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Abstract
Despite the success of convolutional neural net-
works (CNNs) in many academic benchmarks for
computer vision tasks, their application in the
real-world is still facing fundamental challenges.
One of these open problems is the inherent lack
of robustness, unveiled by the striking effective-
ness of adversarial attacks. Adversarial training
(AT) is often considered as a remedy to train more
robust networks. In this paper, we empirically
analyze a variety of adversarially trained models
that achieve high robust accuracies when facing
state-of-the-art attacks and we show that AT has
an interesting side-effect: it leads to models that
are significantly less overconfident with their deci-
sions even on clean data than non-robust models.
Further, our analysis shows that not only AT but
also the models’ building blocks (like activation
functions and pooling) have a strong influence on
the models’ prediction confidences.

1. Introduction
Convolutional Neural Networks (CNNs) have been shown
to successfully solve problems across various tasks and
domains. However, distribution shifts in the input data can
have a severe impact on the prediction performance. In
real-world applications, these shifts may be caused by a
multitude of reasons including corruption due to weather
conditions, camera settings, noise, and maliciously crafted
perturbations to the input data intended to fool the network
(adversarial attacks). In recent years, a vast line of research
(e.g. (Hendrycks & Dietterich, 2019; Goodfellow et al.,
2015; Kurakin et al., 2017)) has been devoted to solving
robustness issues, highlighting a multitude of causes for
the limited generalization ability of networks and potential
solutions to facilitate the training of better models.
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Figure 1. Average ROC curve for all robust and all non-robust mod-
els trained on CIFAR10 (top) and CIFAR100 (bottom). Standard
deviation is marked by the error bars. The dashed line would mark
a model which has the same confidence for each prediction. We
observe that the models confidences can be an indicator for the
correctness of the prediction. However, on PGD samples the non-
robust models fail while the robust models can distinguish correct
from incorrect predictions based on the prediction confidence.

A second, yet equally important issue that hampers the
deployment of deep learning based models in practical ap-
plications is the lack of calibration concerning prediction
confidences. In fact, most models are overly confident in
their predictions, even if they are wrong (Lakshminarayanan
et al., 2017; Guo et al., 2017; Nguyen et al., 2015). Specif-
ically, most conventionally trained models are unaware of
their own lack of expertise, i.e. they are trained to make
confident predictions in any scenario, even if the test data
is sampled from a previously unseen domain. Adversarial
examples seem to leverage this weakness, as they are known
not only to fool the network but also to cause very confident
wrong predictions (Lee et al., 2018). In turn, adversarial
training (AT) is known to improve the prediction accuracy
under adversarial attacks (Goodfellow et al., 2015; Zhang
et al., 2019b; Rony et al., 2019; Engstrom et al., 2019). Yet,
a systematic synopsis of the two aspects, adversarial robust-
ness and prediction confidence is still pending.
In this work, we provide an extensive empirical analysis
of diverse adversarially robust models concerning their pre-
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diction confidences. Therefore, we evaluate the prediction
confidences of more than 70 adversarially robust models
and their conventionally trained counterparts that show low
robustness when exposed to adversarial examples. By mea-
suring their predictive distributions on benign and adver-
sarial examples for correct and erroneous predictions, we
show that adversarially trained models have benefits beyond
adversarial robustness and are less over-confident.

Our experiments on the datasets CIFAR10 (Krizhevsky,
2012), CIFAR100 and ImageNet (Deng et al., 2009) con-
firm that non-robust models are overconfident with their
false predictions under adversarial attacks. This highlights
the challenges for the usage in real-world applications. In
contrast, we show that robust models are generally less
confident in their predictions, and, especially CNNs which
include improved building blocks (downsampling and ac-
tivation) turn out to be better calibrated manifesting low
confidence in wrong predictions and high confidence in
their correct predictions.

Our contributions can be summarized as follows:

• We provide an extensive analysis of the prediction
confidence of 71 adversarially trained models, and
their conventionally trained counterparts. We observe
that most non-robust models are exceedingly over-
confident while robust models exhibit less confidence
and especially are better calibrated. Thus achieving
more reliable networks for real-world applications.

• We observe that specific layers, that are considered to
improve model robustness impact the models’ confi-
dence. In detail, improved downsampling layers and
activation functions can lead to an even better calibra-
tion of the learned model.

Our analysis provides a first synopsis of adversarial robust-
ness and model calibration and aims to foster research that
addresses both challenges jointly rather than considering
them as two separate research fields.

2. Related Work
Adversarial Training and Robustness. Adversarial at-
tacks intentionally add perturbations to the input samples,
that are almost imperceptible to the human eye, yet lead to
(high-confidence) false predictions of the attacked model
(Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016;
Szegedy et al., 2014b). In black-box attacks, the adversary
has no knowledge of the model intrinsics (Andriushchenko
et al., 2020; Chen et al., 2017; Ilyas et al., 2018; Tu et al.,
2019). In white-box attacks, the adversary has access to the
full model (Goodfellow et al., 2015; Kurakin et al., 2017)
and can perform attacks using gradient ascent (Goodfel-
low et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli

et al., 2016; Carlini & Wagner, 2017; Rony et al., 2019).
AutoAttack (Croce & Hein, 2020) is a powerful ensemble
of different attacks. It is used in the robustness benchmark
RobustBench (Croce et al., 2020).

To improve robustness, adversarial training (AT) has proven
to be quite successful on common robustness benchmarks.
Some attacks can be simply defended by using their adver-
sarial examples in the training set (Goodfellow et al., 2015;
Rony et al., 2019) through an additional loss (Engstrom
et al., 2019; Zhang et al., 2019b). Furthermore, the addition
of more training data, by using external data, or data aug-
mentation techniques such as generation of synthetic data,
has been shown to be promising for more robust models (Re-
buffi et al., 2021; Gowal et al., 2021a; Carmon et al., 2019;
Sehwag et al., 2021; Gowal et al., 2021b; Wang et al., 2020).
RobustBench (Croce et al., 2020) provides a leaderboard
to study the improvements made by the aforementioned ap-
proaches on robustness in a comparable manner in terms
of their robust accuracy. Yet, only very few but notable
prior works such as (Lakshminarayanan et al., 2017) have
investigated AT with respect to model calibration. Without
providing a systematic overview, they show that AT can
help to smooth the predictive distributions of CNN mod-
els. (Tomani & Buettner, 2021) introduce an adversarial
calibration loss to reduce the calibration error. Complemen-
tary to (Croce et al., 2020), we provide an analysis of the
predictive confidences of adversarially trained, robust mod-
els and release conventionally trained counterparts of the
models from (Croce et al., 2020) to facilitate future research
on the analysis of the impact of training schemes versus
architectural choices.

Defense besides adversarial training, can be established by
the detection and rejection of malicious input. Most such
detectors use input sample statistics (Hendrycks & Gimpel,
2016; Li & Li, 2017; Harder et al., 2021; Feinman et al.,
2017; Grosse et al., 2017), while others attempt to detect
adversarial samples via inference on surrogate models.

Confidence Calibration. For many models that perform
well with respect to standard benchmarks, it has been argued
that the robust or regular model accuracy may be an insuf-
ficient metric (Amodei et al., 2016; DeGroot & Fienberg,
1983; Corbière et al., 2019; Varshney & Alemzadeh, 2017),
in particular when real-world applications with potentially
open-world scenarios are considered. In these settings, relia-
bility must be established which can be quantified by the pre-
diction confidence (Ovadia et al., 2019). Ideally, a reliable
model would provide high confidence predictions on cor-
rect classifications, and low confidence predictions on false
ones (Corbière et al., 2019; Nguyen et al., 2015). However,
most networks are not able to provide a sufficient calibra-
tion instantly. Hence, confidence calibration is a vivid field
of research and proposed methods are based on additional
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loss functions (Lakshminarayanan et al., 2017; Gurau et al.,
2018; Moon et al., 2020; Li & Hoiem, 2020; Hein et al.,
2019), on adaptions of the training input by label smoothing
(Szegedy et al., 2016; Reed et al., 2014; Müller et al., 2019;
Qin et al., 2021) or on data augmentation (Zhang et al., 2017;
DeVries & Taylor, 2017; Lakshminarayanan et al., 2017;
Thulasidasan et al., 2019). Further, (Ovadia et al., 2019)
present a benchmark on classification models regarding
model accuracy and confidence under dataset shift. Further,
different evaluation methods have been provided to distin-
guish between correct and incorrect predictions (Corbière
et al., 2019; Naeini et al., 2015). Naeini et al. (2015) defined
the networks expected calibration error (ECE)for a model
f by with 0 ≤ p ≤ ∞

ECEp = E[|ẑ − E[1ŷ=y|ẑ]|p]
1
p (1)

where the model f predicts ŷ = y with the confidence ẑ.
This can be directly related to the over-confidence o(f) and
under-confidence u(f) of a network as follows (Wenger
et al., 2020):

|o(f)P(ŷ ̸= y)− u(f)P(ŷ = y)| ≤ ECEp, (2)

where (Mund et al., 2015)

o(f) = E[ẑ|ŷ ̸= y] u(f) = E[1− ẑ|ŷ = y], (3)

i.e. over-confidence measures the expectation of ẑ on wrong
predictions, under-confidence measures the expectation of
1− ẑ on correct predictions and ideally both are zero.

The ECE provides an upper bound for the difference
between the probability of the prediction being wrong
weighted by the networks over-confidence and the prob-
ability of the prediction being correctly weighted by the
networks under-confidence and converges to this value for
the parameter p → 0 (in eq. 1]). We also recur to this metric
as an aggregate measure to evaluate model confidence. Yet,
it should be noted that the ECE is based on the assumption
that networks make correct as well as incorrect predictions.
A model that always makes incorrect predictions and is less
confident in its few correct decisions than it is in its many
erroneous decisions can end up with a comparably low ECE.
Therefore, ECE values for models with an accuracy below
50% are hard to interpret.

Most common CNNs are over-confident (Lakshmi-
narayanan et al., 2017; Guo et al., 2017; Nguyen et al.,
2015). Moreover, the most dominantly used activation in
modern CNNs (He et al., 2015; Szegedy et al., 2014a; Si-
monyan & Zisserman, 2015; Huang et al., 2017) is the ReLU
function, while Hein et al. (2019) pointed out that ReLUs
cause a general increase in the model’s prediction confi-
dences, regardless of the prediction validity. This is also the
case for the vast majority of the adversarially trained models
we consider, except for the model by (Dai et al., 2021) to
which we devote particular attention.

3. Analysis
Experimental Setup We have collected 71 checkpoints
of robust models listed on the ℓ∞-RobustBench leaderboard
(Croce et al., 2020) (see appendix D for a complete list
of models). We compare each appearing architecture to a
second model trained without AT or any specific robustness
regularization, and without any external data (even if the
robust counterpart relied on it). Training details can be
found in appendix A.

Then we collect the predictions alongside their respective
confidences of robust and non-robust models on clean valida-
tion samples, as well as on samples attacked by a white-box
attack (PGD), and a black-box attack (Squares). PGD (and
its adaptive variant APGD (Croce & Hein, 2020)) is the
most widely used white-box attack and adversarial training
schemes explicitly (when using PGD samples for training)
or implicitly (when using the faster but strongly related
FGSM attack samples for training) optimize for PGD ro-
bustness. In contrast, the Squares attack alters the data at
random with an allowed budget until the label flips. Such
samples are rather to be considered out-of-domain samples
even for adversarially trained models and provide a proxy
for a model’s generalization ability.

3.1. Low Resolution Models

CIFAR10 (Krizhevsky, 2012) is a ten class dataset consist-
ing of 50,000 training and 10,000 validation images with
a resolution of 32 × 32. Since it is significantly cheaper
to train on CIFAR10 than on e. g. ImageNet, this dataset
became a welcome benchmark for robustness allowing to
discount the additional cost of adversarial training, resulting
in a number of RobustBench (Croce et al., 2020) entries.

Figure 2 shows an overview of all robust and non-robust
models trained on CIFAR10 and CIFAR100 in terms of
their accuracy as well as their confidence in their correct
and incorrect predictions. The red star in the lower right
corner indicates the optimal point where models are highly
confident in correct predictions and have zero confidence
in their incorrect predictions. Along the isolines, the ratio
between confidence in correct and incorrect predictions is
constant. The gray area indicates scenarios where models
are even more confident in their incorrect predictions than
in their correct predictions. Concentrating on the models’
confidence, we can see that robust models (marked by a
diamond) are in general less confident in their predictions,
while non-robust models (marked by a circle) exhibit high
confidence in all their predictions, both correct and incor-
rect. This indicates that non-robust models are not only
more susceptible to (adversarial) distribution shifts but are
also highly over-confident in their false predictions. Practi-
cally, such behaviour can lead to catastrophic consequences
in safety-related, real-world applications. Robust models
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Figure 2. Mean model confidences on their correct (x-axis) and incorrect (y-axis) predictions over the full CIFAR10 dataset (top) and
CIFAR100 dataset (bottom), clean (left) and perturbed with the attacks PGD (middle) and Squares (right). Each point represents a model.
Circular points (purple color-map) represent non-robust models and diamond-shaped points (green color-map) represent robust models.
The color of each point represents the models accuracy, darker signifies higher accuracy (better) on the given data samples. The star in the
bottom right corner indicates the optimal model calibration and the gray area marks the area where the confidence distribution of the
network is worse than random, i.e. more confident in incorrect predictions than in correct ones.
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Figure 3. Overconfidence (lower is better) bar plots of robust mod-
els and their non-robust counterparts trained on CIFAR10. Non-
robust models are highly overconfident, in contrast, their robust
counterparts are less over-confident.

tend to have lower average confidence and a favorable con-
fidence trade-off even on clean data (Figure 2, left). When
adversarial samples using PGD are considered (Figure 2,
middle), the non-robust models even fall into the gray area
of the plot where more confident decisions are likely incor-
rect. As expected, adversarially trained models not only
make fewer mistakes in this case but are also better adjusted
in terms of their confidence. Black-box attacks (Figure 2,

right) provide non-targeted out of domain samples. Ad-
versarially trained models generalize overall well to this
case, i.e. their mean confidences are hardly affected whereas
non-robust models’ confidences fluctuate heavily. Figure 12
further visualizes the significant decrease in over-confidence
of robust models w.r.t. their non-robust counterparts. Robust
models are better calibrated which results in a significantly
lower overconfidence.

Model confidences can predict erroneous decisions.
Next, we evaluate the prediction confidences in terms of
their ability to predict whether a network prediction is cor-
rect or incorrect. We visualize the ROC curves for all models
and compare the averages of robust and non-robust mod-
els in Figure 1 (top row for CIFAR10, bottom row for CI-
FAR100), which allows us to draw conclusions about the
confidence behavior. While robust and non-robust models
perform on average very similarly on clean data, robust
model confidences can reliable predict erroneous classifi-
cation results on adversarial examples where non-robust
models fail. Also, for out-of-domain samples from the
black-box attack Squares (right), robust models can reliably
assess their prediction quality and can better predict whether
their classification result is correct.

Robust model confidences can detect adversarial sam-
ples. Further, we evaluate the adversarial detection rate
of the robust models based on their ROC curves (averaged
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Figure 4. Average ROC curve (red) over all robust models on CI-
FAR10 of confidence on clean correctly classified samples and per-
turbed wrongly classified samples. The robust model confidences
can be used as threshold for detection of adversarial attacks.
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Figure 5. Confidence distribution on three different PRN-18. The
first row shows a model without adversarial training and standard
pooling, the second row the model by Grabinski et al. (2022b)
which uses flc pooling instead of standard pooling and the third
row shows the model by Rebuffi et al. (2021) adversarially trained
and with standard pooling.

over all robust models) in Figure 4, comparing the confi-
dence of correct predictions on clean samples and incorrect
predictions caused by adversarial attacks. We observe that
the confidences of robust models can be used to detect ad-
versarial samples by simple thresholding.

Downsampling techniques. Most common CNNs apply
downsampling to compress featuremaps with the intent to
increase spatial invariance and overall higher sparsity. How-
ever, Grabinski et al. (2022b) stated that aliasing during the
downsampling operation highly correlates with the lack of
adversarial robustness, and provided a downsampling opera-
tion, called frequency low cut pooling (flc) (Grabinski et al.,
2022a), which enables improved downsampling. Figure
5 compares the confidence distribution of three different
networks. The top row shows a PRN-18 baseline without
AT, the second row the approach by Grabinski et al. (2022a)
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Figure 6. Confidence distribution on three different WRN-28-10.
The first row shows a model without adversarial training and stan-
dard activation (ReLu), the second row the model by Dai et al.
(2021) which uses learnable activation functions instead of fixed
ones and the third row shows the model by Carmon et al. (2019)
adversarially trained and with the standard activation (ReLu).

applied to the same architecture, and the third row a robust
model trained by Rebuffi et al. (2021). The baseline model
is highly susceptible to adversarial attacks, especially under
white-box attacks, while the two robust counter-parts remain
low-confident in false predictions, and show higher confi-
dence in correct predictions. However, while the model of
Rebuffi et al. (2021) shows a high variance amongst the pre-
dicted confidences, the approach by Grabinski et al. (2022a)
significantly improves this by disentangling the confidences.
Their model provides low-variance and high-confidence in
correct predictions and reduced confidence in false predic-
tions across all evaluated samples.

Activation functions. Next, we analyze the influence of
activation functions. Only one RobustBench model utilizes
an activation other than ReLU. Dai et al. (2021) introduce
learnable activation functions to improve robustness. Figure
6 shows a WRN-28-10 model (top) without AT, the model by
Dai et al. (2021) (center) and an adversarially trained model
with the same architecture Carmon et al. (2019) (bottom).
Although this is an arguably sparse basis for a thorough
investigation, we observe that the model by (Dai et al., 2021)
can retain high confidence in correct predictions for both
clean and perturbed samples. Furthermore, the model is
much less confident in its wrong predictions for the clean
as well as the adversarial samples, which is in line with the
findings of (Hein et al., 2019).
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Figure 7. Precision Recall curves for robust and non-robust models
trained on ImageNet provided by RobustBench (Croce et al., 2020)
over 10000 samples. For the clean samples the non robust baseline
can establish the best precision recall curve, followed by the WRN-
50-2 by Salman et al. (2020). Similarly this robust WRN-50-2
performs best on the PGD and Squares samples.
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Figure 8. Overconfidence (lower is better) bar plots of the mod-
els trained on ImageNet provided by RobustBench (Croce et al.,
2020) and their non-robust counterparts. The non-robust baselines
exhibits the highest overconfidence. In contrast, the robust models
are better calibrated.

3.2. High Resolution Models

As previously introduced, we rely on the models provided
by RobustBench (Croce et al., 2020) for our ImageNet eval-
uation. We report the clean and robust accuracy against
PGD and Squares in Table 3 in the appendix. The non-
robust model, trained without AT, achieves the highest per-
formance on clean samples but collapses under white- and
black-box attacks. Further, the models trained with mul-
tistep adversaries by Engstrom et al. (2019) and Salman
et al. (2020) achieve higher robust and clean accuracy than
the model trained by Wong et al. (2020) which is trained
with single-step adversaries. Moreover, the largest model,
a WRN-50-2, yields the best robust performance. Still, the
amount of robust networks on ImageNet is quite small, thus
we can not make any generalized assumptions.

Figure 7 shows the precision-recall curve for our evaluated

models. When evaluated on clean samples, the non-robust
model without AT performs best. Under both attacks (PGD
and Squares) the largest model ( a WRN-50-2 by Salman
et al. (2020)) performs best and the worst performer is the
smallest model (RN-18). This may be suggesting that bigger
models can not only achieve the better trade-off in clean and
robust accuracy but also more successfully disentangle con-
fidences between correct and incorrect predictions. Figure
8 confirms that the over-confidence is decreased in robust
models and the ECE is lower than in non-robust models.

4. Discussion
Our experiments confirm that the prediction confidence of
non-robust models is an insufficient indicator for the correct-
ness of the prediction, especially under attacks. In contrast,
robust models are better behaved and, thus, allow their pre-
diction confidence to serve as a threshold to detect wrongly
classified samples. Further, our results indicate that the
selection of the activation functions as well as the downsam-
pling are important factors for the models’ performance and
confidence. The method by Grabinski et al. (2022a), which
improves the downsampling, as well as the method by Dai
et al. (2021), which improves the activation function, ex-
hibit the best calibration for the networks prediction. While
further optimizing deep neural networks’ architectures and
training schemes, we should therefore consider the synopsis
of model robustness and calibration instead of optimizing
each of these aspects separately.

Limitations Our evaluation is based on the models provided
on RobustBench (Croce et al., 2020). Thus the amount of
networks on more complex datasets, like ImageNet, is rather
small and therefore the evaluation not universally applicable.
While the number of models for CIFAR10 and CIFAR100
is large, the proposed database can only be understood as a
starting point for future research.

5. Conclusion
We provide an extensive study on the confidence of robust
models and observe an overall trend: robust models tend to
be less over-confident than non-robust models. Thus, while
achieving a higher robust accuracy, adversarial training pro-
vides better calibrated models which are more suited for
real-world application. Further, the prediction confidence of
robust models can actually be used to reject wrongly classi-
fied samples on clean data and even adversarial examples.

Moreover, we see indications that exchanging simple build-
ing blocks like the activation function (Dai et al., 2021) or
the downsampling method (Grabinski et al., 2022b) alters
the properties of robust models with respect to confidence
calibration. Our findings should nurture future research on
jointly considering model calibration and robustness.
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A. Non-robust Model Training
For training, CIFAR-10/100 data was zero-padded by 4 px along each dimension, and then transformed using 32× 32 px
random crops, and random horizontal flips. Channel-wise normalization was replicated as reported by the original dataset
authors. Training hyper parameters have been set to an initial learning rate of 1e-2, a weight decay of 1e-2, a batch-size
of 256 and a nesterov momentum of 0.9. We scheduled the SGD optimizer to decrease the learning rate every 30 epochs
by a factor of γ = 0.1 and trained for a total of 125 epochs. The loss is determined using Categorical Cross Entropy and
we used the model obtained at the epoch with the highest validation accuracy. Training ImageNet1k architectures with our
hyperparameters resulted in a rather poor performance and we therefore rely on the baseline model without AT provided by
timm (Wightman, 2019).

B. Additional Evaluation CIFAR10/100
Following we provided an overview over all robust and non-robust counterparts and their ECE on CIFAR10 and CIFAR100
are listed.

CIFAR100, includes 100 classes and can be seen as a more challenging classification task. This is reflected in the reduced
model accuracy on the clean and adversarial samples (Figure 2 , bottom). On this data, robust models slightly closer to the
optimal calibration point in the lower right corner even on clean data and perform significantly better on PGD samples where
the confidences of non-robust models are again reversed (middle). The Squares attack again illustrates the stable behavior of
robust models’. The models’ full empirical confidence distributions are given in Figure 10. We also report the ECE values
for CIFAR100 in Table 2. Please note that the accuracy of the CIFAR100 models is not very high (ranging between 56.87%
and 70.25% even for clean samples), resulting in an unreliable calibration metric. Especially under PGD attacks, non-robust
networks make mostly incorrect predictions such that the ECE collapses to being the expected confidence value of incorrect
predictions (see eq. [1]), regardless of the confidences of the few correct predictions. In this case, ECE is not meaningful.

B.1. Confidence Distribution

The model confidences distributions are shown in Figure 9 and Figure 10. Each row contains the robust and non-robust
counterpart and their confidence distributions on the clean samples and the perturbated samples by PGD and Squares.
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Figure 9. Density plots for robust and non-robust models on CIFAR10 over the models confidence on its correct and incorrect predictions.
Each row contains the same model adversarially and standard trained. The non.robust models show high confidence on all of their
predictions, however those might be wrong. Especially in the case of PGD samples the models are highly confidence in their false
predictions. In contrast the robust models are better calibrated. The robust models are confident in their correct predictions and less
confident in their false prediction.
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Figure 10. Density plots for robust and non-robust models on CIFAR100 over the models confidence on its correct and incorrect predictions.
Each row contains the same model adversarially and standard trained. The non.robust models show high confidence on all of their
predictions, however those might be wrong. Especially in the case of PGD samples the models are highly confidence in their false
predictions. In contrast the robust models are better calibrated. The robust models are confident in their correct predictions and less
confident in their false prediction.
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Figure 11. Overconfidence (lower is better) bar plots of robust models and their non-robust counterparts trained on CIFAR100.

B.2. Overconfidence and ECE

Table 1 reports the mean ECE over all robust models and their non-robust counterparts. Robust models are better calibrated
which results in a significantly lower ECE. The models’ full empirical confidence distributions are given in Figure 9.

Samples
Robustness Clean PGD Squares

non-robust models 0.3077 ± 0.1257 0.2159 ± 0.0738 0.2780 ± 0.1348
robust models 0.2962 ±0.1722 0.2307 ± 0.1494 0.2076 ± 0.1247

Table 2. Mean ECE (lower is better) and standard deviation over all non-robust
model versus all their robust counterparts trained on CIFAR100. Robust model
exhibit a significantly lower ECE on all samples.

Similar, the confidence distributions for the
robust and non-robust counterparts on CI-
FAR100 are depicted in Figure 10.

B.3. Precision Recall

For completeness we included the Precision
Recall curves on CIFAR10 and CIFAR100 as
mean over all robust and non-robust models
with marked standard deviation.
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Samples
Robustness Clean PGD Squares

non-robust models 0.6736 ± 0.1208 0.6809 ± 0.1061 0.6635 ±0.1156
robust models 0.1894 ±0.1531 0.2688 ± 0.1733 0.2126 ± 0.1431

Table 1. Mean ECE (lower is better) and standard deviation over all non-robust models versus all their robust counterparts trained on
CIFAR10. Robust models exhibit a significantly lower mean ECE.Clean Samples PGD Samples Squares Samples
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Figure 12. ECE (lower is better) bar plots of robust models and their non-robust counterparts trained on CIFAR10.

C. Additional Evaluation ImageNet
Following table 3 reports the accuracy evaluation of the robust models as well as the baseline on ImageNet. The accuracy is
reported on the clean as well as on the perturbated samples by PGD and Squares with an ϵ of 4/255.

For completeness we included the ROC curve in Figure on the clean as well as the perturbated samples for the robust models
and the baseline on ImagNet in Figure 17 as well as the evaluation of the ECE in Figure 18.

Method Architecture Clean Acc ↑ PGD Acc ↑ Squares Acc ↑
Baseline RN50 76.13 0.00 11.48

Engstrom et al. (2019) RN50 62.41 35.47 54.93
Wong et al. (2020) RN50 53.83 29.43 42.26

Salman et al. (2020) RN50 63.87 42.23 56.58
Salman et al. (2020) WRN50-2 68.41 44.75 61.29
Salman et al. (2020) RN18 52.50 31.92 43.81

Table 3. Clean and robust accuracy on ImageNet against PGD and Squares (higher is better) over 10000 samples.
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Figure 13. ECE (lower is better) bar plots of robust models and their non-robust counterparts trained on CIFAR100. The models accuracy
are marked for the different samples for each bar.
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Figure 14. Average precision recall curve for all robust and all non-robust models trained on CIFAR10. Standard deviation is marked by
the error bars. For the clean samples the non robust models can distinguish slightly better into correct and incorrect predictions based on
the predictions confidence. The superior of the robust models is clearly visible on the samples created by PGD, the non.robust models are
not able to distinguish. However, for the samples created by Squares the classification into correct and incorrect prediction based on the
confidence is almost equally possible for robust and non-robust models.
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Figure 15. Average precision recall curve for all robust and all non-robust models trained on CIFAR100 for 1000 samples. Standard
deviation is marked by the error bars. For the clean samples the non robust models can distinguish slightly better into correct and incorrect
predictions based on the predictions confidence. The superior of the robust models is clearly visible on the samples created by PGD, the
non.robust models are not able to distinguish. However, for the samples created by Squares the classification into correct and incorrect
prediction based on the confidence is almost equally possible for robust and non-robust models.
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Figure 16. Precision Recall curve between confidence of clean correct samples and perturbated wrong samples on CIFAR10 and CIFAR100.
The robust model confidences can be used as threshold for detection of adversarial attacks.
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Figure 17. ROC curves for the robust models and the non-robust baseline trained on ImageNet provided on RobustBench (Croce et al.,
2020).
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Figure 18. ECE (lower is better) bar plots of the models trained on ImageNet provided by RobustBench (Croce et al., 2020) and their
non-robust counterparts. The non-robust baselines exhibits the highest ECE. In contrast, the robust models are better calibrated.
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D. Model Overview
The robust checkpoints provided by RobustBench (Croce et al., 2020) are licensed under the MIT Licence. The clean models
for ImageNet are provided by timm (Wightman, 2019) under the Apache 2.0 licence.

Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

(Andriushchenko & Flammarion,
2020)

cifar10 PreActResNet-18 79.84 43.93 94.51 0.0

(Carmon et al., 2019) cifar10 WideResNet-28-10 89.69 59.53 95.10 0.0
(Sehwag et al., 2020) cifar10 WideResNet-28-10 88.98 57.14 95.10 0.0
(Wang et al., 2020) cifar10 WideResNet-28-10 87.50 56.29 95.10 0.0
(Hendrycks et al., 2019) cifar10 WideResNet-28-10 87.11 54.92 95.35 0.0
(Rice et al., 2020) cifar10 WideResNet-34-20 85.34 53.42 95.46 0.0
(Zhang et al., 2019b) cifar10 WideResNet-34-10 84.92 53.08 95.26 0.0
(Engstrom et al., 2019) cifar10 ResNet-50 87.03 49.25 94.90 0.0
(Chen et al., 2020) cifar10 ResNet-50 86.04 51.56 86.50 0.0
(Huang et al., 2020) cifar10 WideResNet-34-10 83.48 53.34 95.26 0.0
(Pang et al., 2020) cifar10 WideResNet-34-20 85.14 53.74 76.30 0.0
(Wong et al., 2020) cifar10 PreActResNet-18 83.34 43.21 94.25 0.0
(Ding et al., 2020) cifar10 WideResNet-28-4 84.36 41.44 94.33 0.0
(Zhang et al., 2019a) cifar10 WideResNet-34-10 87.20 44.83 95.26 0.0
(Zhang et al., 2020) cifar10 WideResNet-34-10 84.52 53.51 95.26 0.0
(Wu et al., 2020) cifar10 WideResNet-28-10 88.25 60.04 95.10 0.0
(Wu et al., 2020) cifar10 WideResNet-34-10 85.36 56.17 95.64 0.0
(Gowal et al., 2021a) cifar10 WideResNet-70-16 85.29 57.20 87.91 0.0
(Gowal et al., 2021a) cifar10 WideResNet-70-16 91.10 65.88 87.91 0.0
(Gowal et al., 2021a) cifar10 WideResNet-34-20 85.64 56.86 88.33 0.0
(Gowal et al., 2021a) cifar10 WideResNet-28-10 89.48 62.80 88.20 0.0
(Sehwag et al., 2021) cifar10 WideResNet-34-10 85.85 59.09 95.64 0.0
(Sehwag et al., 2021) cifar10 ResNet-18 84.38 54.43 94.87 0.0
(Sitawarin et al., 2021) cifar10 WideResNet-34-10 86.84 50.72 95.26 0.0
(Chen et al., 2021) cifar10 WideResNet-34-10 85.32 51.12 95.35 0.0
(Cui et al., 2021) cifar10 WideResNet-34-20 88.70 53.57 95.44 0.0
(Cui et al., 2021) cifar10 WideResNet-34-10 88.22 52.86 95.26 0.0
(Zhang et al., 2021) cifar10 WideResNet-28-10 89.36 59.64 95.10 0.0
(Rebuffi et al., 2021) cifar10 WideResNet-28-10 87.33 60.75 88.20 0.0
(Rebuffi et al., 2021) cifar10 WideResNet-106-16 88.50 64.64 86.92 0.0
(Rebuffi et al., 2021) cifar10 WideResNet-70-16 88.54 64.25 87.91 0.0
(Rebuffi et al., 2021) cifar10 WideResNet-70-16 92.23 66.58 87.91 0.0
(Sridhar et al., 2021) cifar10 WideResNet-28-10 89.46 59.66 95.10 0.0
(Sridhar et al., 2021) cifar10 WideResNet-34-15 86.53 60.41 95.50 0.0
(Rebuffi et al., 2021) cifar10 PreActResNet-18 83.53 56.66 89.01 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar10 PreActResNet-18 89.02 57.67 89.01 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar10 PreActResNet-18 86.86 57.09 89.01 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar10 WideResNet-34-10 91.47 62.83 88.67 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar10 WideResNet-28-10 88.16 60.97 88.20 0.0
(Huang et al., 2022) cifar10 WideResNet-34-R 90.56 61.56 95.60 0.0
(Huang et al., 2022) cifar10 WideResNet-34-R 91.23 62.54 95.60 0.0
(Addepalli et al., 2021) cifar10 ResNet-18 80.24 51.06 94.87 0.0

Continued on next page
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Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

(Addepalli et al., 2021) cifar10 WideResNet-34-10 85.32 58.04 95.26 0.0
(Gowal et al., 2021b) cifar10 WideResNet-70-16 88.74 66.11 87.91 0.0
(Dai et al., 2021) cifar10 WideResNet-28-10-

PSSiLU
87.02 61.55 85.53 0.0

(Gowal et al., 2021b) cifar10 WideResNet-28-10 87.50 63.44 88.20 0.0
(Gowal et al., 2021b) cifar10 PreActResNet-18 87.35 58.63 89.01 0.0
(Chen & Lee, 2021) cifar10 WideResNet-34-10 85.21 56.94 95.64 0.0
(Chen & Lee, 2021) cifar10 WideResNet-34-20 86.03 57.71 95.29 0.0
(Gowal et al., 2021a) cifar100 WideResNet-70-16 60.86 30.03 60.56 0.0
(Gowal et al., 2021a) cifar100 WideResNet-70-16 69.15 36.88 60.56 0.0
(Cui et al., 2021) cifar100 WideResNet-34-20 62.55 30.20 80.46 0.0
(Cui et al., 2021) cifar100 WideResNet-34-10 70.25 27.16 79.11 0.0
(Cui et al., 2021) cifar100 WideResNet-34-10 60.64 29.33 79.11 0.0
(Chen et al., 2021) cifar100 WideResNet-34-10 62.15 26.94 78.75 0.0
(Wu et al., 2020) cifar100 WideResNet-34-10 60.38 28.86 78.79 0.0
(Sitawarin et al., 2021) cifar100 WideResNet-34-10 62.82 24.57 79.11 0.0
(Hendrycks et al., 2019) cifar100 WideResNet-28-10 59.23 28.42 79.16 0.0
(Rice et al., 2020) cifar100 PreActResNet-18 53.83 18.95 76.18 0.0
(Rebuffi et al., 2021) cifar100 WideResNet-70-16 63.56 34.64 60.56 0.0
(Rebuffi et al., 2021) cifar100 WideResNet-28-10 62.41 32.06 61.46 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar100 PreActResNet-18 56.87 28.50 63.45 0.0
(Rade & Moosavi-Dezfooli, 2021) cifar100 PreActResNet-18 61.50 28.88 63.45 0.0
(Addepalli et al., 2021) cifar100 PreActResNet-18 62.02 27.14 76.66 0.0
(Addepalli et al., 2021) cifar100 WideResNet-34-10 65.73 30.35 79.11 0.0
(Chen & Lee, 2021) cifar100 WideResNet-34-10 64.07 30.59 79.11 0.0
(Wong et al., 2020) imagenet ResNet-50 55.62 26.24 80.37 0.0
(Engstrom et al., 2019) imagenet ResNet-50 62.56 29.22 80.37 0.0
(Salman et al., 2020) imagenet ResNet-50 64.02 34.96 80.37 0.0
(Salman et al., 2020) imagenet ResNet-18 52.92 25.32 69.74 0.0
(Salman et al., 2020) imagenet WideResNet-50-2 68.46 38.14 81.45 0.0


