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Abstract

The interest of the machine learning community
in image synthesis has grown significantly in re-
cent years, with the introduction of a wide range
of deep generative models and means for train-
ing them. In this work, we propose a general
model-agnostic technique for improving the im-
age quality and the distribution fidelity of gener-
ated images, obtained by any generative model.
Our method, termed BIGRoC (Boosting Image
Generation via a Robust Classifier), is based on
a post-processing procedure via the guidance of
a given robust classifier and without a need for
additional training of the generative model. Given
a synthesized image, we propose to update it
through projected gradient steps over the robust
classifier, in an attempt to refine its recognition.
We demonstrate this post-processing algorithm
on various image synthesis methods and show a
significant improvement, both quantitatively and
qualitatively, on CIFAR-10 and ImageNet. Specif-
ically, BIGRoC improves the best performing dif-
fusion model on ImageNet 128× 128 by 14.81%,
attaining an FID score of 2.53 and on 256× 256
by 7.87%, achieving an FID of 3.63.

1. Introduction
Deep generative models are a class of deep neural networks
trained to model complicated high-dimensional data (Bond-
Taylor et al., 2021). Such models receive a large number of
samples that follow a certain data distribution, x ∼ PD(x),
and aim to produce new ones from the same statistics. One
of the most fascinating generative tasks is image synthe-
sis, which is notoriously hard due to the complexity of the
natural images’ manifold. Nevertheless, deep generative
models for image synthesis have gained tremendous popu-
larity in recent years, revolutionized the field, and became
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state-of-the-art in various tasks (Isola et al., 2017; Zhu et al.,
2017; Karras et al., 2018; 2019; Brock et al., 2019; Karras
et al., 2020). Energy-based models, variational autoencoders
(VAEs), generative adversarial networks (GANs), autore-
gressive likelihood models, normalization flows, diffusion-
based algorithms, and more, all aim to synthesize natural
images, ranging from relatively simple to extremely com-
plicated generators, often containing millions of parameters
(Kingma & Welling, 2014; Goodfellow et al., 2014; Rezende
& Mohamed, 2015; Oord et al., 2016; Ho et al., 2020).

When operating on a multiclass labeled dataset, as consid-
ered in this paper, image synthesis can be either conditional
or unconditional. In the unconditional setup, the generative
model aims to produce samples from the target data distribu-
tion without receiving any information regarding the target
class of the synthesized images, i.e., a sample from PD(x).
In contrast, in the conditional setup, the generator goal is
to synthesize images from a designated class, i.e., a sample
from PD(x|y) where y is the label. As such, conditional
generative models receive class-related information.

Most of the work in the deep generative models’ field has
been focusing on improving the quality and the variety of
the images produced by such models, tackled by seeking
novel architectures and training procedures. In this work,
while still aiming to improve the performance of trained
generative models, we place a different emphasis than in
most of these studies and propose a method for boosting gen-
erative models without any re-training or fine-tuning. More
specifically, our method improves the perceptual quality of
the images synthesized by any given model via an iterative
post-processing procedure driven by a robust classifier.

With the introduction of learning-based machines into “real-
world” applications, the interest in the robustness of such
models has become a central concern. While there are
abundant definitions for robustness, the most common and
studied is the adversarial one. This definition upholds if a
classifier is robust to a small perturbation of its input, made
by an adversary to fool it. Previous work (Szegedy et al.,
2014; Goodfellow et al., 2015; Kurakin et al., 2017) has
demonstrated that deep neural networks are not robust at all
and can be easily fooled by an adversary. In light of this
observation, many robustification methods were proposed,
but the most popular among these is adversarial training
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(Goodfellow et al., 2015; Madry et al., 2018). According
to this method, in order to train a robust classifier, one
should generate adversarial examples and incorporate them
into the training process. While examining the properties
of such classifiers, researchers have revealed a fascinating
phenomenon called perceptually aligned gradients (Tsipras
et al., 2019). This trait implies that modifying an image to
sharpen such a classifier’s decision yields visual features
perceptually aligned with the target class. In other words,
drifting an image to be better classified yields visually pleas-
ing changes that are faithful to natural image content.

In this work, we harness and utilize the above-described
phenomenon – we propose to iteratively modify the images
created by a trained generative model so as to maximize
the conditional probability of a target class approximated
by a given robust classifier. This modification can poten-
tially improve the quality of the synthesized images since
it emphasizes visual features aligned with the target class.
Due to the fundamental differences between classification
and generation, we hypothesize that the robust classifier
could capture different semantic features than the generative
model. Thus, incorporating the two for image refinement
can improve sample quality. We term this method “BIGRoC”
– Boosting Image Generation via a Robust Classifier.

The method presented in this article is general and model-
agnostic that can be applied to any image generator, both
conditional or unconditional, without requiring access to
its weights, given an adversarially trained classifier. The
marked performance improvement achieved by our pro-
posed method is demonstrated in a series of experiments on
a wide range of image generators on CIFAR-10 and Ima-
geNet datasets. We show that this approach enables us to
significantly improve the quality of images synthesized by
relatively simple models, boosting them to a level of more
sophisticated and complex ones. Furthermore, we show the
ability of our method to enhance the performance of genera-
tive architectures of the highest quality, both qualitatively
and quantitatively. Specifically, applying BIGRoC on the
outputs of guided diffusion, (Dhariwal & Nichol, 2021) sig-
nificantly improves its performance on ImageNet 128× 128
and 256 × 256 – achieving FIDs of 2.53 and 3.63, an im-
provement of 14.81% and 7.87%, respectively. As such, our
work exposes the striking generative capabilities of adver-
sarially trained classifiers, that was only partially discovered
by (Santurkar et al., 2019), as explained in Appendix B.

2. Background
2.1. Adversarial Examples

Adversarial examples are instances intentionally designed
by an attacker to cause a false prediction by a machine
learning-based classifier (Szegedy et al., 2014; Goodfellow

et al., 2015; Kurakin et al., 2017). The generation procedure
of such examples relies on applying modifications to given
training examples while restricting the allowed perturbations
∆. Ideally, the “threat model” ∆ should include all the
possible unnoticeable perturbations to a human observer. As
it is impossible to rigorously define such a set, in practice a
simple subset of the ideal threat model is used, where the
most common choices are the ℓ2 and the ℓ∞ balls: ∆ =
{δ : ∥δ∥2/∞ ≤ ϵ}. Given ∆, the attacker receives an
instance x and generates x̂ = x + δ s.t. δ ∈ ∆, while
aiming to fool the classifier. Adversarial attacks can be
both untargeted or targeted: An untargeted attack perturbs
the input in a way that minimizes p(y|x̂) with respect to
δ. In contrast, a targeted attack receives in addition the
target class ŷ, and perturbs x to maximize p(ŷ|x̂). There are
diverse techniques for generating adversarial examples, yet,
in this work, we focus on targeted attacks using the Projected
Gradient Descent (PGD) (Madry et al., 2018)– an iterative
method for creating adversarial examples that operates as
shown in Algorithm 1, where Πϵ is the projection operator
onto ∆, and ℓ(·) is the classification loss.

Algorithm 1 Targeted Projected Gradient Descent (PGD)
Input: classifier fθ, input x, target class ŷ, ϵ, step size α,
number of iterations T
δ0 ← 0
for t from 0 to T do

δt+1 = Πϵ(δt − α∇δℓ(fθ(x+ δt), ŷ));
end
xadv = x+ δT
Output: xadv

2.2. Adversarial Robustness

Adversarial robustness is a property of classifiers, according
to which applying a small perturbation on a classifier’s input
in order to fool it does not affect its prediction (Goodfellow
et al., 2015). To attain such classifiers, one should solve the
following optimization problem:

min
θ

∑
x,y∈D

max
δ∈∆

ℓ(fθ(x+ δ), y) (1)

Namely, train the classifier to accurately predict the class
labels of the ”toughest” perturbed images, allowed by the
threat model ∆. In practice, solving this optimization prob-
lem is challenging, and there are several ways to attain
an approximated solution. The most simple yet effective
method is based on approximating the solution of the inner-
maximization via adversarial attacks, such as PGD (Madry
et al., 2018). According to this strategy, the above optimiza-
tion is performed iteratively, fixing the classifier’s parame-
ters θ and optimizing the perturbation δ for each example,
and then fixing these and updating θ. Repeating these steps
results in a robust classifier, as we use in this work.
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2.3. Perceptually Aligned Gradients

Perceptually aligned gradients (PAG) is a trait of adversar-
ially trained models, best demonstrated when modifying
an image to maximize the probability assigned to a tar-
get class. (Tsipras et al., 2019) show that performing the
above process on such models yields meaningful features
aligned with the target class. It is important to note that
this phenomenon does not occur in non-robust models. The
perceptually aligned gradients property indicates that the
features learned by robust models are more aligned with
human perception. We present a visual demonstration of
this fascinating phenomenon in Figure 2 in Appendix A.

3. Boosting Image Generation via a Robust
Classifier

We propose a method for improving the quality of images
synthesized by trained generative models, named BIGRoC:
Boosting Image Generation via a Robust Classifier. Our
method is model agnostic and does not require additional
training or fine-tuning of the generative model that can be
viewed as a post-processing step performed on the synthe-
sized images. Thus, BIGRoC can be easily applied to any
generative model, both conditional or unconditional. This
mechanism harnesses the perceptually aligned gradients phe-
nomenon to modify the generated images to improve their
visual quality. To do so, we perform an iterative process of
modifying the generated image x to maximize the posterior
probability of a given target class ŷ, pθ(ŷ|x), where pθ is
modeled by an adversarially trained classifier. This can be
achieved by performing a PGD-like process that instead of
adversarially changing an image x of class y to a different
class ŷ ̸= y, modifies it in a way that maximizes the prob-
ability that x belongs to class y. Therefore, our method
requires a trained robust classifier that operates on the same
data source as the generated images we aim to improve.

In the conditional generation process, the generator G re-
ceives the class label y, from which it suppose to draw
samples. Hence, in this setup, we have information regard-
ing the class affiliation of the image, and we can maximize
the corresponding conditional probability. In the uncondi-
tional generation process, the generator does not receive
class labels at all, and its goal is to draw samples from p(x).
Thus, in this case, we cannot directly maximize the desired
posterior probability, as our method suggests. To bridge this
gap, we propose to estimate the most likely class via our
robust classifier fθ and afterward modify the image via the
suggested method to maximize its probability. The proposed
image generation boosting is described in Algorithm 2 for
both of the setups.

While the above-described approach for unconditional sam-
pling works well, it could be further improved. We have

noticed that in this case, estimating the target classes Y of
Xgen via fθ might lead to unbalanced labels. For example,
in the CIFAR-10, when generating 50,000 samples, we ex-
pect approximately 5,000 images per each of the ten classes,
and yet the labels’ estimation does not distribute uniformly
at all. This imbalance stems from the incompetence of the
generative model to capture the data distribution, which
leads to a bias in the target labels estimation of the boost-
ing algorithm, affecting the visual content of Xboost. Since
quantitative evaluation is impaired by such class imbalances,
this bias limits the quantitative improvement attained by BI-
GRoC. We emphasize that this issue is manifested only in
the quantitative metrics, and when qualitatively evaluating
the boosted images, the improvement is significant, as can
be seen in Appendix G.

To further enhance the quantitative results of our algorithm
in the unconditional case, we propose to de-bias the target
class estimation of Xgen and attain close to uniform class es-
timations. A naive solution to this can be achieved by gener-
ating more samples and extracting a subset of these images
with a labels-balance. This approach is computationally
heavy and does not use the generated images as-is, raising
questions regarding the fairness of the quantitative compar-
ison. Thus, we propose a different debiasing technique –
we modify the classifier’s class estimation to become more
balanced by calibrating its logits. More specifically, we shift
the classifier’s logits by adding a per-class pre-calculated
value, dci , that induces equality of the mean logits value
across all classes. We define dc as a vector containing all
dci values: dc = [dc0 , . . . dcN−1

] where N is the number
of classes. For simplicity, we denote logitci as the logit
of class ci corresponding to a generated sample xgen. We
approximate Exgen

[logitci ] for each class ci, using a val-
idation set of generated images, and calculate a per-class
debiasing factor: dci = a− Êxgen [logitci ] (WLOG, a = 1),
where Êxgen

[logitci ] is a mean estimator. After calculating
dci , given a generated image xgen, we calculate its logits
and add dci to it to obtain debiased logits ( ˆlogitci), from
which we derive the unbiased class estimation via softmax.
The following equation shows that, given a correct estima-
tion of the per-class logits’ mean, the per-class means of the
debiased logits are equal:

Exgen
[ ˆlogitci ] = Exgen

[dci + logitci ] =

Exgen [a− Êxgen [logitci ] + logitci ] =

a− Êxgen [logitci ] + Exgen [logitci ] ≈ a

Figure 11 in Appendix G presents an empirical demonstra-
tion that verifies the validity of this method and shows its
qualitative effects on unconditional generation boosting.

As can be seen in Algorithm 2, it receives as input the gener-
ated images and their designated labels (if exist) and returns
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Algorithm 2 BIGRoC: Boosting Image Generation via a
Robust Classifier
Input: Robust classifier fθ, xgen, ygen, ϵ, step size α, num-
ber of iterations T , dc

if ygen is None then
ygen = argmax(fθ(xgen) + dc)

end
xboost = Targeted PGD(fθ, xgen, ygen, ϵ, α, T )
Output: xboost

an improved version of them. As such, this method can be
applied at the inference phase of generative models to en-
hance their performance in a complete separation from their
training. Furthermore, BIGRoC does not require access to
the generative models at all, and thus can be applied on stan-
dalone images, regardless of their origin. As can be seen
from the algorithm’s description, it has several hyperparam-
eters that determine the modification process of the image:
ϵ sets the maximal size of the perturbation allowed by the
threat model ∆, α controls the step size at each update step,
and T is the number of updates. Another choice is the norm
used to define the threat model ∆.

The hyperparameter ϵ is central in our scheme - when ϵ
is too large, the method overrides the input and modifies
the original content in an unrecognizable way, as can be
seen in Figure 2. On the other hand, when ϵ is too small,
the boosted images remain very similar to the input ones,
leading to a minor enhancement. As our goal is to obtain a
significant enhancement to the synthesized images, a careful
choice of ϵ should be practiced, which restricts the allowed
perturbations in the threat model.

Another important choice is the threat model ∆ itself. Two
of the most common choices of ∆ for adversarial attacks
are the ℓ∞ and the ℓ2 balls. Due to the desired behavior of
our method, using the ℓ∞ ball is less preferable: it allows a
change of ±ϵ to every pixel, and as such, it will not focus
on meaningful specific locations, and might not preserve the
existing structure of the synthesized input image. Thus, we
choose the ℓ2 ball as our threat model, with relatively small
ϵ. Such a choice restricts the allowed perturbations and leads
to changes that may concentrate in specific locations while
preserving most of the existing content in the generated
images. A visual demonstration of these considerations is
given in Figure 3 in Appendix D.1.

To better understand BIGRoC’s contribution, we compare
our method with other work addressing sample refinement
as we do. While the leading competitive methods rely on
the guidance of GANs discriminator and are thus suited
for GANs only, we propose a general and model agnos-
tic approach. Moreover, such methods require access to
the weights of the entire GAN and the latent code of the

generated images. However, we propose a method with
a much simple setting that does not require access to the
generative models and can operate on standalone images. In
Appendix B we provide a complete overview of the related
and competitive work and compare it to ours.

4. Experimental Results
In this section, we present experiments that demonstrate the
effectiveness of our method on the most common datasets
for image synthesis – CIFAR-10 (Krizhevsky, 2012) and
ImageNet (Deng et al., 2009). Given a generative model,
we use it to synthesize a set of images Xgen and apply our
method to generate Xboost, according to Algorithm 2. We
utilize the model-agnostic property and the simplicity of
BIGRoC to examine its effects over a wide variety of image
generators of different qualities: from relatively simple to
sophisticated and complex ones. Moreover, we test our
method on both conditional and unconditional generative
models to validate that the proposed scheme can enhance
different synthesis procedures. We term an application of
our approach without ground truth labels as BIGRoCPL, as it
generates pseudo labels (PL), and with such as BIGRoCGT.

In all the experiments, for each dataset, we use the same
adversarial robust classifier to refine all the generated im-
ages of different sources. The only needed adjustment is at
tuning ϵ, which defines the allowed size of the visual mod-
ifications done by BIGRoC. The striking fact that a single
robust classifier improves both low and high-quality images
strongly demonstrates the versatility of our approach and
the surprising refinement capabilities possessed by such a
model. We analyze BIGRoC performance both quantita-
tively and qualitatively, using Fréchet Inception Distance
(FID, (Heusel et al., 2017), lower is better), and Inception
Score (IS, (Salimans et al., 2016), higher is better). We
provide additional explanations regarding our evaluation
strategy in Appendix C. In addition, we compare our ap-
proach with other image refinement SOTA methods (see a
complete overview of these in Appendix B).

4.1. CIFAR-10

In this section, we evaluate the performance of the proposed
BIGRoC on the CIFAR-10 dataset, using a single publicly-
available adversarially trained ResNet-50 on CIFAR-10 as
the robust classifier (Engstrom et al., 2019).

Tested Architectures In the conditional image generation
setup, we experiment with cGAN (Mirza & Osindero, 2014),
cGAN-PD (Miyato & Koyama, 2018), BigGAN (Brock
et al., 2019) and Diff BigGAN (Zhao et al., 2020). In the
unconditional case, we experiment with Variational AutoEn-
coder (VAE) (Kingma & Welling, 2014), DCGAN (Radford
et al., 2015), WGAN-GP (Salimans et al., 2016), SNGAN
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Table 1. BIGRoCGT quantitative results on CIFAR-10.

ARCHITECTURE FID IS

CGAN 29.26± 0.10 6.95± 0.03
W/ BIGROC 8.89± 0.05 8.57± 0.05
CGAN-PD 11.10± 0.07 8.54± 0.03
W/ BIGROC 8.33± 0.06 8.76± 0.05
BIGGAN 7.45± 0.08 9.38± 0.05
W/ BIGROC 6.79± 0.02 9.47± 0.02
DIFF BIGGAN 4.37± 0.03 9.48± 0.03
W/ BIGROC 3.95± 0.02 9.61± 0.03

Table 2. BIGRoCPL quantitative results on CIFAR-10.

ARCHITECTURE FID IS

VAE 152.04± 0.19 3.05± 0.01
W/ BIGROC 88.68± 0.37 6.27± 0.04
DCGAN 38.34± 0.11 6.10± 0.01
W/ BIGROC 29.93± 0.05 7.28± 0.04
WGAN-GP 22.62± 0.09 7.49± 0.03
W/ BIGROC 16.28± 0.08 8.15± 0.03
SNGAN 17.19± 0.07 8.04± 0.02
W/ BIGROC 13.25± 0.10 8.61± 0.04
INFOMAXGAN 15.41± 0.12 8.09± 0.05
W/ BIGROC 11.27± 0.11 8.48± 0.03
SSGAN 15.05± 0.06 8.20± 0.02
W/ BIGROC 10.77± 0.06 8.61± 0.03

(Miyato et al., 2018), InfoMaxGAN (Lee et al., 2021) and
SSGAN (Chen et al., 2019).

Quantitative Results Table 1 contains our quantitative re-
sults for conditional image synthesis and Table 2 for the
unconditional case. These results indicate that BIGRoC
achieves a substantial improvement across a wide range of
tested generator architectures, both conditional and uncon-
ditional, demonstrating the method’s versatility and validity.

Qualitative Results To strengthen the quantitative results,
we show in Figure 1(a) and in Appendix F qualitative results
that verify that the “boosted” results indeed look better to
human observers.

4.2. ImageNet

We turn to evaluate the performance of the proposed BI-
GRoC on the ImageNet 128×128 and 256×256 datasets, us-
ing a single publicly available adversarially trained ResNet-
50 on ImageNet as the robust classifier (Engstrom et al.,
2019) for both of the resolutions.

Tested Architectures For ImageNet 128× 128, we exper-
iment with SNGAN (Miyato et al., 2018), SSGAN (Chen
et al., 2019), InfoMaxGAN (Lee et al., 2021), BigGAN-
deep (Brock et al., 2019) and Guided Diffusion (ADM-G)
(Dhariwal & Nichol, 2021). For ImageNet 256× 256, we

Table 3. Quantitative results on ImageNet 128× 128.

ARCHITECTURE FID IS

SNGAN 62.28 13.05
W/ BIGROCPL 40.40 71.67
SSGAN 63.60 13.75
W/ BIGROCPL 38.93 73.94
INFOMAXGAN 60.61 13.79
W/ BIGROCPL 37.70 75.49
BIGGAN-DEEP 6.02 145.83
W/ BIGROCPL 5.69 176.42
W/ BIGROCGT 5.71 226.17
GUIDED DIFFUSION 2.97 141.37
W/ BIGROCPL 2.77 150.43
W/ BIGROCGT 2.53 169.73

Table 4. Quantitative results on ImageNet 256× 256.

ARCHITECTURE FID IS

BIGGAN-DEEP 7.03 202.65
W/ BIGROCPL 6.93 221.78
W/ BIGROCGT 6.84 228.23
GUIDED DIFFUSION 3.94 215.84
W/ BIGROCPL 3.69 249.91
W/ BIGROCGT 3.63 260.02

use BigGAN-deep and Guided Diffusion (ADM-G,ADM-
U).

Quantitative Results Tables 3 and 4 summarize our quan-
titative results on ImageNet 128× 128 and 256× 256, re-
spectively. These results strongly indicate that BIGRoC
is also highly beneficial for higher-resolution images from
richer datasets. Specifically, BIGRoC improves the best-
performing diffusion model (Dhariwal & Nichol, 2021) on
ImageNet 128 × 128 by 14.81%, leading to FID of 2.53,
and on 256 × 256 by 7.87%, leading to FID of 3.63. The
obtained results show a similarly marked improvement in
IS. In addition, our approach outperforms this model even
when the already available ground truth labels are disre-
garded (BIGRoCPL).

Qualitative Results To verify that our method indeed leads
to better perceptual quality, we show visual results on Im-
ageNet 128 × 128 in Figure 1(b). Moreover, we present
Figure 6 in in Appendix F a qualitative comparison between
images generated by a guided-diffusion trained on ImageNet
256× 256 and the outputs of BIGRoC applied to them. In
addition, we show the images’ differences (after contrast
stretching) to better grasp the perceptual modifications ap-
plied by our method. As can be seen, BIGRoC focuses
on the edges and textures and leads to sharper and refined
images, which are more pleasing to a human observer.
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(a) CIFAR-10 (b) ImageNet

Figure 1. BIGRoC’s qualitative results: We present pairs of images – the left columns contain generated images, and the right ones contain
the boosted results. Figure 1(a): We show six pairs of sets of images where each contains ten images, one per CIFAR-10 class. Each pair
contains the generated images (left) by different CFAR-10 GANs, and their “boosted version“ (right), attained by applying BIGRoC.
Figure 1(b): We show pairs of images generated by different GANs, trained on ImageNet 128× 128 and their “boosted“ version.

4.3. Comparison with other methods

Previous works, such as DOT (Tanaka, 2019), DDLS (Che
et al., 2021) and DG-f low (Ansari et al., 2021), address
image generation refinement, as we do. As stated in Sec-
tion 3 and further explained in Appendix B, we propose a
much simpler approach than our competitors and require
much less information since BIGRoC can operate without
access to the image generator, the discriminator, and without
knowing the latent codes corresponding with the generated
images. In this section, we aim to demonstrate that although
our method utilizes less information than other methods and
can operate in setups in which the other approaches can
not, BIGRoC performs on par and even better. To this end,
we compare our method with current SOTA image refine-
ment methods on CIFAR-10 and ImageNet 128× 128. For
both these setups, we adopt the same publicly available pre-
trained models of SN-ResNet-GAN as used in these work
and apply our algorithm to the generated images and eval-
uate its performance quantitatively (see Appendix E.3 for
additional implementation details). In Table 5 we compare
the quantitative results of DOT, DDLS, and DG-f low with
BIGRoC using IS, as this is the common metric reported in
these papers.

5. Discussion and Conclusions
In this work, we propose a novel method that leverages the
perceptually aligned gradients phenomenon for enhancing

Table 5. Quantitative comparison between BIGRoC and competi-
tive methods on CIFAR-10 and ImageNet 128× 128, using IS.

ARCHITECTURE
INCEPTION SCORE

CIFAR-10 IMAGENET

SN-RESNET-GAN 8.38 36.8
W/ DOT – 37.29
W/ DDLS 9.09 40.2
W/ DG-f LOW 9.35 –
W/ BIGROC 9.33 44.68

the visual quality of synthesized images. Due to the core
ability of such a robust classifier to better capture significant
visual features, it is capable of effectively and efficiently
improving the output of generative models. Our approach
does not require additional training of the generative model,
and it is completely model agnostic, unlike other methods.
Thus, BIGRoC can be applied during the inference phase of
any generator. Moreover, it can operate on sets of images
without requiring access to the generative model themselves
and the latent code, a setup where competing methods can
not. In a line of experiments, we show that our method
is highly effective and capable of substantially enhancing
qualitative and quantitative results of various generative
models over multiple datasets. Moreover, the fact that the
same robust classifier can improve generators of different
qualities exposes its surprising generative capabilities.
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A. Perceptually Aligned Gradient
As explained in Section 2, a common way to gauge whether a model has perceptually aligned gradients is via large-ϵ targeted
adversarial attacks. If a model upholds PAG, the above process should yield perceptually meaningful modifications. As can
be seen in Figure 2, while adversarially trained models have such gradients, non-robust ones do not.

Figure 2. Visual demonstration of large l2-based adversarial examples on robust (top) and non robust (bottom) ResNet50 classifiers (He
et al., 2016) trained on CIFAR-10. The classifier’s certainty and the effective ℓ2 perturbation norm are denoted as P and ϵ, respectively. As
can be seen, robust models with PAG guides the attack towards semantically meaningful features, whereas non-robust ones do not.

B. Related Work
B.1. Improving Image Generation

There are two main lines of work that aim to improve the quality of generated images. One is based on rejection sampling –
improving the generation quality of GANs by discarding low-quality images, identified by the GAN’s discriminator (Turner
et al., 2019; Azadi et al., 2019). In contrary to such work that does not enhance the generated images but rather acts as a
selector, BIGRoC does not discard any of the synthesized images and improves their quality by modifying them.

Another line of work (Tanaka, 2019; Che et al., 2021; Ansari et al., 2021), which is closely related to ours, addresses the
task of sample refinement – modifying the generated images to attain improved perceptual quality. These papers propose
methods for improving synthesized images using the guidance of the GAN’s discriminator. More precisely, given a latent
code of a generated image, their strategy is to modify it to maximize the score given by the GAN’s discriminator. Therefore,
to enhance the perceptual quality of a set of generated images, these approaches require access to the generator and the
discriminator weights, and the corresponding latent code of the generated images. Since image refinement is an applicative
task, this constraint prevents such methods from operating directly on images without additional information, making their
configuration less realistic. In contrast to these, our work offers a much simpler and different way of boosting generated
images by an external pretrained robust classifier in a completely model-agnostic way. Our method can operate without
requiring access to the latent vectors generating the images or the weights of the generative model that produces them. Thus,
BIGRoC can be applied to standalone images – a realistic setup where none of the existing methods can operate. Moreover,
we show that a single robust classifier on a given dataset is capable of improving a wide variety of sample qualities, making
our configuration even more realistically appealing, as it requires only one model per dataset. In addition, while (Tanaka,
2019; Che et al., 2021) are limited to GANs only, our method is model-agnostic and capable of improving generated images
of any source, e.g., diffusion models. In Section 4.3 we empirically demonstrate that although the existing methods have
much stricter requirements than ours, it leads to improved performance. Indeed, our approach is the first to be successfully
applied to ImageNet 256× 256, proving its scalability.

B.2. Perceptually Aligned Gradients (PAG) in Computer Vision

PAG phenomenon was previously utilized for solving various computer vision tasks, such as inpainting, image translation,
super-resolution, and image generation (Santurkar et al., 2019). In image synthesis, they reach a 7.5 Inception Score (IS) on
the CIFAR-10 dataset, far from state-of-the-art (SOTA) performance. It raises the question of whether this performance
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Figure 3. Effect of the threat model’s choice: generated images via a conditional GAN (left) perturbed via a targeted PGD attack to
maximize the probability of their target classes (planes, cars and birds) using either ℓ∞ or ℓ2 threat models. While the boosted outputs
attained by the ℓ∞ entirely change the structure of the images and lead to unnatural results, the ℓ2 threat model leads to better results.

limit is due to the capabilities of robust image classifiers or is it algorithmic. In our work, we provide a definite answer to
this question by harnessing PAG to a completely different task – image refinement. To this end, we build upon any existing
generative model, including high-performing ones, and empirically show that a robust classifier can boost the performance
of image generators well beyond 7.5 IS. As such, our work exposes a much stronger force that does exist in adversarially
robust classifiers in capturing high perceptual quality features.

C. Proposed Evaluations
Other methods (Tanaka, 2019; Che et al., 2021; Ansari et al., 2021; Dhariwal & Nichol, 2021), just like ours, utilize
class-conditional models (be it discriminators or classifiers) to perceptually improve image quality. This might raise a
concern regarding model-based quantitative evaluation, as these are evaluated via a classifier as well. One might suspect
that such methods guide the images to be “easier to classify” and thus deceptively improve the quantitative metrics without
performing any solid perceptual improvement. We answer this concern in three separate ways:

• While the IS measure is more susceptible to this sensitivity, as it relies on classification, the FID metric is far more
detached from the conditional model since it stems from feature distribution. Our quantitative results show that BIGRoC
significantly improves both, thus relieving such concerns.

• To better validate that our improvement does not stem from the similarity of the guiding classifier with the Incep-
tion (Szegedy et al., 2015) evaluation one, we apply our algorithm using the evaluation model itself. If BIGRoC’s
success stems from this similarity, this experiment should yield better quantitative results than presented in the paper. We
experiment with WGAN-GP, trained on CIFAR-10, which obtains an FID of 22.62. While guiding using the Inception
slightly improves it to 21.78, using a robust model, as we suggest, yields an FID of 16.28. In addition, such guidance does
not lead to perceptually meaningful modifications, as harnessing PAG does.

• Throughout this paper we qualitatively examine the modifications obtained by our approach and verify that they indeed
lead to a perceptual improvement.

D. Ablation Study
In this section we conduct a series of experiments to further understand the performance improvements obtained, and
analyze the effects of the central hyperparameters in our algorithm.

D.1. The effect of BIGRoC’s threat model

In this section, we demonstrate the effect of the threat model used to perform BIGRoC’s algorithm and visualize the results
of this choice in Figure 3. As discussed in Section 3, L∞ leads to unrealistic results, while L2 leads to more pleasing images.

D.2. The effect of the robust classifier’s threat model

In all of our experiments, we use an adversarially trained (AT) robust classifier with a threat model ∆ based on ℓ2 norm
with a predefined ϵ value. In this section, we study the effect of ϵ in the training of the AT robust classifier on BIGRoC’s
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Table 6. The effects of the robust classifier’s threat model on BIGRoC’s performance, measured in FID, using WGAN-GP trained on
CIFAR-10 dataset.

W/O BIGROC W/ BIGROC
ϵ2 = 0 ϵ2 = 0.25 ϵ2 = 0.5 ϵ2 = 1

22.32 19.71 18.79 16.19 15.87

Table 7. The effect of the number of steps in BIGRoC’s algorithm, measured in FID, using WGAN-GP trained on CIFAR-10 dataset.

W/O BIGROC W/ BIGROC
1 STEP 7 STEPS 20 STEPS 30 STEPS

22.32 17.48 16.19 16.15 16.27

performance. In Table 6 we compare the influence of using a non-adversarial classifier (i.e. ϵ = 0) and adversarial classifiers
trained with different threat models’ sizes on our proposed method, while the rest of the hyperparameters are fixed. As can
be seen, using AT classifiers in BIGRoC enhances the results significantly.

D.3. The effect of BIGRoC’s ϵ size

As stated in Section 3, the hyperparameter ϵ has a significant effect on our proposed method, since it defines the allowed
perturbation. In Figure 4, we demonstrate the effect of ϵ when applying BIGRoCGT over images generated by guided
diffusion, trained on ImageNet 256×256. As can be seen, ϵ affects the trade-off between diversity and fidelity, demonstrated
by IS versus FID values. Our method attains lower FID scores in a range of tested values of ϵ, while achieving better IS,
leading to much better trade-offs.

Figure 4. Trade-off effects of BIGRoC’s ϵ on ImageNet 256× 256.

D.4. Effect of BIGRoC’s number of steps

When ϵ is fixed, increasing the number of steps leads to smaller steps. Fine-grained steps can lead to better performance, but
with a computational cost. In Table 7, we summarize the effect of the number of steps w.r.t a fixed ϵ. As can be concluded, 7
is a plausible value since it is a good trade-off between refinement performance and computational cost.

D.5. Visual demonstration of BIGRoC’s iterations

BIGRoC is an iterative boosting algorithm, and as such, it performs several update steps. In Figure 5, we visualize the
optimization algorithm performed by our method. As can be seen, the perceptual quality of the images obtained by BIGRoC
gradually improves during its application.
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Figure 5. Demonstration of BIGRoC’s steps, demonstrated using VAE trained on CIFAR-10: On the left column we show the generated
images of the model. The righmost column corresponds with the final output of BIGRoC. The middle 9 columns are the results obtained
after each intermediate step of our algorithm.

E. Implementation Details
In this work, except for three basic generative models (see description in E.1), we did not train models and used only
available pretrained ones from verified sources. For quantitative evaluation, we use common implementations of IS and FID
metrics. In all of our experiments, we use the same robust classifier to boost all the generative models that operate on the
same dataset. We use the pretrained generators to synthesize sets of images and BIGRoC to refine them. The specific details
regarding the experimental results are listed in the sections below.

E.1. CIFAR-10

Adversarial Robust Classifier We use a pretrained robust ResNet-50 on CIFAR-10, provided in (Engstrom et al., 2019).
This model is adversarially trained with a threat model ∆ = {δ : ∥δ∥2 ≤ 0.5} with step size of 0.1.
Image Generators Besides VAE, DCGAN, and cGAN that we trained from scratch, using the relevant available codebases,
we did not train any other generator and used only publicly available ones. For cGAN-PD, WGAN-GP, SNGAN, InfoMax-
GAN, and SSGAN, we use the ones from mimicry repository1. We use the pretrained versions of BigGAN and Differential
Augmentation CR BigGAN (Diff BigGAN) from data-efficient GANs repository2.

BIGRoC hyperparameters As stated above, we use the same robust classifier in all our experiments. Thus, the remaining
hyperparameters to tune are ϵ, step size, and the number of steps. We empirically find out that the number of steps is
relatively marginal (see Section D.4), and thus we opt to use seven steps. In all of the experiments, we fix the step size to be
1.5 ∗ ϵ

num steps . Since we test various image generators of different qualities, each requires a particular amount of visual
enhancement, defined by the value of ϵ. Low-quality generators require substantial improvement and therefore benefit from

1https://github.com/kwotsin/mimicry
2https://github.com/mit-han-lab/data-efficient-gans/tree/master/DiffAugment-biggan-cifar

https://github.com/kwotsin/mimicry
https://github.com/mit-han-lab/data-efficient-gans/tree/master/DiffAugment-biggan-cifar


BIGRoC: Boosting Image Generation via a Robust Classifier

high ϵ values, while better ones benefit from smaller values. In the below table, we summarize the value of ϵ for each tested
architecture.

Table 8. BIGRoC’s ϵ values in CIFAR-10 experiments

ARCHITECTURE ϵ NORMALIZATION

VAE 25 ✓
DCGAN 5 ✓
WGAN-GP 5 ✓
SNGAN 3 ✓
SSGAN 3 ✓
CGAN 5 ✓
CGAN-PD 2 ✓
BIGGAN 1 ✓
DIFF BIGGAN 1 ✓

Where normalization is referred to images in [-1, 1]. To better interpret the meaning of ϵ in terms of pixels modification, the
average change of a pixel value is expressed by ϵ√

32×32×3
. For example, in DCGAN, ϵ = 5 is equivalent to an average

change of ≈ 0.1. We note that in this example, the pixels are in a range between -1 to 1 and therefore, the mean change is
≈ 5%

E.2. ImageNet

Adversarial Robust Classifier We use a pretrained robust ResNet-50 on ImageNet, provided in (Engstrom et al., 2019), on
both 128× 128 and 256× 256. This model is adversarially trained with a threat model ∆ = {δ : ∥δ∥2 ≤ 3} with step size
of 0.5.

Image Generators We did not train any generator and utilize the publicly available ones. For SNGAN, SSGAN, and
InfoMaxGAN, we use the ones from the mimicry repository. As for BigGAN-deep (truncation= 1.0) and guided diffusion,
we utilize the fact that BIGRoC can operate on standalone images and utilize the sets of generated images, published in
guided diffusion’s repository3, and we apply our method upon these. We test our method using the aforementioned sets
of generated images using two setups – with and without the ground truth labels. When operating without the labels, we
produce pseudo labels using our robust classifier and then apply BIGRoC.

BIGRoC hyperparameters As in CIFAR-10, we only tune the value of ϵ. In the below table, we report the used values for
our tested architectures.

Table 9. BIGRoC’s ϵ values in ImageNet experiments

RESOLUTION ARCHITECTURE ϵ NORMALIZATION

12
8

SNGAN 40 ✓
SSGAN 40 ✓
INFOMAXGAN 40 ✓
BIGGAN-DEEP 5 ✗
GUIDED DIFFUSION 1.5 ✗

25
6 BIGGAN-DEEP 1 ✗

GUIDED DIFFUSION 1.5 ✗

E.3. Comparison with other methods

Adversarial Robust Classifier For CIFAR-10 we use the same robust classifier as described in Appendix E.1 and for
ImageNet we use the same model as in Appendix E.2.

Image Generators To fairly compare between BIGRoC and the competitive methods, we use BIGRoC to refine the outputs

3https://github.com/openai/guided-diffusion

https://github.com/openai/guided-diffusion
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of the same pretrained model as in DOT, DDLS, and DG-f low – SN-ResNet-GAN4. We experiment in both CIFAR-10 and
ImageNet and compare our results with the reported ones of the other methods. The missing values in Table 5 stem from the
fact that DOT did not report its results on SN-ResNet-GAN on CIFAR-10, and DG-f low was not tested on ImageNet or any
other high-resolution dataset.

BIGRoC hyperparameters We report in the table below the value of epsilon used to attain the results in Table 5.

Table 10. BIGRoC’s ϵ values in Table 5 experiments

DATASET ϵ NORMALIZATION

CIFAR-10 1.8 ✗
IMAGENET 15 ✗

F. Qualitative Results
In this section, we show additional qualitative results to further demonstrate the qualitative enhancement attained by our
method. In Figure 6 we visualize the modifications done by BIGRoC on the outputs of a guided diffusion on ImageNet
256× 256, which strongly demonstrates that our approach focuses on boosting meaningull perceptual features.

Figure 6. Qualitative comparison on ImageNet 256 × 256. left: Images generated by guided diffusion. Middle: Images boosted by
BIGRoCPL. Right: The difference after contrast stretching.

In addition, we provide additional qualitative visualization of the effects of BIGRoC. We use image generators of different
qualities, both conditional and unconditional, and show the generated images and the boosted ones in Figures 7, 8, 9 and 10.
The images below are simply the 100 first synthesized images from each class.

4https://github.com/pfnet-research/sngan_projection

https://github.com/pfnet-research/sngan_projection
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G. Debiasing
In Section 3 we describe our debiasing algorithm, which aims to induce uniform class distribution over the outputs of
BIGRoC. The rationale behind this procedure is expressed in Equation 2. To better understand the outcome of our debiasing,
we present in Figure 11 its effect visually. We compare the results of applying BIGRoC in the unconditional case, with and
without debiasing. One can clearly see that it reduces the amount of the majority class and leads to a more uniform class
distribution, by modifying the images accordingly.
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(a) A comparison between BigGAN generated images of class automobile and the corresponding boosted ones.

(b) A comparison between BigGAN generated images of class bird and the corresponding boosted ones.

(c) A comparison between BigGAN generated images of class dog and the corresponding boosted ones.

Figure 7. A qualitative comparison between BigGAN generated images of CIFAR-10 samples and the proposed BIGRoC algorithm.
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Figure 8. A qualitative comparison between an unconditional VAE generated images of CIFAR-10 samples and the proposed BIGRoC
algorithm.

Figure 9. A qualitative comparison between an unconditional WGAN-GP generated images of CIFAR-10 samples and the proposed
BIGRoC algorithm.



BIGRoC: Boosting Image Generation via a Robust Classifier

Figure 10. A qualitative comparison between an unconditional SSGAN generated images of CIFAR-10 samples and the proposed BIGRoC
algorithm.

Figure 11. Demonstration of the debiasing technique: We show 100 generated images by an unconditional SNGAN and the results of the
BIGRoC algorithm, with and without the proposed debiasing. As can be seen, the outputs of the boosting algorithms are perceptually
superior, while the histograms expose the fact that the suggested debiasing algorithm induces a more uniform labels distribution. In the
”Boosting without Debiasing” experiment, 36 out of 100 images are classified as deers, and only 3 are horses. The most prominent
deer images are marked in red. However, when applying the debiased boosting, the number of deers is reduced to 9, and the number of
horses is increased to 15. We mark the boosted images that remain deer in red, and images that are modified to other minority classes in
green. As can be seen, many of the deers were changed to be horses, a perceptually similar class.


