 6 for an ablation study of the kernel size.

The motion blur filter is implemented as follows. We use a kernel of size M ×M and build the filter as follows: we fill
the row (M − 1)/2 of the kernel with the value 1/M . Thereafter, we use the 2D convolution implementation of OpenCV
(filter2D) (Bradski, 2000) to convolute the kernel with the image. Note that applying a rotation before the convolution to the
kernel, changes the direction of the resulting motion blur. Lastly, we find the most detrimental level of motion blur using a
list-search over all levels up to Mmax.

Specifics to the adversarial illumination attack An adversary can hide objects using poor lightning conditions, which
can for example arise from shadows or bright spots. To model poor lighting conditions on the object only (or targeted to
the object), we use the adversarial illumination attack. The attack is constructed as follows: First, we segment the bird
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(a) Original (b) M = 5 (c) M = 10 (d) M = 15 (e) M = 20

Figure 6. We perform an ablation study of the motion blur kernel size, which corresponds to the severity level of the blur. We
see that for increasing M , the severity of the motion blur increases. In particular, note that for M = 15 and even M = 20,
the bird remains recognizable: we do not semantically change the class, i.e. the perturbations are consistent.

from their background. Then we apply an additive constant ε to the bird, where the absolute size of the constant satisfies
|ε| < εte = 0.3. Thereafter, we clip the values of the bird images to [0, 1], and lastly, we paste the bird back onto the
background. See Figure 7 for an ablation of the parameter ε of the attack. It is non-trivial how to (approximately) find the
worst perturbation. We find an approximate solution by searching over all perturbations with increments of size εte/Kmax.
Denote by seg, the segmentation profile of the image x. We consider all perturbed images in the form of

xpert = (1− seg)x+ seg(x+ ε
K

Kmax
1255×255), K ∈ [−Kmax,Kmax].

During training time we set Kmax = 16 and therefore search over 33 possible images. During test time we search over 65
images (Kmax = 32).

Early stopping In all our experiments on the Waterbirds dataset, a parameter search lead to an optimal weight-decay
and learning rate of 10−4 and 0.006 respectively. Another common regularization technique is early stopping, where one
stops training on the epoch where the classifier achieves minimal robust error on a hold-out dataset. To understand if early
stopping can mitigate the effect of adversarial training aggregating robust generalization in comparison to standard training,
we perform the following experiment. On the Waterbirds dataset of size n = 20 and considering the adversarial illumination
attack, we compare standard training with early stopping and adversarial training (εtr = εte = 0.3) with early stopping.
Considering several independent experiments, early stopped adversarial training has an average robust error of 33.5 a early
stopped standard training 29.1. Hence, early stopping does decrease the robust error gap, but does not close it.

Error decomposition with increasing n In Figure 4d, we see that adversarial training hurts robust generalization in the
small sample size regime. For completeness, we plot the robust error composition for adversarial and standard training
in Figure 8. We see that in the low sample size regime, the drop in susceptibility that adversarial training achieves in
comparison to standard training, is much lower than the increase in standard error. Conversely, in the high sample regime,
the drop of susceptibility from adversarial training over standard training is much bigger than the increase in standard error.

Different architectures For completeness, we also performed similar experiments on the waterbirds dataset using the
adversarial illumination attack with different network architectures as with the pretrained ResNet50 network. In particular,

(a) ε = −0.3 (b) ε = −0.2 (c) ε = −0.1 (d) Original (e) ε = 0.1 (f) ε = 0.2 (g) ε = 0.3

Figure 7. We perform an ablation study of the different lighting changes of the adversarial illumination attack. Even though
the directed attack attacks the signal component in the image, the bird remains recognizable in all cases.
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(a) Robust error (b) Standard error (c) Susceptibility

Figure 8. We plot the robust error decomposition of the experiments depicted in Figure 4d. The plots depict the mean and
standard deviation of the mean over several independent experiments. We see that, in comparison to standard training, the
reduction in susceptibility for adversarial training is minimal in the low sample size regime. Moreover, the increase in
standard error of adversarial training is quite severe, leading to an overall increase in robust error in the low sample size
regime.

we considered the following pretrained network architectures: VGG19 and Densenet121. See Figure 9 for the results. We
observe that accros models, adversarial training hurts in the low sample size regime, but helps when enough data is available.

(a) VGG19 (b) Densenet121

Figure 9. We plot the robust error of adversarial training and standard training with increasing sample size using the adversarial
illumination attack with εte = 0.3. We optimized the learning and weight decay parameters to be optimal for robust accuracy
for each model. We plot the mean and the standard deviation of the mean for multiple runs. Observe that across models,
adversarial training hurts in the low sample size regime, but helps when enough samples are available.

E. Experimental details on CIFAR-10
In this section, we give the experimental details on the CIFAR-10-based experiments shown in Figures 1 and 11.

Subsampling CIFAR-10 In all our experiments we subsample CIFAR-10 to simulate the low sample size regime. We
ensure that for all subsampled versions the number of samples of each class are equal. Hence, if we subsample to 500
training images, then each class has exactly 50 images, which are drawn uniformly from the 5k training images of the
respective class.

Mask perturbation on CIFAR-10 On CIFAR-10, we consider the square black mask attack where the adversary can
mask a square in the image of size εte × εte by setting the pixel values zero. To ensure that the mask cannot cover all the
information about the true class in the image, we restrict the size of the masks to be at most 2× 2, while allowing for all
possible locations of the mask in the targeted image. For exact robust error evaluation, we perform a full grid search over
all possible locations during test time. We show an example of a black-mask attack on each of the classes in CIFAR-10 in
Figure 10.

During training, a full grid search is computationally intractable so that we use an approximate attack similar to Wu et al.
(2020) during training time: by identifying the K = 16 most promising mask locations with a heuristic as follows. First, we
identify promising mask locations by analyzing the gradient,∇xL(fθ(x), y), of the cross-entropy loss with respect to the
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input. Masks that cover part of the image where the gradient is large, are more likely to increase the loss. Hence, we compute
the K mask locations (i, j), where ‖∇xL(fθ(x), y)[i:i+2,j:j+2]‖1 is the largest and take using a full list-search the mask
that incurs the highest loss. Our intuition from the theory predicts that higher K, and hence a more exact “defense”, only
increases the robust error of adversarial training, since the mask could then more efficiently cover important information
about the class.

Figure 10. We show an example of a mask perturbation for all 10 classes of CIFAR-10. Even though the attack occludes part
of the images, a human can still easily classify all images correctly.

Figure 11. We plot the standard error, robust error
and susceptibility for varying attack strengths K.
We see that the larger K, the lower the suscepti-
bility, but the higher the standard error.

Experimental training details For all our experiments on CIFAR-
10, we adjusted the code provided by (Phan, 2021). As typically
done for CIFAR-10, we augment the data with random cropping
and horizontal flipping. For the experiments with results depicted in
Figures 1 and 11, we use a ResNet18 network and train for 100 epochs.
We tune the parameters learning rate and weight decay for low robust
error. For standard standard training, we use a learning rate of 0.01
with equal weight decay. For adversarial training, we use a learning
rate of 0.015 and a weight decay of 10−4. We run each experiment
three times for every dataset with different initialization seeds, and
plot the average and standard deviation over the runs.

For the experiments in Figure 1 and 12 we use an attack strength of
K = 4. Recall that we perform a full grid search at test time and hence
have a good approximation of the robust accuracy and susceptibility
score.

Increasing training attack strength We investigate the influence
of the attack strength K on the robust error for adversarial training. We take εtr = 2 and n = 500 and vary K. The results
are depicted in Figure 11. We see that for increasing K, the susceptibility decreases, but the standard error increases more
severely, resulting in an increasing robust error.

Robust error decomposition In Figure 1, we see that the robust error increases for adversarial training compared to
standard training in the low sample size regime, but the opposite holds when enough samples are available. For completeness,
we provide a full decomposition of the robust error in standard error and susceptibility for standard and adversarial training.
We plot the decomposition in Figure 12.

(a) Robust error (b) Standard error (c) Susceptibility

Figure 12. We plot the standard error, robust error and susceptibility of the subsampled datasets of CIFAR-10 after adversarial
and standard training. For small sample size, adversarial training has higher robust error then standard training. We see
that the increase in standard error in comparison to the drop in susceptibility of standard versus robust training, switches
between the low and high sample size regimes.
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(a) L pose (b) Index pose

Figure 13. We plot two images, where both correspond to the two different classes. We recognize the "L"-sign in Figure 13a
and the index sign in Figure 13b. Observe that the near-infrared images highlight the hand pose well and blends out much of
the non-useful or noisy background.

F. Static hand gesture recognition
The goal of static hand gesture or posture recognition is to recognize hand gestures such as a pointing index finger or the
okay-sign based on static data such as images (Oudah et al., 2020; Yang et al., 2013). The current use of hand gesture
recognition is primarily in the interaction between computers and humans (Oudah et al., 2020). More specifically, typical
practical applications can be found in the environment of games, assisted living, and virtual reality (Mujahid et al., 2021).
In the following, we conduct experiments on a hand gesture recognition dataset constructed by (Mantecón et al., 2019),
which consists of near-infrared stereo images obtained using the Leap Motion device. First, we crop or segment the images
after which we use logistic regression for classification. We see that adversarial logistic regression deteriorates robust
generalization with increasing εtr.

Static hand-gesture dataset We use the dataset made available by (Mantecón et al., 2019). This dataset consists of
near-infrared stereo images taken with the Leap Motion device and provides detailed skeleton data. We base our analysis on
the images only. The size of the images is 640× 240 pixels. The dataset consists of 16 classes of hand poses taken by 25
different people. We note that the variety between the different people is relatively wide; there are men and women with
different posture and hand sizes. However, the different samples taken by the same person are alike.

We consider binary classification between the index-pose and L-pose, and take as a training set 30 images of the users 16
to 25. This results in a training dataset of 300 samples. We show two examples of the training dataset in Figure 13, each
corresponding to a different class. Observe that the near-infrared images darken the background and successfully highlight
the hand-pose. As a test dataset, we take 10 images of each of the two classes from the users 1 to 10 resulting in a test
dataset of size 200.

Cropping the dataset To speed up training and ease the classification problem, we crop the images from a size of
640 × 240 to a size of 200 × 200. We crop the images using a basic image segmentation technique to stay as close as
possible to real-world applications. The aim is to crop the images such that the hand gesture is centered within the cropped
image.

For every user in the training set, we crop an image of the L-pose and the index pose by hand. We call these images the
training masks {masksi}20i=1. We note that the more a particular window of an image resembles a mask, the more likely that
the window captures the hand gesture correctly. Moreover, the near-infrared images are such that the hands of a person are
brighter than the surroundings of the person itself. Based on these two observations, we define the best segment or window,
defined by the upper left coordinates (i, j), for an image x as the solution to the following optimization problem:

arg min
i∈[440], j∈[40]

20∑
l=1

‖masksl − x{i:i+200,j:j+200}‖22 −
1

2
‖x{i+w,j+h}‖1. (33)

Equation 33 is solved using a full grid search. We use the result to crop both training and test images. Upon manual
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inspection of the cropped images, close to all images were perfectly cropped. We replace the handful poorly cropped training
images with hand-cropped counterparts.

(a) Cropped L pose (b) Cropped index pose (c) Black-mask perturbation

Figure 14. In Figure 14a and 14b we show an example of the images cropped using Equation 33. We see that the hands are
centered and the images have a size of 200× 200. In Figure 14c we show an example of the square black-mask perturbation.

Square-mask perturbations Since we use logistic regression, we perform a full grid search to find the best adversarial
perturbation at training and test time. For completeness, the upper left coordinates of the optimal black-mask perturbation of
size εtr × εtr can be found as the solution to

arg max
i∈[200−εtr], j∈[200−εtr]

∑
l,m∈[εtr]

θ[i:i+l,j:j+m]. (34)

The algorithm is rather slow as we iterate over all possible windows. We show a black-mask perturbation on an L-pose
image in Figure 14c.

Results We run adversarial logistic regression with square-mask perturbations on the cropped dataset and vary the
adversarial training budget and plot the result in Figure 15. We observe attack that adversarial logistic regression deteriorates
robust generalization.

Because we use adversarial logistic regression, we are able to visualize the classifier. Given the classifier induced by θ, we
can visualize how it classifies the images by plotting θ−mini∈[d] θ[i]

maxi∈[d] θ[i]
∈ [0, 1]d. Recall that the class-prediction of our predictor

for a data point (x, y) is given by sign(θ>x) ∈ {±1}. The lighter parts of the resulting image correspond to the class with
label 1 and the darker patches with the class corresponding to label −1.

Figure 15. We plot the standard error and robust
error for varying adversarial training budget εtr.
We see that the larger εtr the higher the robust
error.

We plot the classifiers obtained by standard logistic regression and
adversarial logistic regression with training adversarial budgets εtr of
10 and 25 in Figure 16. The darker parts in the classifier correspond to
patches that are typically bright for the L-pose. Complementary, the
lighter patches in the classifier correspond to patches that are typically
bright for the index pose. We see that in the case of adversarial logistic
regression, the background noise is much higher than for standard
logistic regression. In other words, adversarial logistic regression puts
more weight on non-signal parts in the images to classify the training
dataset and hence exhibits worse performance on the test dataset.
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(a) εtr = 0 (b) εtr = 10 (c) εtr = 25

Figure 16. We visualize the logistic regression solutions. In Figure 16a we plot the vector that induces the classifier obtained
after standard training. In Figure 16b and Figure 16c we plot the vector obtained after training with square-mask perturbations
of size 10 and 25, respectively. We note the non-signal enhanced background correlations at the parts highlighted with the
red circles in the image projection of the adversarially trained classifiers.


